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Aiming at the resource optimization problem in the cooperative detection task, the objective function is constructed based on the
channel capacity, and the artificial bee colony (ABC) algorithm is improved to realize the joint optimization of the UAV swarm
trajectory and radiation power. Firstly, a multiple input multiple output (MIMO) cooperative detection model is constructed.
Then, based on the perspective of information theory, the channel capacity of the cooperative detection model is derived and
used as the objective function for optimizing the detection resources of UAV swarm. Then, the factors affecting the objective
function are sorted out and analyzed one by one, and the constraints are clarified. Aiming at the shortcomings of ABC
algorithm, its search strategy and parameter optimization method are improved. A joint optimization process of UAV swarm
trajectory and radiated power based on improved ABC algorithm is constructed. Finally, through simulation verification and
algorithm comparison, it shows that the algorithm in this paper can improve the perception ability of cooperative detection of
UAV swarm.

1. Introduction

In the future battlefield, realize the advantage of one-way
transparency of the battlefield. That is to say, we can grasp
the enemy’s dynamics, and it is difficult for the enemy to
understand our state. It can realize the discovery, decision-
making, and action before the enemy and grasp the initiative
of the battlefield [1–3]. This requires us to have significantly
better situational awareness than the enemy. This ability not
only is limited to the perception of spatial position but also
requires the perception of electromagnetic and energy
dimensions. And realize the prediction of each dimension
of the opponent, so as to identify and predict the intention
of the opponent. With the rapid development of UAV tech-
nology and information technology, the capabilities of
unmanned platforms have gradually improved, and in some
fields, there has been a state and trend that surpasses
humans [4–6]. In particular, UAV swarm [7–10] has
emerged functions that are not available on single platforms
due to their quantity effect and scale effect. It has become the
main combat platform and confrontation style of the future
war.

UAV swarms can flexibly adjust their spatial position
and radiation power to improve their awareness of battle-
field situations in a distributed manner. How to optimize
the detection resources of UAV swarm has become the core
problem restricting the performance of collaborative
detection.

Cooperative detection is mainly based on the multiple
input multiple output (MIMO) radar system. Because
MIMO radar has the characteristics of space diversity and
frequency diversity, it can realize the coordination at signal
levels, thereby significantly improving the detection effi-
ciency and greatly reducing the probability of being inter-
fered. In order to further improve the efficiency of
collaborative detection, scholars have carried out research
from two aspects of signal processing and radiation strategy.
Signal processing mainly focuses on improving the array sig-
nal processing method [11–13] and improving the space-
time adaptive algorithm [14, 15]. Such research is not rele-
vant to this paper and will not be discussed here.

In terms of optimizing radiation strategy, scholars
designed the objective function related to detection or used
and improved some detection criteria to optimize
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parameters [16, 17]. Literatures [18, 19] used the Cramer-
Rao lower bound (CRLB) of target estimation as the objec-
tive function. The literature [18] studied the optimization
method of radiated power under the condition of setting
error. The literature [19] optimized the scheduling strategy
and radiation power control method of the optimal detec-
tion. The literature [20–23] improved the detection accuracy
of MIMO based on information theory. Among them, the lit-
erature [20] optimized the Bayesian Fisher informationmatrix
(BFIM) and then obtained the optimal beam selection and
power control strategy. The literature [21, 22] further
extended it to the extrapolation of the track of target tracking
and used cooperative game theory to solve it, realizing the
joint optimization of radar coordinates and power. The litera-
ture [23] further quantified the amount of information in
track extrapolation, used it to correct BFIM, and obtained
the optimal power control strategy. Based on the perspective
of game theory, the literature [24–27] regarded detection as
a game process between the detector and the target and then
optimized the radiation parameters. The literature [24] stud-
ied the corresponding radiation power optimization methods
under different game strategies. Literatures [25, 26] found
the Nash equilibrium point and used it to optimize the radia-
tion strategy. The literature [27] was based on the concept of
zero-sum game, adjusting MIMO radar signal in real time,
thereby weakening the enemy’s electromagnetic interference.
Literatures [28, 29] realized the joint optimization of radar
radiation power and signal parameters based on intelligent
algorithms. Literature [30, 31] were based on the theory of
compressed sensing, by minimizing the correlation of each
receiver, to achieve the purpose of synchronous optimization
of the detection beam and the radiation strategy.

It can be seen from the above discussion that the current
research on cooperative detection mainly focuses on two
aspects. One is to improve the accuracy of collaborative
detection by improving the signal processing method. The
other is to improve the detection performance by optimizing
the deployment positions of different collaborative detection
platforms or optimizing the radiation power. However, there
are few literatures on joint optimization of detection
resources at this stage. The joint optimization of parameters
will break down barriers in multiple dimensions such as
time, space, and energy. This kind of research jointly opti-
mizes detection resources from multiple dimensions, which
can better improve the efficiency of collaborative detection.

