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In this paper, we consider the problem of motion intention recognition for cluster targets with splitting behaviour and lack of
motion prior information. This is a challenge to the classical Bayesian inference based intention recognition algorithms because
they rely heavily on a priori knowledge. In order to solve these problems, a joint algorithm of deep echo state network
optimized by adaptive genetic algorithm (AGADESN) and DBSCAN clustering algorithm is proposed in this paper. We use
improved Olfati-Saber model with direction noise to generate cluster motion and use the cluster motion data to drive
AGADESN algorithm to predict cluster destination, which achieves higher destination prediction accuracy than DESN
algorithm. We innovatively design the motion similarity distance (MSD) and take the destination prediction output as one of
the distance inputs, alleviating the lack of differentiation among different cluster targets caused by only relying on speed and
position distance at the early stage of cluster motion. Based on the MSD, DBSCAN clustering algorithm is used to identify
clusters in the field of view to determine whether splitting behaviour occurs. Simulation results demonstrate the effectiveness of
the proposed algorithm in cluster target motion intention recognition and its superiority over DESN algorithm and DBSCAN
algorithm only based on speed and position distance.

1. Introduction

In recent years, the recognition and prediction of the moving
intention of cluster targets have attracted extensive atten-
tion. Cluster target intention recognition and prediction
refers to the automatic evaluation and prediction of a certain
goal or plan to be achieved by the cluster target in the region.
It is an important function of situation analysis and belongs
to the high-level processing part of the data fusion system
[1]. At present, UAV cluster has been used in environmental
detection, target tracking, and other aspects and has also
been widely used in several recent regional conflicts. Solving
the problem of cluster intention recognition would help bet-
ter solve the problems of UAV cluster control [2, 3], target
tracking [4], path planning [5, 6], etc. In particular, in
UAV path planning, it is very important to effectively infer
the intention of UAV clusters to solve the coverage path
planning problem [7, 8]. However, due to the difficulty of
modeling cluster trajectory, the lack of prior information
about the motion and the existence of multiple motion pat-

terns such as splitting and merging, it is difficult to recognize
cluster motion intention. In addition, some clusters have
strong autonomous ability, obvious heterogeneous charac-
teristics and automatic path planning ability, which brings
more difficulties to the recognition of cluster motion inten-
tion [9, 10].

In order to solve these problems, it is necessary to estab-
lish a reasonable collaborative motion model of cluster tar-
gets. A pioneering study by Reynolds [11] demonstrated
that cluster motion follows three basic collaborative rules:
separation, speed matching, and aggregation. A similar
approach is proposed by Vicsek et al. [12], who believed that
the collaborative motion comes from adjusting the speed of
cluster members to the average speed in their neighbour-
hood. Other studies have focused on the dynamic behaviour
of clusters. For example, Couzin et al. [13] attempted to
explain the clustering phenomenon under effective guidance
and group decision-making. However, clusters described
only by three basic collaborative rules are prone to fracture
due to the dispersion of member positions. On the basis of
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the basic rules, Olfati-Saber [14] designed and added the vir-
tual leader in order to solve the problem of cluster fracture.
However, the assumption in the basic Olfati-Saber model that
the virtual leader information is accurate all the time is too ide-
alistic. Considering the difficulty of virtual leader information
acquisition in the actual cluster movement process, Gaussian
noise with time-varying variance is introduced to make the
cluster cooperative motion model more realistic.

Traditional cluster target intention recognition mainly
relies on Bayesian network inference framework [15]. Bayes-
ian reasoning has the advantages of dealing with the inher-
ent uncertainty of sensor data and the inherent semantic
fuzziness of intention recognition, supporting the relearning
of reasoning network parameters [16, 17]. In order to over-
come the problem of aircraft carrier group target intention
reasoning in multidomain operations and multientity hier-
archical, Bayesian network is used by Qiao et al. [18]. How-
ever, model-driven Bayesian reasoning inevitably needs to
use the prior statistical information of the target, which is
usually difficult for us to obtain. Especially in the military
field, the random, sudden, and unknown maneuver of
enemy UAV cluster targets further increase the difficulty of
obtaining prior information.

In recent decades, sensor and computer technology have
promoted the rapid development of big data processing. In
particular, deep learning and neural networks have made
many impressive advances and have excellent performance
in intention recognition [19, 20]. In order to recognize and
predict the motion intention of cluster targets, the data-
driven neural network method needs to use the target
motion sequence information. Echo state network (ESN) is
widely used in time series prediction because of its simple
structure and efficient training [21]. However, the motion
sequence information of cluster targets is more complex,
and the prediction ability of ESN is insufficient. Accordingly,
some scholars have proposed a deep echo state network
(DESN) model [22, 23].

In this paper, we divide cluster target intention recognition
into two parts: destination prediction and cluster identifica-
tion. Song et al. [24] used DESN to predict taxi destination.
However, in order to achieve the lowest learning error, arbi-
trarily set network parameters may not guarantee the best
training results of DESN. Chen and Zhang and Lu et al. [25,
26], respectively, used grey wolf algorithm and genetic algo-
rithm (GA) to optimize DESN parameters. However, in the
process of application, we find that DESN optimized by GA
converges slowly, and the parameter optimization result after
convergence is not ideal. Accordingly, we further develop the
optimization process of GA and propose a genetic algorithm
with adaptive mutation rate [27] to optimize DESN.

In terms of cluster identification, Snidaro et al.[28] used
the evidence reasoning algorithm in D-S evidence theory,
with the help of prior knowledge and multisensor detection
information, to complete the identifying and clustering of
targets. Oxenham et al. [29] extracted the situation elements
of Bayesian network and used data mining to achieve target
clustering. However, due to the small size of the cluster tar-
get members, under the existing detection conditions, the
members attribute information is difficult to obtain. More-

over, the cluster motion prior information is difficult to
obtain, so traditional clustering algorithm is still one of the
most effective cluster identification algorithms.

