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A large number of demands for space on-orbit services to ensure the on-orbit system completes its specified tasks are foreseeable,
and the efficiency and the security are the most significant factors when we carry out an on-orbit mission. And it can improve
human-computer interaction efficiency in operations with proper gesture recognition solutions. In actual situations, the
operations are complex and changeable, so the gestures used in interaction are also difficult to predict in advance due to the
compounding of multiple consecutive gestures. To recognize such gestures based on computer vision (CV) requires complex
models trained by a large amount of datasets, it is often unable to obtain enough gesture samples for training a complex model
in real tasks, and the cost of labeling the collected gesture samples is quite expensive. Aiming at the problems mentioned
above, we propose a few-shot continuous gesture recognition scheme based on RGB video. The scheme uses Mediapipe to
detect the key points of each frame in the video stream, decomposes the basic components of gesture features based on certain
human palm structure, and then extracts and combines the above basic gesture features by a lightweight autoencoder network.
Our scheme can achieve 89.73% recognition accuracy on the 5-way 1-shot gesture recognition task which randomly selected
142 gesture instances of 5 categories from the RWTH German fingerspelling dataset.

1. Introduction

Space on-orbit systems are play a crucial role in aerospace.
In relative independent working environments, problems
and instrument malfunctions are not always foreseeable. In
order to make the on-orbit system completes the target
tasks, it is necessary to maintain the services and eliminate
the malfunctions. Space on-orbit servicing (OOS) can be
regarded as a suitable mode to maintain the on-orbit system
and prolong its service life. In the process of space on-orbit
service, frequent human-machine interaction operations
are required, especially in the tasks such as orbit cleaning,
service maintenance, or the cargo resupply [1]. The gesture
is kind of complex rigid body which carries abundant
human posture information, and the challenge of its state
detection coexists with its practice ability in such interaction
scene. The gesture recognition mainly has two parts applica-

tions in those on-orbit service tasks. One is to use specific
gestures as a medium for signal transmission to manipulate
machines such as multidegree of freedom robotic arm [2]
by different gestures, which can improve the working effi-
ciency and safety, and the other is to encode gestures for
mapping different operations. Relevant research in gesture
recognition field started earlier and achieved fruitful
achievements. One direction to recognize gestures is by the
helping of external sensor equipment [3] to gather joints’
relative depth assisted with vision information, using
methods such as scale invariant feature transform (SIFT)
[4] to manually extract gesture features and combine them
with feature classifier for recognition, and the other direction
is to regression from the RGB images directly. However, to
detect RGB images directly based on visual schemes often
requires the construction of complex models and large
amounts of datasets for training. With the development of
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machine learning and computing hardware, the deep learn-
ing models with strong capacity of image feature representa-
tion such as convolutional neural networks (CNNs) [5] or
transformer [6] achieved more than 95% recognition accu-
racy on 2D or 3D gesture recognition tasks. Compared with
gesture image recognition, continuous gesture recognition
requires the model with stronger ability of feature extraction
to recognize from gesture sequences due to the blur by the
motions. Thus, we usually extract instances’ features by
modeling the whole gesture sequence, such as using repre-
sentative long short-term memory (LSTM) or dynamic time
warping (DTW) methods in the task with the help of exter-
nal sensors.

When the above models are dealing with the single ges-
ture or continuous gesture recognition tasks, it often needs
to input a plenty of gesture datasets that contain various
backgrounds and gesture shapes to obtain better perfor-
mance and generalization ability. Especially when the prob-
lem is extended to the recognition of continuous gestures,
the scale of the hypothetical space increases rapidly, the cost
of labeling datasets is hard to accept, and it is difficult to col-
lect enough instances fit for task in some cases. But some
studies have shown that [7] even if the sample in the task
is insufficient, the model can also achieve excellent generali-
zation performance and competent the classification or
regression task by conduct proper few-shot learning method.

There are many ways to realize few-shot learning
schemes. In the early stage, the classification and recognition
task of few-shot learning is based on the models with rela-
tively simple structure, such as nearest neighbor or linear
support vector machine (SVM). Later, with the development
of deep learning fields, transfer learning can also be used to
synchronize the model parameters learned from large num-
ber of samples to other similar tasks and then fine tune the
model parameters based on a small number of samples [8],
which are an effective way for few-shot learning, but still
need a considerable dataset for previous learning.

Aiming at the above problems of continuous gesture rec-
ognition, we propose a gesture recognition scheme based on
small samples. Our scheme fine tunes the parameters of the
self-attention (SA) module according to the support set pro-
vided by the task, using Mediapipe framework to detect the
gesture landmarks from the input images, then split and
extract those points’ feature information of continuous ges-
tures with the help of a lightweight autoencoder network,
and output the class of the most similar instance in the sup-
port set as the result. Section 3 introduces the Mediapipe, the
architecture of autoencoder network, and how we decon-
struct the gesture key point information. Section 4 lists the
experiments related to the parameter evaluation and the per-
formance of the model.