Aiming at the above two problems, based on the per-
spective of information theory, this paper constructs a joint
optimization model of trajectory and power for cooperative
detection of UAV swarm and uses the improved artificial
bee colony algorithm to optimize it.

The main contribution of this paper is to convert the
problem of improving detection ability into a standard opti-
mization problem through modeling, which is convenient
for solving related problems and carrying out follow-up
research. And a model for joint optimization of multidimen-
sional detection resources is constructed. At the same time,
the research in this paper has a positive effect on improving
the combat effectiveness of UAV swarm and our ability to
perceive the battlefield.

Therefore, the joint optimization of multidimensional
detection resources will be studied in the following sections.
The MIMO detection model is constructed, the relationship
between the transmitted signal and the echo signal is
deduced, and the channel capacity of the cluster detection
is obtained in Section 2. Constructing objective functions
and constraints for optimizing UAV swarm trajectories
and radiated power are discussed in Section 3. Improve the
Artificial Bee Colony algorithm (ABC) algorithm in Section
4. A joint optimization process of cooperative detection
resources based on improved ABC algorithm is constructed
in Section 5. Through simulation verification and algorithm
comparison, the advantages of the method are reflected in
Section 6. Finally, got the conclusion in Section 7.

2. Collaborative Detection Model of
UAV Swarm

2.1. MIMO Detection Model. UAV swarm is used to collab-
oratively detect targets, and the spatial distribution is shown
in Figure 1.

As shown in Figure 1, it is assumed that at time t, the
number of our drones is M. The coordinates and velocities
of each UAV are Pi = ½xti , yti � and vi = ½vtxi, vtyi�, respectively,
where i = 1, 2,⋯,M. There are U targets in the air, and the
corresponding coordinates are Tu = ½xtTu, ytTu�, where u = 1,
2,⋯,U .

The advantages of MIMO radar can be seen intuitively
from Figure 1. Assuming that among our M UAVs, Mt
UAVs transmit detection signals, the echo signal of the tar-
get is received by each UAV. This means that every target
is detected M ×Mt times. Compared with the single-input
single-output radar that only detects a target once, the
received signal is increased by M times. From the perspec-
tive of information theory, it can be seen that this detection
method significantly improves the information obtained
from the target, thus improving the detection performance.

2.2. Channel Capacity of MIMO Detection. For ease of expla-
nation and analysis, a set of receiving and transmitting
forms is constructed to introduce the channel capacity, as
shown in Figure 2.

Assuming that at time t, the positions of the transmitter,
the detected target and the receiver in the UAV swarm are

Pfm = xtfm, ytfm
h i

, Tu = xtTu, ytTu
� �

, Pl = xtl , ytl
� �

:: ð1Þ

As shown in Figure 2, the distance between the transmit-
ter and the target is Dmu, and the distance between the target
and the receiver is Dlu. Dmu andDlu are calculated from the
coordinates. Then, the propagation time τml of the signal is

τml =
1
c
Dmu +Dluð Þ ð2Þ

where c is the speed of light.
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(a) Transmit detection signal

(b) Receive echo signal

Figure 1: Schematic diagram of MIMO detection.
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Assuming that the detection signal transmitted by the
transmitter is smðtÞ, the echo signal can be expressed as

yml =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pmβ

D2
muD

2
lu

s
αmlsm t − τmlð Þ + n, ð3Þ

where Pm represents the equivalent detection power of the
m-th UAV radar, which is the product of the radar power
and the antenna gain. β represents the attenuation constant,
and Pmβ/D2

muD
2
lu represents the received power attenuated

by the atmosphere. αml represents the RCS of the target dur-
ing the process that the m-th UAV transmits the detection
signal and the l-th UAV receives the signal. αml will be intro-
duced and analyzed in detail later. τml represents the time
difference between the received signal and the transmitted
signal. n represents the received noise. This paper assumes
that the noise mainly comes from the thermal noise of the
receiver. Therefore, n is regarded as Gaussian white noise
obeying a normal distribution.

Assuming that the u-th target is detected, the set of sig-
nals transmitted by the transmitter is PF, the channel is H,
and the dimension of the channel is M ×Mt . The received
signal is denoted Y, and the noise is N. Then for a detection
system with Mt transmitters and M receivers, the relation-
ship between the transmitted signal and the received signal
can be expressed as

Y =H × PF+N: ð4Þ

The covariance matrices of the transmitted signal, noise,
and received signal are RPF, RN, and RY, respectively,

namely,

RPF= E PF× PFH
� �

, ð5Þ

RN = σ2nIM , ð6Þ

RY =HRPFHH + RN, ð7Þ

where IM is the identity matrix. PFH represents the Hermite
matrix of PF.

Then according to the definition of channel capacity, the
channel capacity C between the transmitted signal and the
received signal can be expressed as

C = log2
RYj j
RNj j

� �
= log2

RN +HRPFHH
�� ��

RNj j

 !
= log2 IM +HRPF0HH�� ��� 	

,

ð8Þ

where RPF0 represents the normalized matrix, that is,

RPF0 =
E RPFRH

PF
� �

σ2
n

: ð9Þ

In summary, the channel capacity model between the
transmitted signal and the received signal is constructed.