Clustering algorithms mainly include data-based cluster-
ing algorithms and parameter-likelihood-based clustering
algorithms [30]. Data-based clustering algorithms include
hierarchical clustering [31] and partitioned clustering such
as k-means estimator [32]. Density-based noise application
spatial clustering (DBSCAN) is a typical data-based cluster-
ing algorithm [33, 34], which can be used to solve the clus-
tering problem with uncertain data. However, when the
distance between target members is close, the performance
of DBSCAN algorithm decreases. This paper defines a new
distance measure based on destination prediction, which is
called motion similarity distance (MSD). At this distance,
DBSCAN algorithm is applied to cluster identification, and
a good clustering effect is achieved.

A joint algorithm of AGADESN and DBSCAN is pro-
posed to solve the problem of cluster target motion intention
recognition under the condition of lack of motion prior
information and cluster splitting. The main contributions
of this paper are described as follows:

(1) The direction noise with time-varying variance is
introduced to improve the virtual leader. Under the
framework of Olfati-Saber model, a more practical
cluster target collaborative motion model is proposed.
The proposed algorithm takes into account the source
of command information when the cluster is moving,
describes the process of gradually reducing the noise
in the moving direction as the cluster approaches the
destination, and considers the compensation of the
cluster speed for the noise interference

(2) The adaptive mutation rate is introduced into the
genetic algorithm, and the adaptive genetic algo-
rithm with faster iteration speed is used to optimize
the parameters of the DESN. The AGADESN algo-
rithm is proposed

(3) Based on the cluster motion model proposed in this
paper, the cluster motion trajectory dataset for train-
ing and test is established, and under the sliding win-
dow structure, the cluster motion destination is
predicted by using AGADESN model. Experimental
results show that our algorithm improves the correct
prediction ratio of basic DESN algorithm by 8.39%.

(4) A new distance measure MSD is proposed, which
combines the predicted destination distance with
the position distance and speed distance, and the
DBSCAN algorithm is used to identify the cluster
to judge the splitting behaviour on the MSD. The
experimental results show that the DBSCAN algo-
rithm using MSD can quickly identify the clusters
in the sensor field of view and has stronger robust-
ness when the number of clusters changes.

The rest of this paper is organized as follows. In Section
2, improved Olfati-Saber is used to describe the cluster
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collaborative motion. In Section 3, we introduce the joint
algorithm of motion intention recognition. Section 4 analy-
ses the generated cluster motion trajectory and gives the
results and discussion of the motion intention recognition
simulation experiment. Section 5 summarizes the paper.

2. Cluster Collaborative Motion Model

2.1. Fundamentals of the Olfati-Saber Model. The Olfati-
Saber cluster collaborative motion model adds a virtual
leader on the basis of the three cluster collaborative motion
principles of separation, speed matching and aggregation.
All members of the cluster can obtain the position and speed
information of the virtual leader. After simplifying the clus-
ter members into the particle model, at time t, the Olfati-
Saber model describes the motion of member i as follows:

_qi tð Þ = pi tð Þ,
_pi tð Þ = ui tð Þ,

ð1Þ

where qiðtÞ and piðtÞ are the position and speed vectors
of member i at time t, respectively. uiðtÞ is the control input
of member i at time t. According to the principle of cluster
collaborative motion proposed by Olfati-Saber model, uiðtÞ
is designed as follows:

ui tð Þ = fsi + fmi + fli, ð2Þ

where fsi is the separation and aggregation control input,
which is used to adjust the spacing between members to
avoid collisions between members. fmi is the speed matching
control input, which ensures the information transmission
within the cluster, makes the cluster topology have weak
connectivity, and realizes the gradual consistency of the
members’ speed. fli is the control input of the virtual leader,
which is used to plan the overall motion path of the cluster.

The description of fsi is shown as follows:

fsi = − 〠
j∈Ni tð Þ

∇qiΨα qj − qi
 

σ

� �
, ð3Þ

where k⋅kσ represents the σ-norm, and its calculation
method is shown as follows:

zk kσ =
1
ε

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ε zk k2

q
− 1

� �
: ð4Þ

Here, the fixed parameter is ε ∈ ð0, 1Þ.
kqj − qikσ denotes the σ-norm distance between mem-

ber i and member j. NiðtÞ represents the set of members in
the neighbourhood of member i that can interact with mem-
ber i. Neighborhood can be selected according to different
metrics, and widely used distance metrics include Euclidean
distance and topological distance [35, 36].

Ψαð⋅Þ represents the potential energy function, which
needs to meet the requirements of continuity, differentiabil-
ity, and nonnegativity, and its magnitude is related to the

distance between the two members. ∇Ψαð⋅Þ represents the
gradient of the potential energy function, so as to convert
the potential energy into the separation and aggregation
control input.

The form of Ψαð⋅Þ is defined as follows:

Ψα zð Þ =
ðz
dα

Φα sð Þds, ð5Þ

where d is the expected distance between members after
the member speed converges. dα is the transformation form
of σ-norm distance of d and dα = kdkσ.

Φað⋅Þ is the potential force function between members.
When the distance between member i and member j is less
than the distance threshold, there is repulsive force between
them to prevent collision. Otherwise, there is an attractive
force to promote the cluster aggregation. The expression of
Φað⋅Þ is as follows:

Φα zð Þ = ρh z/rαð ÞΦ z − dαð Þ, ð6Þ

where rα is the finite cut-off point, and rα = krkσ. r rep-
resents the maximum distance that information interaction
can occur between members. ρhðzÞ is the smooth scalar
function with a value range of [0, 1] [37]. The introduction
of ρhðzÞ makes the potential force have limited extreme
values and makes the spatial adjacency matrix smoother,
which is defined as follows:

ρh zð Þ =

1 z ∈ 0, h½ Þ,
1
2 1 + cos π

z − h
1 − h

� �� �
z ∈ h, 1½ �,

0 otherwise,

8>>>><
>>>>:

ð7Þ

ΦðzÞ is a nonuniform s-shaped function, expressed as
follows:

Φ zð Þ = 1
2 a + bð Þ z + cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + z + cð Þ2
q

0
B@

1
CA + a − bð Þ

2
64

3
75: ð8Þ

To ensure Φð0Þ = 0, the parameters in the Equation (8)
need to meet 0 < a ≤ b and c = ja − bj/ ffiffiffiffiffiffiffi

4ab
p

.
The description of fmi is shown as follows:

fmi = 〠
j∈Ni tð Þ

aij qð Þ pj − pi
� �

, ð9Þ

where

aij qð Þ =
ρh qj − qi
 

σ

rα
j ≠ i,

0 j = i:

8><
>: ð10Þ

And aijðqÞ forms the spatial adjacency matrix.
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The description of fli is shown as follows:

fli = c1 ql − qið Þ + c2 pl − pið Þ, ð11Þ

where c1 and c2 are the coefficient of the virtual leader,
and only the position matching or speed matching between
the cluster members and the virtual leader can be considered
in the assignment process to make c1 = 0 or c2 = 0.