2. Question Definition and Related Work

2.1. Question Definition. The continuous gesture recognition
scheme conducted in this paper mainly aims at the few-shot
learning tasks of recognize gesture sequences, and this kind
of task only provides the support set and the query set.
The support set contains few instances in each class for

model training, and the query set contains many instances
for prediction. The prediction of gesture essentially is a pro-
cess of calculating the feature states of the input query set Dq

and support set Ds, respectively, by the gesture feature
extractor f AEðDÞ, then output the class ŷ of the instance with
the maximum cosine similarity in the support set as the pre-
diction results of query instance (1).

ŷ =max cos f AE Ds,ið Þ, f AE Dq

À ÁÀ ÁÈ É
Ds,i ∈Ds: ð1Þ

In practical problems, there will be considerable differ-
ences between gesture actions of different instances even
they belong to the same class, which is mainly because the
gesture actions in the switching process between key ges-
tures in an instance are not constrained. It will cause large
prediction deviation if we treat all those frames as the feature
frames of continuous gestures. Therefore, we need to elimi-
nate these frames that carry few gesture features to reduce
the deviation in the prediction task.

2.2. Related Work

2.2.1. Hand Landmark Detect. Mediapipe [9, 10] is an open-
source vision based real-time on-device hand tracking solu-
tion and has made many improvements for the real-time
recognition on the premise of ensuring the recognition accu-
racy. Mediapipe divides gesture key point landmark detect
task into two parts: palm detection and key points landmark
detection. The palm detector reduces the image size by cut
out the gesture part from the origin image to improve the
efficiency of key point detection. This paper uses this frame-
work to realize the task of gesture key point detection.
Details of the gesture key point landmark detection are
introduced in Section 3.4, and the mapping coordinates of
gesture key points are shown in Figure 1.

With the help of recognition targets’ inherent structure
information, references [6] extract the gesture feature infor-
mation directly without further data augmentation, which
enlightened the gesture recognition scheme conducted in this
paper. They proposed a nonautoregressive coding mechanism
by making full use of the internal structure information of 3D
gestures such as the interdependence between joints, which
provides complete gesture information for the decoder while
maintains the parallel structure. By taking the average distance
error of joint points as the performance evaluation index, the
nonautoregressive transformer model obtained 6.47, 7.55,
and 9.80 distance errors on Imperial College Vision Lab
(ICVL), Microsoft Research Asia (MSRA), and New York
University (NYU) datasets achieved state-of-the-art perfor-
mance on the 3D gesture recognition tasks.

2.2.2. Continuous Gesture Recognition. The continuous ges-
ture recognition tasks with the external sensors’ data, Zhang
[11] expressed the gesture feature information with vectors
consist of hand coordinates, interfinger distance, fingertip
angle, and hand moving speed with the help of leap motion
sensor [12] and achieved 98.50% recognition accuracy on
the dataset containing 16 dynamic gestures.
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In reference [13], a small sample learning scheme for
constructing convolutional neural network to analyze ges-
ture sequence data returned by radar is proposed. Four basic
gesture sequences were captured using frequency modulated
continuous wave (FMCW) 60GHz radar, and more than
94% recognition accuracy was achieved in the 5-way 1-shot
task.

2.2.3. Image Superresolution. Due to the influence of recog-
nition rate and motions, the resolution of the gesture part
in the frame could reduce. For these changes in image reso-
lution, we can recover information from those low-
resolution images by some superresolution method before
recognition. Deep convolutional neural networks (CNNs)
have been adopted in superresolution widely. However,
CNNs depend on its deep network structure to achieve bet-
ter performance and often result any inconvenience in train-
ing such as instability or hard to converge. Coarse-to-fine
super-resolution CNN (CFSRCNN) [14] are gathering com-
plementary contextual information to overcome this issue
and proposed a novel feature fusion scheme based on het-
erogeneous convolutions that achieved high efficiency of sin-
gle image superresolution (SISR) without decrease the
quality of reconstructed images.

Recent generative adversarial networks (GANs) also can
help with those low-resolution image problems with small
samples [15]. Enhanced superresolution group CNN
(ESRGCNN) [16] is kind of flexible and efficient way in
SISR. It balanced SISR performance and complexity by using
group convolutional and residual learning techniques in
group enhanced convolutional blocks and also used an adap-
tive up-sampling mechanism to make superresolution model
more flexible in real tasks.

2.2.4. Transfer Learning. Transfer learning is mainly sub-
sumedmodel transfer or data transfer, both of which have cer-
tain application value in small sample learning tasks. About
model transfer scheme, a visual few-shot gesture recognition
scheme is proposed in reference [8], which completes the rec-

ognition task by transferring the model parameters trained
from a large number of datasets to another sampler but similar
model. Specifically, train a GoogLeNet on Kungliga Tekniska
Högskolan (KTH) dataset to extract gesture features, and use
the probability network as the classifier to achieve 99.47% rec-
ognition accuracy on Keck gesture dataset. The few-shot con-
tinuous gesture recognition scheme in this paper uses similar
strategies but uses a more lightweight feature extraction model
pretrained on a small dataset. The few-shot recognition
scheme in this paper also applies model transfer thoughts, pre-
trains the gesture feature extraction model from a self-made
dataset, and then applies it to the new task support set and
query set to extract the gesture feature information to realize
the transfer of the model.

2.2.5. Fine Tuning. Reference [7] pointed out that using fine
tuning strategy to build a small softmax network based on
support set can improve the recognition accuracy of few-
shot learning tasks by 2% to 7%. This paper also applies
the fine tune strategy on the support set to improve the rec-
ognition accuracy of the model on specific task. The details
of our fine tune method are described in Section 3.5.

3. Continuous Gesture Recognition

Our scheme mainly consists of two models to fulfill the work,
the gesture key point landmark detector and the gesture feature
extractor. To obtain the gesture key points’ landmarks and rel-
ative depth information, we use Mediapipe gesture landmark
detector to process the RGB-image sequences, and each frame
outputs 63-dimensional vectorsVlm. Then decomposes the fea-
ture of vector Vlm into palm rotation feature and finger bend-
ing feature according to Section 3.1 and produces six 3-
dimensional vectors V input, the feature extraction model f AE
extracts the gesture feature data and outputs a 6-dimensional
vector Voutput as the gesture feature of the current frame. The
model architecture is shown in Section 3.2. The vector is used
to update the states of various gesture features in time
sequence, and the mean value of each state feature is added
to obtain a 6-dimensional vector Vres as the feature of this con-
tinuous gesture sequence instances. The detail of implementa-
tion process is described in Section 3.4, then output the
instance’s class with the highest cosine similarity in the support
set as the result of prediction. The structure of the scheme is
shown in Figure 2.

3.1. Gesture Information Decomposition. The gestures con-
tain sufficient internal structure information such as joint
attachment; thus, we decompose the gesture information
before the recognition, so that the model can learn enough
information even with few samples. The decomposition of
gesture information is based on the 21 gesture key points’
landmarks and relative depth information predicted by the
gesture key point detection model. For any motions and pos-
tures of the palm, decompose them as follows:

(1) The curvature of five fingers is measured by the root
of the same finger and the root of the palm at the dis-
tal, middle, and proximal phalanges of each finger
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Figure 1: Gesture landmark mapping [9].
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(2) The degree of palm turnover is measured by the dis-
tance between the keys at the base of the index and
ring fingers

(3) The palm yaw degree is measured by the normalized
vector from the palm root key to the middle finger
root key

(4) The palm pitch degree is measured by the relative
depth of the root of the middle finger to the palm
root

The data in the gesture landmark vector Vlm are the
fixed relative position; thus, there is no need to rescale the
coordinates due to the different distance between the palm
and the camera. The continuous gesture recognition method
conducted in this paper divides the gesture feature into the
above four basic parts.

3.1.1. Five Finger Joint Curvature Measurement. Due to the
limitations of the palm joint, the fingers can only curl up
and stretch in space. We use the five fingers bending degree
information at any time, and the relative Euclidean distance
between joint points is used to eliminate the influence of the
palm rotation angle in space on the measurement of finger
bending degree.

For any normal palm at any time, the included angle
between the distal phalanx and the middle phalanx of the lit-
tle thumb, ring finger, middle finger, and index finger is

about 90-180 degrees; the included angle between the middle
phalanx and the proximal phalanx is about 70-180 degrees;
and the included angle between the proximal phalanx and
the metacarpal bone is about 80-110 degrees. Although No.
I metacarpal bone is more flexible than other four metacar-
pal bones, we assume that the angle between its proximal
phalanx and metacarpal bone is roughly 90-180 degrees.

The gesture landmarks in this scheme are coordinates in
three-dimensional space predicted by Mediapipe gesture
landmark detector. Therefore, for the thumb, the Euclidean
distance between the landmarks of the fingertip, middle seg-
ment, and No. I metacarpal bone and the landmarks at the
root of the wrist is selected as the measurement of the bend-
ing degree (4). The other four fingers’ bending degree consist
of three parts’ European distance, the top of distal phalanx
and the top of proximal phalanx, the top of middle phalanx
and the bottom of proximal phalanx, and the top of proxi-
mal phalanx and the wrist root. Using the embedded vector
Vlm of five finger landmark data in space output by Media-
pipe, calculate the five fingers’ feature vector of the bending
degree by (2).