2.2. Virtual Leader Model with Direction Noise. In this paper,
during the motion of the cluster to the destination, the posi-
tion of the virtual leader at each time is taken as the center of
the cluster. So, the position matching parameter c1 = 0. Con-
sidering only the speed matching with the virtual leader, the
speed magnitude kplðtÞk and direction vector nlðtÞ of the
virtual leader at time t are given as follows:

pl tð Þk k = γ tð Þ ql tð Þ − qd tð Þk k
Tt − t

, ð12Þ

nl tð Þ = cos θ tð Þð Þ, sin θ tð Þð Þ½ �T , ð13Þ
where Tt represents the total time for the cluster to move

to the destination. qlðtÞ represents the position of the virtual
leader at time t, that is, the position of the cluster center.
qdðtÞ indicates the destination location at time t. γðtÞ is the
speed compensation parameter, which meets γðtÞ ≥ 1. θðtÞ
is the motion direction of the virtual leader at time t.
Because there is noise when obtaining θðtÞ; it is a random
variable.

Generally, as the cluster approaches the destination, the
more accurately the cluster detects the position information
of the destination, the smaller the noise of direction would
be. Therefore, we model θðtÞ as a Gaussian distribution that
obeys time-varying variance, that is, θðtÞ ∼NðθðtÞ, RθðtÞÞ.
Where θðtÞ is the accurate direction and RθðtÞ is its time-
varying variance, which is defined as follows:

Rθ tð Þ = δ ql tð Þ − qd tð Þk k2, ð14Þ

where δ is the noise variance control coefficient.
Due to the influence of noise, the speed of the virtual

leader moving to the destination is always a component of
plðtÞ, so it is necessary to add the coefficient γðtÞ to compen-
sate. The γðtÞ is related to RθðtÞ, and γðtÞ = f γðqlðtÞÞ. The
mean value of noise is compensated, so the following results
can be obtained by solving f γðqlðtÞÞ.

f γ ql tð Þð Þ = 1/cos
ðθ tð Þ+π

θ tð Þ

θ tð Þ − θ tð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πRθ tð Þp e− θ−θ tð Þð Þ2/2Rθ tð Þdθ tð Þ

 !

= 1/cos 1 − e−π
2/2Rθ tð Þ

� � ffiffiffiffiffiffiffiffiffiffiffi
Rθ tð Þ
2π

r !
:

ð15Þ

Generally, the value of δ is very small to guarantee kqlðtÞ
− qdðtÞk

ffiffiffi
δ

p
< ffiffiffi

π
p

. When this is true, γðtÞ ≥ 1. According to

Equation (15), as the virtual leader approaches the destina-
tion, RθðtÞ approaches 0 and γðtÞ approaches 1.

3. Cluster Motion Intention
Recognition Method

3.1. Intention Recognition Process. Because splitting or
merging behavior would occur in the process of cluster
moving to the destination, we divide the cluster target
motion intention recognition into two parts: destination
prediction and cluster identification. We would use the
deep echo state network optimized by adaptive genetic
algorithm (AGADESN) and DBSCAN clustering algorithm
to solve the above two problems. The method process is
shown in Figure 1.

As shown in Figure 1, we use the improved Olfati-Saber
model with direction noise to generate a cluster motion tra-
jectory dataset, which is divided into two parts: training
dataset and test dataset. The datasets are input into AGA-
DESN. The training dataset is used for network training
and parameter optimization, and the test dataset is used
for destination prediction. The destination prediction output
and the predicted destination distance are generated through
this process. The predicted destination distance, position
distance, and speed distance of the test set are fused to pro-
duce the motion similarity distance (MSD). Based on the
MSD, the DBSCAN algorithm is used to cluster the targets,
and the cluster identification output is generated. The spe-
cific operation steps of intention recognition method would
be described in the next section.

3.2. Destination Prediction Based on AGADESN

3.2.1. Method of Destination Prediction by DESN. Because
the target trajectory is constantly updated to the destination
in the process of target motion, we need to obtain multiple
destination predictions at different stages of the trajectory.
To this end, we design a 1-dimensional sliding window
structure, as shown in Figure 2. The sliding window length
is lw, and each sliding length is ls. The first prediction starts
when the obtained trajectory length meets the sliding win-
dow length. When the update length of track points meets
the sliding length, the sliding window updates the training
and test data for the second prediction. If the target trajec-
tory update ends after the mth prediction, all destination
predictions are completed on the whole trajectory.

The DESN structure used for each prediction is shown in
Figure 3. DESN combines echo state network (ESN) with
deep learning idea, and adds multiple reservoir structures
as hidden layers on the basis of ESN, so that DESN can
map more complex time series characteristics.

The working mechanism of DESN is as follows. During
the mth prediction, the external data enters the input layer
and enters reservoir 1 after being weighted by the input

weight Wð1Þ
in . The state of reservoir 1 at the previous time is

weighted by the weight Wð1Þ and summed with the received
weighted external input. After the activation function, a new
state is generated as the state xð1ÞðnÞ of reservoir 1 at the cur-
rent time, and the state is used as the input of reservoir 2.
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After repeating the above work process, the state xðLÞðnÞ of
the last reservoir is obtained. The set of all reservoir states

is recorded as xðnÞ = ½ðxð1ÞðnÞÞT , ðxð2ÞðnÞÞT ,⋯ðxðLÞðnÞÞT �T ,
and the output is generated by the activation function after
the output layer is affected by the output weight. Among
them, the maximum number of layers L is called depth,
and the network requires a total of Nn =Nn,1 +Nn,2 +⋯ +
Nn,L neurons.

Equations ((16)–(19)) are the mathematical model of the
DESN.

x lð Þ
in nð Þ =W lð Þ

in i
lð Þ nð Þ +W lð Þx lð Þ n − 1ð Þ + b lð Þ, ð16Þ

i lð Þ nð Þ =
u nð Þ, l = 1,

x l−1ð Þ nð Þ, l > 1,

(
ð17Þ

Improved olfati-saber model

Cluster motion dataset

Training dataset Test dataset

AGA

DESN

AGADESN

Cluster target
motion intention

recognition

Destination
prediction output

Predicted
destination distance

DBSCAN
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identifcation

output

Motion similarity
distance

Position and speed
distance

D
E
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N

Figure 1: Intention recognition method process.
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Figure 2: 1-dimensional sliding window structure.
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x lð Þ nð Þ = 1 − a lð Þ
� �

x lð Þ n − 1ð Þ + a lð Þ f lð Þ x lð Þ
in nð Þ

� �
, ð18Þ

y nð Þ = g Woutx nð ÞÀ Á
: ð19Þ

In Equation (16), taking the reservoir l as an example,WðlÞ
in

and WðlÞ represent the input weight and reservoir weight,
respectively. bðlÞ represents the noise of the reservoir, and iðlÞ
ðnÞ is the input data. xðlÞðnÞ is the updated reservoir state,

and xðlÞin ðnÞ is the weighted input data of the reservoir. In Equa-
tion (17), uðnÞ represents the external input data. In Equation
(18), aðlÞ represents the leakage parameter of the reservoir l,
and aðlÞ ∈ ð0, 1�. f ðlÞð⋅Þ represents the activation function. Gen-
erally, f ðlÞð⋅Þ is selected as the hyperbolic tangent function. In
Equation (19), yðnÞ represents the output data, andWout is the
output weight. gð⋅Þ represents the activation function of the
output layer, and gðxÞ = x is usually selected.

DESN’s training and test process are as follows. The
training process of the mth prediction is essentially the
training of the output weight matrix Wout. Firstly, the net-
work parameters are initialized, and the random algorithm

is used to generate the input weight WðlÞ
in , reservoir weight

WðlÞ
, and noise bðlÞ of the DESN, which remain unchanged

during the training process. Secondly, if the trajectory
sequence is Qm = fQm

1 ,Qm
2 ,⋯,Qm

Ng of N targets in the slid-
ing window at the mth prediction, the trajectory sequence of
the target i is as follows:

Qm
i = qi m − 1ð Þ ⋅ lw + 1ð Þ, qi m − 1ð Þ ⋅ lw + 2ð Þ,⋯, qi m ⋅ lwð Þð Þ:

ð20Þ

Divide Qm into training sample Qm
tr and test sample Qm

te .
Input the training sample Qm

1 ,Qm
2 ,⋯,Qm

Str
one by one, so as

to obtain all reservoir state matrices X = ½xð1Þ, xð2Þ,⋯, xð
StrÞ�. Finally, calculate the training output weight Wout. If
the destination prediction position output corresponding
to the training sample is Y = ½yð1Þ, yð2Þ,⋯, yðStrÞ�, the out-
put weight of the DESN for destination prediction can be
obtained according to Equation (21).

Wout = YXT XXT + αE
À Á−1, ð21Þ

where α represents a small positive number [38], and E
represents the identity matrix. Among them, the destination
prediction of the target i is as follows:

y ið Þ = qd,i m − 1ð Þ ⋅ lw + 1ð Þ, qd,i m − 1ð Þ ⋅ lw + 2ð Þ,⋯, qd,i m ⋅ lwð ÞÀ Á
:

ð22Þ

qd,iðtÞ represents the predicted destination position of
the ith trajectory sample at time t. After the training, input
the test sample Qm

te to test the learning effect of the DESN,
which can output the destination prediction according to
Equation (19) under the trained output weight Wout.

3.2.2. Optimization of DESN Parameters by Adaptive Genetic
Algorithm. DESN has reliable time series prediction ability.
However, like other deep learning algorithms, its prediction
effect is limited by the selection of parameters. The parame-
ters that have the greatest impact on the effect of the algo-
rithm include the number of reservoirs Nl, the number of
reservoir nodes Nr , and the spectral radius ρ. ρ is one of
the most important central parameters representing the res-
ervoir weight matrix.

In order to solve the problem of choosing DESN parame-
ters, we use an adaptive genetic algorithm (AGA) with variable
mutation rate to optimize the parameters. Compared with tra-
ditional genetic algorithm, it can avoid premature conver-
gence and fall into local optimization. The mutation rate of
the AGA uses pseudoderivative to consider the time that GA
stays at a certain point. The longer the algorithm stays at the
local optimal value, the greater the possibility of mutation.

Taking the mth prediction as an example, firstly, the
parameters of the DESN model are chromosome encoded to
correspond to the genetic operator of the AGA. The encoded
chromosome of DESN model parameters is as follows:

P = Nl,Nr , ρ½ �: ð23Þ

Secondly, the fitness function is established to guide the
search process of AGA. The design of fitness function affects
the convergence speed and prediction accuracy of the algo-
rithm. Generally, the fitness function is converted from the
error function of DESN model. For the DESN model, the des-
tination prediction error is naturally regarded as the fitness
function. Therefore, the corresponding fitness function of
the mth prediction is as follows:

F Pð Þ = 1
Str × lw

〠
Str

i=1
〠
lw

j=1
qd,i m − 1ð Þ ⋅ lw + jð Þ − q̂d,i m − 1ð Þ ⋅ lw + jð Þ 2,

ð24Þ

where FðPÞ represents the average prediction error of des-
tination position when chromosome P is the DESN model
parameter.

Finally, according to the chromosome and fitness func-
tion established by AGADESN model, the best chromosome
is selected through adaptive genetic operation. In the model,
the selection operation [39] and crossover operation [40] are
consistent with the traditional GA. In the mutation opera-
tion, the adaptive mutation rate based on the derivative of
fitness function to generation is as follows:

rm = 2 × sigmoid gð Þ − 0:5ð Þ, ð25Þ

where rm is the adaptive mutation rate, and sigmoid
function is defined as follows:

sigmoid gð Þ = 1
1 + e−g

, ð26Þ

6 International Journal of Aerospace Engineering



where g is defined as follows:

g = gc − go: ð27Þ

Here, gc represents the current generation, and go repre-
sents the oldest generation with the same optimal fitness. g,
thus, is inversely related to the derivative of the fitness func-
tion with respect to generation.