3.1.2. Palm Turnover Measurement. In this scheme, the
Euclidean distance between the II and IV metacarpal bones
after rescaling is selected as the measurement of the degree
of palm rotation. The landmarks of the gestures’ key points
corresponding to the II and IV metacarpal bones are 5 and
13, and the subscripts in the feature dataset are 13 and 37.

Max Cos-
Similarity data

Support set Query set

Store support set
as status sequence

Sum feature state

Sum feature state

Calculate gesture
feature state

Mediapipe gesture
landmark detect

Query

Support data

Mediapipe gesture
landmark detect

Calculate gesture
feature state

Figure 2: Structure of continuous gesture recognition scheme.
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The Euclidean distance between them is calculated to get the
result of the palm turnover’s degree (2).

V input 15½ � =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V 15ð Þ

lm —V 39ð Þ
lm

� �2
+ V 16ð Þ

lm —V 40ð Þ
lm

� �2
r

: ð2Þ

The formula that measures palm turnover’s degree is
continuous, monotonic, and differentiable in a rotation
cycle; the degree range is between -0.06 and 0.06. The mea-
surement value obtained by the counterclockwise rotation of
the palm at the top angle increases from -0.06 to 0.06, and
the measurement value obtained by the clockwise rotation
decreases from 0.06 to -0.06, stripping the influence of the
yaw and pitch angle on the measurement turnover.

3.1.3. Palm Pitch Measurement. The pitch degree of the palm
in space is measured by the relative distance between the
root of the middle finger and the root of the palm. The sub-
scripts of those two points in the landmark map are 9 and 0.
The measurement result of the pitch degree is shown in the
following equation.

V input 16½ � = V 38ð Þ
lm —V 3ð Þ

lm

� �
: ð3Þ

3.1.4. Palm Yaw Measurement. The palm yaw degree is mea-
sured by the two-dimensional normalized vector of the palm
root point to the middle finger root in space. This measure-
ment method can eliminate the influence of the other two
spatial angles on the measurement of palm yaw angle. Palm
yaw angle is measured by the following equations.

ρ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V input 17½ �2 +V input 18½ �2

q
, ð4Þ

V input 17 + i½ � =
V 27+ið Þ

lm —V ið Þ
lm

� �
ρ

i ∈ 0, 1f g: ð5Þ

After the decomposition of gesture feature information,
we get six vectors to preliminary describe the gesture in each
frame. Then embedded them into a 17-dimensional vector
V input according to the subsequence of bending degree of
thumb, index finger, middle finger, ring finger, little finger,
and the palm pose vectors, the embedding map is shown
in Figure 3. The embedded vector V input cannot represent
the gesture feature directly, so we need to further extract fea-
tures from it.

3.2. Architecture. The model used to extract the decomposed
gesture features in the few-shot learning task is a pretraining
model combined multiple autoencoders with a self-attention
module [17]. The goal of pretraining is to use an adequate
training set including different actions and postures palm
to get a lightweight model with strong generalization ability,
so that we can fine tune the parameters by different tasks to
improve model’s performance a step further. Therefore, we
added a self-attention mechanism in front of the encoder
to extract content information in specific tasks [18]. Initially,
we only train the autoencoder module to extract single ges-

ture feature form the training set that independent of query
set, when it is applied to the real tasks, then train the self-
attention module’s parameters by the support set to focus
on the context information of continuous gestures, which
is an effective way to improve the recognition accuracy of
the model for the current task.

During prediction, the model is used to calculate the fea-
tures of various samples in the support set, extract the fea-
ture information of instances in the query set, and then
extract the feature state and eliminate the impact of gesture
action change frames on the overall recognition task. Finally,
calculate the cos similarity and output the class of the high-
est similarity instance in support set as the prediction result.

3.2.1. Autoencoder. The distribution of various gesture feature
data obtained from the above decomposition in the original
space is linear inseparable. It will loss a large amount of infor-
mation if we use linear feature extraction method. Therefore,
our model relies on the autoencoder to compress the vector
dimension to extract gesture features. Section 4 shows relevant
experiments. The input of the model is the decomposed 17-
dimensional vector V input. Since the coordinate value range
of gesture key points recognized by Mediapipe is stored as a
percentage value of the input image boundary according to
the distance, it is easy to cause gradient disappearance if we
use V input for model training without any process. We use
(6) to process the datasets with layer normalization firstly,
where γ is the offset value and E is the mean value of V input.