The implementation steps of AGADESN are shown in
Figure 4.

As the figure shows, the specific steps are as follows:

Step 1. Input training data, initialize DESN model parame-
ters Nl, Nr , and ρ.

Step 2. Encode the parameters of DESN model and initialize
the chromosomes in the population.

Step 3. The best chromosome is selected by genetic manipu-
lation and fitness evaluation.

Step 4. Decode the optimal chromosome to obtain the opti-
mal parameters of the DESN model.

Step 5. Input training data and train DESNmodel weightWout.

Step 6. Input test data to obtain destination prediction results.

3.3. Cluster Identification Based on DBSCAN

3.3.1. Definition of Motion Similarity Distance. According to
the cluster collaborative motion model, in the process of mov-
ing towards the destination, the members of the same cluster
are close to each other and have similar speed vectors, which
are the basis for us to cluster the target to identify the cluster.
However, a fact that may be ignored is that the same cluster
members also have similar destination position predictions,
which provide additional information for us to identify clusters.

In 2-dimensional case, the motion state vector of target i at
time t is St,iðtÞ = ½qi,xðtÞ, pi,xðtÞ, qi,yðtÞ, pi,yðtÞ�T , and the pre-

diction value of destination is qd,iðtÞ = ½qd,i,xðtÞ, qd,i,yðtÞ�T .
Due to the sliding window structure, there may be more than
one predicted value of the track point at time t, so qd,iðtÞ is the
mean value of all predicted values, as shown in Equation (28).

qd,i tð Þ =
1
Z
〠
Z

j=1
q jð Þ
d,i tð Þ, ð28Þ

where Z is the number of destination position predicted

values at the track point at time t. qðjÞd,iðtÞ represents the jth pre-
dicted value.

We define a new distance measure, which is called
motion similarity distance (MSD). The MSD between mem-
ber i and member j is shown in Equation (29).

f St,i tð Þ, qd,i tð Þ
Â Ã

, St,j tð Þ, qd,j tð Þ
h i� �

= 1 − e
− w1R

2
v /2σ2Rv+w2R

2
d/2σ2Rd+w3R

2
p/2σ2Rp

� �
:

ð29Þ

Among them, Rv , Rd , and Rp are the speed distance, posi-
tion distance, and predicted destination distance, respec-
tively. The weight wi ≥ 0 ði = 1, 2, 3Þ represents the
importance of different distances, and ∑iwi = 1. σRv

, σRd ,

and σRp
are the standard deviation of the corresponding dis-

tance. The distances are calculated as follows:

Rv = pi,x tð Þ − pj,x tð Þ
� �2

+ pi,y tð Þ − pi,y tð Þ
� �2� �1/2

,

Rd =max 0, qi,x tð Þ − qj,x tð Þ
� �2

+ qi,y tð Þ − qj,y tð Þ
� �2� �1/2

−De1

 !
,

Rp =max 0, qd,i,x tð Þ − qd,j,x tð Þ
� �2

+ qd,i,y tð Þ − qd,j,y tð Þ
� �2� �1/2

−De2

 !
,

ð30Þ

where De1 describes the expected distance of members.
De2 describes the extended range of destinations.

3.3.2. Principle of DBSCAN Cluster Identification. DBSCAN
is an effective density-based clustering algorithm, which
can describe the density of data distribution, and then iden-
tify clusters of arbitrary shape and effectively distinguish
noise points. DBSCAN algorithm sets a field with a radius
of Eps around each target data point. If the number of other
target data points in a target field reaches the set threshold
MinPts, it is considered that the target belongs to the cluster
and is the core point. If there are no other target data points
in the neighborhood of a target, the target is considered to be
a noise point. If there are target data points in the target
field, but the number of data points does not meet MinPts,
it is considered that the target is a boundary point.
Figure 5 shows the schematic diagram of the DBSCAN
algorithm.

As shown in Figure 5, the radius of the circle is the clus-
tering radius Eps and set MinPts = 2. It can be seen from the
figure that the number of data points in the neighborhood of
targets (2, 3, 4, 5, and 6) is greater than MinPts, so they are
core points. There are only points 2 in the neighborhood
of data point 1, so point 1 is a boundary point. There are
no other targets in the neighborhood of data point 7, so it
is a noise point. We can obtain that (1, 2, 3, 4, 5, and 6)
belong to the same cluster. The DBSCAN algorithm flow is
as follows:

4. Experiments and Results

4.1. Generate Datasets. In order to verify the effectiveness of
the algorithm proposed in this paper, we generate a cluster
cooperative motion simulation dataset based on the
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improved Olfati-Saber model. This algorithm uses the com-
bination of AGADESN and DBSCAN algorithms to identify
the motion intention of cluster targets. The total number of
targets in the field of view is N = 15.Targets are released in
the range of ½0, 20� × ½0, 20�ðm2Þ, and the initial speed in
both x and y directions is 0m/s. The number of clusters is
random, but there are at least 3 targets in a cluster, that is,
the number of clusters in the field of view is Nc ≤ 5. Total
movement time Tt = 100s, and sampling interval τ = 0:1s. 5
destinations are set to form a destination set, and the posi-
tion of each destination is shown in Table 1.

In the simulation, the destination of the cluster motion is
randomly determined and can be changed during the cluster
motion, but in order to ensure the stability of the trajectory,
the destination can be changed again only after the destina-
tion is determined for the first time or changed for at least
25 s.

Set the Olfati-Saber model parameters a = 1 and b = 5, then
the corresponding c = 2

ffiffiffi
5

p
/5. Set parameter ε = 0:85, select d

= 15 and r = 95, then the corresponding dα = 15:1 and rα =
101:9. Only consider the speed collaboration with the virtual

leader, and set the parameters h = 0:2, c1 = 0, and c2 = 0:2. Set
the noise variance control coefficient δ = 5 × 10−4.

Under the above simulation conditions, 100 cluster
motion scenes are generated, and a total of 1500 tracks are
obtained; 80% of which are used for training and 20% for
test. The generated dataset is shown in Figure 6.