V input i½ � =
V input i½ �—E V input

À Á
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var V input

À Á
+ γ

q ⅈ ∈N: ð6Þ

The standardized data is divided into six 3-dimensional
vectors Vdi according to the embedding method mentioned
above, which is, respectively, transmitted to different autoen-
coders. Each encoder is composed of two hidden layers and
independent of each other, and they have different parameters
and connected to a decoder, respectively. The decoder is used
to restore the output value of the encoder back to the input
vector value. Calculate the loss function according to the
decoders’ results, and iteratively train the parameters of each
batch. The strategy of training is introduced in Section 3.6.
The bending degree feature of the thumb is extracted from
the encoder subscript from 0 to 4, and the palm posture fea-
ture is extracted from the encoder subscript 5. When extract-
ing features, the model only calculates the values of each
encoder and embeds them into 6-dimensional vector as out-
put. The feature extractor model structure is shown in
Figure 4.

The 6-dimensional vectorVoutput indicates the gesture fea-
ture of the current frame. There are six elements in the embed-
ded vector. The top five are the feature values of each finger’s
bending degree, and the last is the posture feature of the palm.
The extracted gesture feature vectors of the whole frames are
input into the state extraction module to eliminate the impact
of gesture frames that did not carry adequate feature informa-
tion on the gesture recognition task.
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3.3. State Extraction of Sequences. For different video
instances that belong to the same gesture sequence, the ges-
ture states between instances may be misaligned due to the
different duration time of a gesture state or the speed of
the gesture transformation, and Figure 5 shows the results
of using the pretraining model to extract two instances in
the support set and the test set that belong to the same class.
The test set instance lags behind the support set instance by
about 20 frames. And there will be a large gap if we calculate
the similarity between the two instances’ feature sequences
directly. Therefore, we propose a scheme of detecting and
matching instances by extract the gesture feature state.

The feature states in this paper refer to the values of the
vector Voutput sequence that are maintained within a given
threshold and stable for a certain frame length Framelen.
The method of state extraction receives the Voutput vector
and maintains the mean value avg of six current states.
Whenever a new Voutput is input, check whether the differ-
ence between the data in the vector and the mean value
avg of their respective states is greater than the given thresh-
old, and it is considered to be the end of a state when the avg
is greater than the threshold value. Then check whether the

frame length Framelen reaches the minimum state frame
length. Only when it is reached, record the mean value avg
of the current state and reset the frame length. Otherwise,
update the status mean value by the following equation.

avgi =
avgi ∗ Framelen +V input

Framelen + 1 i ∈ 0, 1, 2, 3, 4, 5f g: ð7Þ

Hand poseRing finger bending
degree

Middle finger
bending degree

Index finger bending
degree

Thumb bending
degree

0 1 2 3 4 5 6 8 9 10 11 12 13 14 15 16 17 187

Pinky finger bending
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Figure 3: Feature vector embedding mapping.
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Figure 4: Architecture of the gesture feature extractor.
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Using above method to process feature vector of each
instance, add the state feature of each dimension record of
the instance to obtain a 6-dimensional vector. The matching
between different instances is to calculate the similarity
between vectors. In this paper, the cosine similarity between
the two vectors is selected as the degree of similarity. For
instances in the query set, the class of the instance with the
greatest cosine similarity is in the support set as the predic-
tion result.

3.4. Gesture Key Landmark Detect. In order to solve the
large-scale problem of continuous gesture recognition, we
first need to detect the key landmark of gestures in the
image. In this paper, Mediapipe is used to detect the 21-
key landmark of gestures in RGB images. The model inputs
real-time RGB image data and returns the relative coordi-
nates and depth of 21 hand key points in the image. The
Mediapipe can achieve more than 30 frame rates in real-
time processing tasks when the computing power is suffi-
cient. The core framework of Mediapipe is implemented by
C++. The model is mainly divided into two parts. First, the
palm detector, which replaces the hand detector, uses a hand
positioning frame with direction information to locate the
position of the palm in the image. The second is the hand
coordinate model, which obtains the coordinate data by
detecting the gesture key landmark in the positioning frame
processed by the palm detector.

3.4.1. Palm Detector. It is built by a relatively lightweight
convolutional neural network with encoding and decoding
structure. The palm part or the fist is a rigid object that is
easy to recognize, thus to detect the palm or fist part from
the input images instead of the whole hand. The palm detec-
tor receives the complete image as the input, cut out the
palm part from the image when the palm is detected, and
then input the result into landmark detector for regression,
which greatly reduces the irrelevant contents from the origin
image. The cut palm boundary box is square; compared with
other shapes, it can reduce the proportion of useless

64 × 64 2 × 64 × 64
2 × 32 × 32

2 × 16 × 16

6 × 8 × 8

32 × 32

16 × 16

8 × 8
8 × 8

16 × 16
32 × 32

64 × 64
128 × 128

256 × 256

Figure 6: Structure of palm detector [9]. The blue squares are the encoders, and the yellow squares are the decoders.

256 × 256 RGB inputs Feature extractor
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images

Relative depth
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2D coordinates
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landmarks
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images

Figure 7: Structure of gesture landmark detector [9].