A cluster movement scene is taken out from the training
set, as shown in Figure 7, and the cluster motion speed is
shown in Figure 8.

As can be seen from Figures 7 and 8, the motion of
each target is chaotic at the initial stage of release. With
the mutual cooperation of the targets in the same cluster,
the speed of the targets in the same cluster gradually tends
to be the same, and three different clusters are gradually
formed. Around 33 s, the cluster moving towards destina-
tion D1 splits and gradually forms cluster C2 and C3. After
C2 changes the destination and moves for a period of time,
it changes the destination to D1 again and arrives. C3 finally
arrives at D3. At about 66 s, the clusters moving towards
destination D4 splits and gradually forms cluster C4 and
C5. C4 and C5 finally arrive at D4 and D5, respectively. In
the late stage of target motion, the speed of each target in
the same cluster tends to be consistent, and the trajectory
is gradually parallel, and the cluster forms a stable struc-
ture. It can also be found from Figure 8 that due to the
time-varying variance of the direction noise, the mean
value of the noise at the initial time is large, and the trajec-
tory has great instability. As the target approaches the des-
tination, the mean value of the noise approaches 0, and the
cluster speed is smoother.

4.2. Destination Prediction Results. In order to verify the
superiority of the proposed algorithm, we use the algorithm

Input traning data

Initialize DESN
model parameters

Adaptive mutation
operation

Chromosome
coding Select operation

Meet mutation
probability

Determine DESN
model optimal

parameters

Training and test
with optimized

DESN

Destination
prediction ouput

Input test data

Fitness value
calculation

Cross operation

Unsatisfed mutation
probability

Fitness value
update

Whether the
optimization conditions

are met

Y N

Figure 4: Process for implementing AGADESN algorithm.

1
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6

7

Figure 5: Schematic diagram of the DBSCAN algorithm.
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in this paper, the DESN algorithm optimized by genetic
algorithm (GADESN) and the DESN algorithm to predict
the destination of cluster targets, respectively. Set the sliding
window length lw = 100, and each sliding length lw = 20,
then M= 46 times of destination prediction is required to
make the sliding window traverse the whole trajectory. The
calculation method of M is as follows:

M = 1 + Tt/τ − lwð Þ
ls

: ð31Þ
The root mean square error (RMSE) is used to evaluate

the prediction performance of the AGADESN model, which
is defined as follows:

Input: Uncertain data set D, Clustering radius Eps, Minimal number of neighboring points MinPts
Output: A set of clusters, types of all the points in D
Main function of the algorithm:

DBSCAN(D, Eps, MinPts)
ClusterNum=0

for each target point P in D
ifP is visited
continue to next point
end if

mark P as visited
Eps-Neighborhood=regionQuery(P, Eps)
if sizeof(Eps-Neighborhood)<MinPts

mark P as noise
else
ClusterNum=next cluster
expandCluster(P, Eps-Neighborhood, ClusterNum, Eps, MinPts)
end if

end for
END
regionQuery(P, Eps)

returnEps-Neighborhood(P)={Q∈S|D(P,Q)≤Eps}
expandCluster(P, Eps-Neighborhood, ClusterNum, Eps, MinPts)
add P to cluster ClusterNum

for each point P′ in Eps-Neighborhood
ifP′ is not visited

mark P′ as visited
Eps −Neighborhood′ =regionQuery(P′, Eps)
if sizeof(Eps −Neighborhood ′)>=MinPts

Eps-Neighborhood=Eps-Neighborhood joined with Eps −Neighborhood ′
end if

end if
ifP′ is not yet member of any cluster

add P′ to cluster ClusterNum
end if

end for

Algorithm 1:DBSCAN algorithm flow.

Table 1: Destination position.

Destination Position (x, y)/m

D1 (1400, 2040)

D2 (1960, 2500)

D3 (2560, 3360)

D4 (2880, 2940)

D5 (3440, 2680)

0
0

1

1

2

2

3

3

4

4

x (m)

y (
m

)

D3

D4
D5

× 103

× 103

Figure 6: Cluster motion dataset.
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RMSE tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Z
〠
Z

i=1
q ið Þ
d,i tð Þ − q̂d,i tð Þ

 2
vuut : ð32Þ

Under the above sliding window setting, Z ∈ f1, 2, 3, 4
, 5g:

Set reservoir leakage parameters aðlÞ = 0:9. The number
of reservoirs Nl, the number of neurons Nr in each reservoir,
and the spectral radius ρ are given by AGA in AGADESN
algorithm and by GA in GADESN algorithm. In the DESN
algorithm, we set Nl = 5, Nr = 200, and ρ = 0:8. Taking the
46th prediction as an example, the iteration trajectory of
the AGA and the GA are shown in the following figure.

It can be seen from Figure 9 that the fitness value of the
adaptive genetic algorithm has converged when iterating to
generation 46, with a fitness value of 42.6, and the genetic
algorithm has converged when iterating to generation 74,
with a fitness value of 48.3. Adaptive genetic algorithm has
faster convergence speed and better fitness value, so AGA-
DESN model has faster iteration speed and better prediction
accuracy.

The destination position prediction RMSE of the cluster
in Figure 7 is shown in the following figure.

It can be seen from Figure 10 that as the cluster
approaches the destination, although the destination posi-
tion prediction RMSE of AGADESN algorithm fluctuates,
on the whole, RMSE tends to decrease gradually. The RMSE
of all clusters can be reduced to less than 100m before the
end of the motion. Since there is no destination change in
C4, the algorithm can determine the destination very early
and maintain RMSE at a low level. When the destination
of C2 changes again in the late stage of motion, the algorithm
can also quickly catch the new destination, and the RMSE
gradually decreases.

In the figure, the circle with the destination as the center
and 300m as the radius can distinguish different destina-
tions in the destination set, which is called the destination
range. Generally, if the destination set is known, we do not
need to get the accurate destination prediction position of
the target, but only need to specify which destination range
the predicted value is in to determine the destination. If
the mean value of all the destination position predicted
values on a certain trajectory point is within the range of
the real destination, we call the prediction on this trajectory
point the correct prediction. Under the above definition, the
condition for correct prediction in this experiment is that
the mean absolute error (MAE) of all predicted values at a
certain trajectory point is no more than 300m. The MAE(t)
is defined as follows:

MAE tð Þ = 1
Z
〠
Z

i=1
q ið Þ
d,i tð Þ − q̂d,i tð Þ

 : ð33Þ

Figure 11 gives the average RMSE of destination position
prediction for all cluster in the test set by the AGADESN,
GADESN, and DESN algorithms.

RMSE is computed differently from MAE and according
to holder inequality, there always holds RMSEðtÞ ≥MAEðtÞ.
Therefore, the RMSE threshold for correct prediction is always
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Figure 7: A cluster motion scenario.
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not less than the destination range. But without knowing how
optimistic the predicted value is, we take the RMSE threshold
of the correct prediction to be its lower bound 300m, as indi-
cated by the red dotted line in the figure.

Figure 11 shows that in the initial stage, before the target
destination changes, all 3 algorithms can predict the approx-
imate position of the destination. Comparatively, AGA-
DESN algorithm achieves the correct prediction at 12 s,
which is 8 s earlier than GADESN algorithm. Some of the
targets change their destinations around 30 s and 50 s; the
RMSE of 3 algorithms increases, and after recognizing the
new destinations, the RMSE returns to a lower level. After
a second destination change maneuver of targets occurs,
the AGADESN algorithm achieves more stably correct pre-
dictions in 55 s, whereas the GADESN and DESN algorithms

need 70 s. The AGADESN algorithm has a better effect, both
in terms of prediction accuracy and in the time to achieve
the correct prediction.

In the whole process of target motion, the correct predic-
tion proportion of destinations of all clusters in the test set is
shown in Figure 12.

In Figure 12, we plot the proportion of correct predic-
tions of destinations for the test set clusters at 5 s intervals.
It is known from the figure that the AGADESN algorithm
can correctly predict about 40% of the cases when no desti-
nation change occurs. When the destination of the cluster
motion is changed, the proportion of correct predictions
decreases for 3 algorithms. However, the proportion of cor-
rect predictions improves faster for the AGADESN algo-
rithm after 55 s. Throughout the trajectory, the proportion
of correct predictions by the AGADESN algorithm proposed
in this paper is generally higher than that by the other com-
parison algorithms, increasing by 8.39% the proportion of
correct predictions by the DESN algorithm.
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4.3. Cluster Identification Results. To demonstrate the effec-
tiveness of DBSCAN algorithm based on the motion similar-
ity distance proposed in this paper for cluster identification,
we set the distance parameters σRv

= 0:7, σRd
= 100, σRp

=
600, De1 = 15, and De2 = 300 after obtaining the destination
position predictions. Solving for the Rv, Rd , and Rp distances
for each moment of target 1 and target 7 belonging to differ-
ent clusters are shown in Figure 13. Among them, target 1
belongs to C3; initial destination is D1, and final destination
is D3 after 33 s. Target 7 belongs to C4; initial destination is
D5, and final destination is D4 after 32 s.

It is known from Figure 13 that the initial moment,
because the target release point is concentrated, the two tar-
gets are relatively close together, and the speed difference is
not great, so that the Rv and Rd of the two targets are both
smaller in the motion early stage. But because the predicted
destinations of the two targets are quite different, the Rp dis-
tance difference is obvious in the motion early stage. In the
motion late stage, after the two targets turning, the Rp dis-
tance starts to decrease due to the closer distances between
the D3 and D4. But Rv and Rd distances increase. Thus, the
MSD defined in this paper, which fuses the Rv, Rd , and Rp

distances, can effectively compensate for the main time of
action of the three distances, such that targets belonging to

different clusters have large distances consistently through-
out the motion.

Set DBSCAN algorithm parameters Eps = 0:3; MinPts
= 2, and w1 =w2 =w3 = 0:33. Clusters are identified
throughout using the DBSCAN algorithm based on the
MSD, and Figure 14 shows the cluster identification results
for t = 2, 4, 6, 8 s in the motion early stage; t = 62, 64, 66, 68
s in the splitting stage, and t = 94, 96, 98, 100 s in the motion
late stage.

In the early stage of cluster motion, the release area of
cluster is small, and the target belonging to the same cluster
has not completed speed collaboration. Because the MSD
integrates position, speed, and predicted destination dis-
tances, the result of cluster identification has crossover in
the position plane. When t = 8 s, different clusters begin to
differentiate in the field of view of the sensor. When cluster
splits, different cluster positions are far away from each
other, so the algorithm in this paper can easily distinguish
different clusters and effectively identify the newly born clus-
ters. In the late stage of cluster motion, the algorithm can
maintain the accuracy of cluster identification, but when
clusters C1 and C2 arrive at D1 at the same time, the algo-
rithm identifies C1 and C2 as the same cluster. This is
because the speed distance when the cluster arrives at the
destination plays a major role in distinguishing clusters,
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and the contribution of the speed distance to the MSD
decreases when the predicted destination distance is intro-
duced, which has an impact on the identification result.
But on the other hand, if two clusters arrive at the same des-
tination at the same time, whether the two clusters merge or
not would not affect our further decision.

Figure 15 shows the comparison of cluster identification
results by DBSCAN algorithm based on the proposed MSD
and based on only position and speed fusion distance
(PSD), where the DBSCAN algorithm based on the PSD is
set to w1 =w2 = 0:5,w3 = 0.

As can be seen from Figure 15, at the initial stage of clus-
ter motion, due to the small distance difference between tar-
gets, the identification results of DBSCAN algorithm are
often inaccurate. When the target is splitting, the identifica-
tion result lags behind the time of splitting and fluctuates. By
comparison, DBSCAN algorithm based on the MSD has
higher identification accuracy and stability than that only
considering position and speed distance. Especially in the
initial stage of cluster motion, the introduction of the pre-
dicted destination distance significantly makes up for the
deficiency of only considering position and speed distance.

4.4. Discussion

4.4.1. Selection of Eps. The selection of Eps has an impact on
DBSCAN algorithm. In order to evaluate the significance of
Eps influence, we increase Eps from 0.01 to 1 with the step
size of 0.01, and set appropriate distance parameters for all
cluster scenarios in the test set to conduct cluster identifica-
tion experiments. The correct identification probability of
cluster number is shown in Figure 16.