Table 1: Model performance on RWTH dataset.

Model
Similarity
measure

Fine
tuning

5-way 1-shot
acc

5-way 3-shot
acc

Full MSE N 77.40% 78.39%

Full Cosine N 86.67% 88.20%

Full MSE Y 79.45% 80.72%

Full Cosine Y 89.73% 90.16%

Table 2: Comparison with other models.

Model 5-way 1-shot accuracy

Nearest neighbor 75.81%

Nearest neighbor (SE) 77.45%

Matching network [20] 85.62%

CNN 64ð Þ×4 18½ � 80.95%

Autoencoder (ours) 89.73%

Table 3: Model performance on Sebastien Marcel dynamic dataset.

Model
Similarity
measure

Fine
tuning

4-way 1-shot acc 4-way 3-shot acc

Full
MSE N 89.62% 90.41%

Cosine N 91.77% 91.73%

Full
MSE Y 91.14% 91.11%

Cosine Y 92.17% 93.23%
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information by 3 to 5 times and improve the efficiency of
gesture key coordinate detection.

The encode-decode structure in the palm detector can
extract the nonlinear features of sample instances through
iterative training. The important thing is that the feature
receptive field in large-scale images is relatively small, while
the feature receptive field in small-scale images is relatively
large. Such a structure can enable the model to perceive
the feature information in images of different sizes. The focal
loss [19] function is used in the model training. The ablation
experiment designed in the paper found that the cross
entropy loss function with encoder has a better accuracy
on the dataset than that without encoder. The average accu-
racy of the cross entropy loss function without encoder is
86.22%, and that with encoder is 94.07%. The palm detector
model structure is shown in Figure 6.

3.4.2. Gesture Landmark Detector. The input data in this part
is a smaller image cut by the palm detector, which allows the
model to focus on the 21-key point coordinate regression
task. The dataset used in the model training includes not
only the palm image data in different backgrounds from
the real world but also the synthetic gesture data. On the
one hand, the synthetic data provides the accurate position
information of gesture key points in space, and landmark
detector can learn additional relative depth information

under the supervision of such data, hence, to improve the
performance on the key points’ coordinate regression task.
On the other hand, in the actual gesture image, due to the
high degree of freedom of the gesture itself and various
occlusion problems, the accurate position information car-
ried by such data can well enable the model to learn the ges-
ture information of the occluded part. Reference [9] shows
that model trained by datasets combined real-world and
synthetic gestures performed better than only trained by
real-world or synthetic gestures and achieved 13.4% mean-
square error (MSE). The main structure of gesture key point
detector is shown in Figure 7.

The 2.5D fidelity data obtained by the landmark detector
include that the horizontal and vertical coordinates of the
key landmark in the RGB images and the relative depth data
between each key landmark at the root of the palm. Each
time the model receives an image frame as input, cut it into
a small-scale image that containing the complete hand by
the palm detector and then input it into the key point coor-
dinates detector to detect the three values of 21 key land-
mark points. Each frame of gesture image outputs 63 data
as Vlm vector.

3.5. Fine Tuning. The fine-tuning strategy in few-shot learn-
ing often means to fine tune the model parameters according
to the prediction results of few sample instances in the actual

Table 4: Influence of linear and nonlinear dimensionality reduction methods on model recognition accuracy.

Dataset Similarity measure
PCA

4-way 1-shot
PCA

4-way 3-shot
Autoencoder
4-way 1-shot

Autoencoder
4-way 3-shot

RWTH
MSE 73.48% 74.82% 79.45% 80.72%

Cosine 68.67% 70.16% 89.73% 90.16%

SMD
MSE 74.62% 74.47% 91.14% 91.11%

Cosine 71.53% 74.13% 92.17% 93.23%
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Figure 8: Effects of different dimensionality reduction methods on feature extraction.
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task after the pretraining. This strategy is often used to
optimize the model of the transfer learning network. Exper-
iments show that using this strategy to optimize the few-
shot learning model can improve the prediction accuracy
by 2-7% [7].

Because the number of instances in the support set is
small, it is not suitable for training new classifiers, also the
overall structure of the pretraining model is very light.
Therefore, our fine-tuning strategy of the model is only to
fine tune the parameters of the self-attention module based
on the support set instances and introduce different atten-
tion scores for different feature vectors. In order to prevent
the model from over fitting, a smaller iteration number
and a larger iteration step are selected to fine tune the model.
Experiments show that this fine-tuning strategy can improve
the recognition accuracy of the model by 2-4%.

3.6. Training. The model is mainly training two parts: the
autoencoder and the self-attention module. The dataset used
for training autoencoders that extract bending degree con-
tains the gesture key landmark information extracted from
11 RGB videos collected by 2 people who make palm grasp-
ing and opening movements under different backgrounds, a
total of 1186 instances of training set, 20 pieces of which are
randomly selected and divided into a batch. The dataset of
the training palm pose feature extraction autoencoder con-
tains the gesture key points extracted from 12 RGB videos
collected by 2 people that make various gesture under differ-
ent backgrounds.

The pretraining model uses empirical risk minimization
strategy for training, in which six autoencoders are indepen-
dent of each other, each learns feature information from the
V input set and select the cosine similarity between the
decoder results and the instances as the loss function. We
use Adam optimization algorithm and initial learning rate
to 0.01. Each encoder iterates 20 batches of training sets.

This paper uses the one-head attention module of dot
product attentionmechanism. In specific tasks, themodel uses
the support set to train the Wq, Wk, and Wv linear transfor-
mation layers in the self-attention module as the fine-tuning
strategy. Out of the residual structure in the self-attention
module, the weights of the above linear are initialed to zero,
which avoid to affect the training of the autoencoders. The sto-
chastic gradient descent (SGD) optimizer is used to train the
module parameters, the initial learning rate is set to 0.01,
and the momentum is set to 0.9. The cosine similarity between
the current frame and other frame features is used as the loss
function for training. Each training set contains various ran-
domly selected support set instances, and a total of 5 batches
of data are iterated in the training process.

4. Experiment

This part shows some problems encountered in the process
of model conduction, the selection of the recognition
scheme, and the optimization of details and also includes
the experiments to support the solutions we choice. Sections
A and B mainly include the experiments about the perfor-
mance of our method on different datasets, the selection of
feature extraction methods for the deconstructed gesture
information, different few-shot models’ performance on
the gesture recognition task, and the comparison of several
linear and nonlinear feature extraction schemes. Section C
introduces the experiment of feature state extraction of con-
tinuous gestures and specifically compared the recognition
accuracy of different thresholds and continuous steps on
the recognition task. Section D introduces the contribution
of different autoencoders and the self-attention module to
the accuracy of model recognition. We validated the result
by an ablation experiment. The experiments above are
mainly conducted on the RWTH German fingerspelling
and the Sebastien Marcel dynamic public datasets.
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Figure 9: Effects of different threshold and Framelen on model recognition accuracy.
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4.1. Results

(1) RWTH German fingerspelling dataset

The RWTH German fingerspelling dataset contains 35
different continuous gestures. Each gesture contains 88 video
instances of stand 2 and stand 1, hereinafter, referred to as
the RWTH dataset. Five continuous gestures are randomly
selected in this experiment. Each gesture contains 22 video
instances of stand 1 as the support set and query set. The
model state threshold and continuous frame length are set to
0.4 and 14, and the average prediction accuracy of the model
is obtained by repeatedly selecting 5 prediction categories.
The prediction results are shown in Table 1. The table shows
that the strategy of using the fine tune attention module in
1-shot or 3-shot recognition tasks can improve the recognition
accuracy by 1.96% to 3.06% and achieve better performance
by using cosine similarity measure the distance between fea-
ture vectors instead of mean square error (MSE).

Table 2 shows the results of various gesture feature
extraction methods performing 5-way 1-shot tasks on the
RWTH dataset. The nearest neighbor model selects a sup-
port instance nearest to the instance as the classification
result and uses five gestures randomly selected in the dataset,
one instance of each gesture as the support set for training.
At the same time, the SE method is used to process the data
to improve the model recognition accuracy by 1.64%. Match-
ing network [20] is a model combining shallowCNN and bidi-
rectional LSTM network. CNNð64Þ×4 in the table is a shallow
network composed of 4 convolution layers with 64 channels,
which is trained by LSTM meta-learner method [21, 22].
According to the prediction results of this task, the method

proposed in this paper obtains extra information by dividing
gesture feature, thus achieves higher recognition accuracy than
other small sample learning methods.

(2) Sebastien Marcel dynamic (SMD) dataset

The dataset contains four consecutive gestures: clip,
rotate, stop grasp OK and No, each gesture records the
action of 10 people as samples. Table 3 shows the influence
of different factors on the recognition accuracy such as sim-
ilarity measurement, fine-tuning strategy, and the number of
instances in each class. Without using fine-tuning strategy to
training self-attention module, the accuracy of the model
achieves 1% to 3% higher when we use cosine similarity as
the similarity measurement than using MSE. The recogni-
tion accuracy increases after fine-tuned self-attention mod-
ule’s parameters, and the 1-shot prediction task using
cosine similarity measurement method increased 2.54%,
which improved most obviously. The recognition accuracy
of model using cosine similarity was improved 2.33% by
fine-tuning strategy in the 3-shot task, which was more sig-
nificant than that using MSE as similarity measurement.