As can be seen from Figure 16, although Eps can be set
arbitrarily within [0.01, 1), the DBSCAN algorithm can
obtain a good correct identification probability under any

Eps. However, with the increase of Eps, the probability still
shows a process of first increasing and then decreasing.
When Eps is set in (0.3, 0.4), the correct identification prob-
ability is the highest. The analysis shows that Eps setting
value is related to a variety of factors and is most closely
related to the distance between clusters during the whole
motion of clusters. When clusters are close to each other, if
Eps is set too small, members in the same cluster may be
considered as belonging to different clusters, resulting in a
large number of identified clusters. On the contrary, if Eps
is set too large, the number of identified clusters may be less.
Therefore, for the whole process of cluster motion, the adap-
tive setting of Eps can achieve the best cluster identification
effect.

4.4.2. Algorithm Runtime Evaluation. To evaluate the feasi-
bility of the algorithm on large-scale data sets, Figures 17
and 18 show the running time of each intention recognition
of the algorithm in the experiment.

Figure 17 shows the training time of AGADESN algo-
rithm for each destination prediction. It can be seen from
Figure 17 that the average training time for each prediction
of AGADESN algorithm is 607 s, of which the iteration time
for adaptive genetic algorithm is 83 s, and the time for DESN
training is 524 s. It can be seen that because the adaptive
genetic algorithm embeds the DESN training process, the
algorithm needs to calculate the DESN training error in each
iteration, so the DESN training time accounts for the main
part of the AGADESN algorithm training time. This also
leads to the long training time of the algorithm. The adaptive
genetic algorithm proposed in the paper uses adaptive muta-
tion rate, and its genetic operation iteration time is short.
Comparing the training time of each destination prediction,
it can be seen that when the target is maneuvering, the time
required for algorithm training increases because the desti-
nation position is unknown after maneuvering. When the
target approaches the destination, the cluster moves straight
toward the destination with less noise, and the algorithm
training time is reduced.
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Figure 18 shows the average recognition time of our
algorithm for the cluster intention in a single test scenario.
The average time of intention recognition of the trained net-
work in a single scene is 0.1221s, including 0.0988 s for des-
tination prediction and 0.0233 s for cluster identification. It
can be seen from Figure 18 that the algorithm has a fast
intention recognition speed for 15 targets in a single test sce-
nario, and the destination prediction time accounts for the
main part of the algorithm’s running time. Because
DBSCAN algorithm has no deep structure, it has higher effi-
ciency. Its clustering identification speed is fast and can meet
the real-time requirements.

From the above analysis, it can be seen that the trained
network can quickly identify the cluster motion intention,
which makes the algorithm applicable to the prediction of
large-scale cluster motion intention. However, because AGA-
DESN algorithm directly uses the training error of DESN as

the fitness evaluation function in the training process, it takes
a long time for a single iteration of AGADESN, which makes
the algorithm unable to meet the requirements of online
real-time training, which limits the training speed of the algo-
rithm in large-scale data sets.

4.4.3. Exploration of Further Improving the Accuracy of
Intention Recognition. In this paper, in order to accurately
simulate more the cluster motion, we introduce the motion
direction noise with time-varying variance on the basis of
the basic Olfati-Saber model. However, the cluster motion
trajectory noise makes the relationship between the motion
characteristics and the destination more unclear, which has
a negative impact on the prediction of the cluster motion
destination. In order to alleviate the interference of noise
and extract more motion features related to the destination,
we try to decompose the cluster motion trajectory signal by
using the variational mode decomposition (VMD) algorithm
[41]. Due to the independence of different modality data, it
is possible to further improve the accuracy of destination
prediction by inputting different modality data into the cir-
cular convolution attention network to fuse different fea-
tures for destination prediction [42].

We define the motion similarity distance and introduce
the destination prediction distance into the position speed dis-
tance to judge whether multiple targets belong to the same
cluster, which achieves better cluster recognition effect. How-
ever, when the cluster splits, the effect of DBSCAN algorithm
in identifying clusters fluctuates and lags, which brings chal-
lenges to the real-time performance of the algorithm. During
the experiment, we realize that the improvement of the clus-
tering identification effect is essentially due to the introduction
of additional information (destination information). There-
fore, in order to improve the real-time performance of the
cluster recognition algorithm, further information mining of
the cluster motion trajectory is needed.

In terms of hardware, we can use infrared, photoelectric
and other sensors to obtain the multidimensional informa-
tion of the target, but we must propose better feature selec-
tion and fusion algorithms. Chen et al. [43] proposed two
deep learning frameworks to explore and preserve the tem-
poral and spatial information of EEG signals in a cascade
or parallel manner and achieved good results in human
intention recognition, which is enlightening to us. The basis
of cluster identification is that targets with similar features
should have a greater probability of being neighbours. We
can use more complex convolutional neural networks to
explore the local structure of clusters and integrate it into
the selection of joint features [44]. Secondly, the cluster
identification should be carried out in a more adaptive
way, using an adaptive loss function to enhance the robust-
ness to system noise, which may be caused by wrong desti-
nation prediction or by abnormal parameter values of
DBSCAN algorithm.

5. Conclusions

In this paper, we propose a joint algorithm of AGADESN
algorithm and DBSCAN clustering algorithm for motion
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intention recognition of cluster targets. It can simulta-
neously predict the moving destination of cluster targets
and identify clusters in the field of view. The improved
Olfati-Saber model is used to generate cluster motion, which
takes into account the accuracy of destination information
acquired by cluster targets, and introduces the motion direc-
tion noise with time-varying variance. In the intention pre-
diction algorithm, we introduce the adaptive mutation rate
to optimize genetic algorithm and use adaptive genetic algo-
rithm to optimize DESN parameters. The optimized DESN
is used for destination prediction of cluster targets, and a
more accurate prediction effect is achieved. The prediction
output information provides input for the innovatively
designed MSD. Based on the MSD, we identify clusters
within the field of view under the DBSCAN framework to
judge in real-time whether target splitting behavior occurs,
which is more robust than the DBSCAN algorithm consider-
ing only the position and speed distance. In future work, we
may improve the clustering algorithm to reduce the required
parameters, further improving the cluster identification
performance.
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