4.2. Gesture Feature Extraction. The extraction of gesture fea-
tures is to reduce the dimension of the basic gesture feature
vector V input decomposed by the method above. The experi-
ments in this section show the impact of linear and nonlinear
dimensionality reduction methods on the performance of the
model and calculate the recognition accuracy of the feature
extractor under the principal component analysis (PCA) and
autoencoder extraction methods on RWTH and Sebastien
Marcel datasets. Table 4 shows that the recognition accuracy

Table 5: Ablation study of the gesture feature extractor model.

Model Similarity measure
RWTH
5-way

1-shot acc

RWTH
5-way

3-shot acc

SMD
4-way

1-shot acc

SMD
4-way

3-shot acc

Full
MSE 79.45% 80.72% 91.14% 91.11%

Cosine 89.73% 90.16% 92.17% 93.23%

None AE5
MSE 79.41% 80.47% 90.36% 91.34%

Cosine 85.62% 85.95% 91.69% 92.10%

None AE4
MSE 75.71% 75.64% 89.97% 89.84%

Cosine 82.88% 84.13% 90.38% 90.75%

None AE3
MSE 75.34% 77.35% 86.79% 88.19%

Cosine 84.25% 85.13% 90.20% 91.73%

None AE2
MSE 79.42% 78.68% 77.69% 77.42%

Cosine 88.36% 89.25% 81.99% 83.22%

None AE1
MSE 72.60% 74.26% 76.40% 77.46%

Cosine 85.62% 85.45% 80.40% 82.31%

None AE0
MSE 74.66% 74.24% 81.18% 82.54%

Cosine 86.30% 87.83% 86.27% 87.22%

None
SA module

MSE 76.36% 77.69% 88.18% 88.78%

Cosine 88.54% 88.83% 90.97% 91.02%
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obtained by using the autoencoder method is 10-20% higher
than that obtained by PCA on the two datasets.

Figures 8(a)–8(e), respectively, show the feature extraction
results of different dimensionality reduction methods on the
original data. The first row in the figure shows the distribution
of the original data in the three-dimensional space, and the
second and the third rows are the distribution maps reduced
to 1-dimensional using autoencoder and PCA. Although it is
shown in the figure that the within class distance of each
eigenvalue obtained by the two dimensionality reduction
methods is also small, the distribution of the original data is
nonlinear separable, so the line dimensionality reduction
method loses more information in the process of dimensional-
ity reduction, which get the inferior accuracy of the prediction.

4.3. State Extraction of Sequences. This section mainly shows
the impact of different thresholds and Framelen parameters
used in the state extraction method on the accuracy of model
recognition. The threshold values of 0.3, 0.4, and 0.5 were
selected, respectively, to test the model recognition accuracy
of the minimum state frame length Framelen from 1 to 25 on
the RWTH dataset and the SMD dataset. Figure 9(a) shows
the experimental results on the RWTH dataset. When the
threshold is 0.4 and the Framelen is 16, the model achieves
the highest recognition accuracy of 91.33%. Figure 9(b)
shows the experimental results on the SMD dataset. When
the threshold is 0.4 and the frame length is 11, the model
achieves the highest recognition accuracy of 92.13%.

4.4. Continuous Gesture Recognition. In order to show the
influence of each component in the model on the overall rec-
ognition results, we constructed an ablation experiment to
show the contribution of each autoencoders and the self-
attention module to the model recognition accuracy. The
experimental results are shown in Table 5.

Table 5 shows the recognition accuracy of the model on
RWTH and SMD datasets with the removal of each autoen-
coder module or the self-attention module. The influence of
each module on the test set’s recognition accuracy sampled
from RWTH dataset ranges from 1% to 7%, among which
the ring finger bending encoder AE3 contributing 6.85%
accuracy of recognition. On the SMD dataset, the influence
of each module on the overall recognition accuracy of the
model ranges from 1% to 12%. Among them, AE1 improved
11.77% accuracy in the recognition task, which has the
greatest contribution.

5. Summary

This paper conducts a few-shot gesture recognition scheme
combined a gesture landmark detector with a lightweight
gesture feature extractor. The scheme uses Mediapipe ges-
ture key landmark detection model to recognize gesture
key landmark points on RGB image sequences. The recogni-
tion results are processed into a 6-dimensional feature vector
by the gesture feature extractor. Various feature states in the
sequence are extracted and added and then output instances’
class with the highest cosine similarity in the support set as
the result. In the 5-way 1-shot tasks on RWTH and Sebas-

tien Marcel datasets, the recognition accuracy was achieved
89.73% and 92.17%, respectively.

Also, the gesture feature state extraction scheme in this
paper is mainly applicable to the recognition task of a single
palm in gesture sequences. We can use the multihead atten-
tion structure to extract different association features accord-
ing to the different context associations in the gesture
sequences, to improve the recognition performance of the
model in those continuous gesture recognition tasks with
strong context correlation, such as sign language recognition.
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