2.3. Applicability of Channel Capacity Model. The concept of
channel capacity comes from information theory and is an
important indicator to measure the information transmis-
sion efficiency and channel performance in the communica-
tion process. In this paper, the channel capacity is used as
the objective function for analyzing and optimizing cooper-
ative detection, mainly for the following three reasons.

(xfm, yfm)

(xl, yl)

t t

(xTu, yTu)t t

t t

Dmu

Dlu

Figure 2: Schematic diagram of single detection.
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First of all, this paper considers that the problem of tar-
get detection is a problem of obtaining information about
targets. This view is widely used in radar array signal pro-
cessing and radar antenna design and has many research
results. The detection problem is transformed into a prob-
lem of obtaining more accurate information about target,
and the method in information theory is used as an index
to evaluate the detection ability, and then, the detection
resources are optimized. This research model is completely
feasible.

Secondly, the channel capacity is essentially the correla-
tion coefficient between the transmitted signal and the
received signal. If no echo signal is received, there will only
be clutter at the receiver. Then, the correlation coefficient
between the echo signal and the transmitted signal is 0; cor-
respondingly, no target is detected. When the correlation is
weak, the echo signal is received. However, due to the fading
of the signal in the atmosphere and the interference of noise,
the features of the echo signal are weakened a lot, and the
features of the target that can be extracted from the echoes
are much less, resulting in a weakening of the ability to esti-
mate the target state. When the correlation is strong, the
echo signal has a little attenuation, which can be used to
detect the state of the target well.

Finally, the channel capacity can be understood as the
upper limit of the ability to obtain target information, simi-
lar to the CRLB for parameter estimation, or the maximum
accuracy of our detection. Just like the definition of channel
capacity, if the upper limit of capacity is exceeded, it is diffi-
cult for the channel to ensure effective and stable informa-
tion transmission. Similarly, once the channel capacity is
determined during the detection process, it means that the
total amount of target information we can obtain is deter-
mined accordingly. And when the amount of information
mastered is certain, there is an upper limit to the degree of
understanding it can be. Only when new nonredundant
information is obtained, can the detection ability of the tar-
get be further improved.

Therefore, this paper regards the channel capacity as the
objective function to optimize the detection performance of
UAV swarm. In this way, the position and radiation power
of the UAV are jointly optimized, thereby improving the
detection efficiency.

3. Optimization Model

3.1. Objective Function. On the basis of the previous article,
the channel capacity of our UAV swarm to detect U targets
is obtained, and the objective function is also

Q = arg max 〠
U

u=1
ωuCu = arg max 〠

U

u=1
ωu log2 IM +HuRPF0HH

u

�� ��� 	
,

ð10Þ

where ωu represents the importance of the u-th objective.
There are many ways to determine the importance of

targets, such as expert systems and methods of subjectively
determining weights. An objective method was used to
determine weights by calculation based on information
entropy or rough set theory. And the method was used to
jointly determine the weights subjectively and objectively.
There are many research results in this direction, but it is
not the focus of this paper, so it will not be expanded here.
If the importance of the objective is not considered, it is only
necessary to delete ωu in the objective function of formula
(10).

In summary, the construction of the cooperative detec-
tion objective function is completed.

3.2. Constraints

3.2.1. Constraint on Motion. Suppose the motion state of the
UAV [32–34] at two adjacent moments is shown in Figure 3.

As shown in Figure 3, the position and speed of m-th
UAV at time t are Pt

m = ½xtm, ytm� and vtm = ½vtxm, vtym�. By opti-
mizing it, the position and speed at the next moment are
obtained as Pt+1

m = ½xt+1m , yt+1m � and vt+1m = ½vt+1xm , vt+1ym �. The cor-
responding relationship is shown in the red and blue dots
in Figure 3. Assuming that the time difference between the
two moments is Δt, it satisfies

Pt+1
m = Pt

m + vtmΔt,
Pt+1
m − Pt

m



 


2 ≤ vtm


 



2Δt:

(
ð11Þ

kk2 means to take the 2 norms. The relationship between
the two speeds can be expressed as

vt+1m = vtm + Δvtm: ð12Þ

Among them, Δvtm is the speed change amount, and the
speed vt+1m at the next moment should satisfy

Δvtm


 



2 ≤ Δvmax,

vmin ≤ vt+1m



 


2 ≤ vmax:

(
ð13Þ

That is, the adjustment amount of the speed and the
speed at the next moment cannot exceed the allowable
range.

According to the relationship between the velocity vec-
tors at the two moments, the direction change amount of
the UAV can be obtained. That is, the amount of heading

Ppm
t + 1

= (xt + 1
pm , yt + 1

pm )T

Ppm
t

= (xtpm, ytpm)T

Vpm
t = ,Vypm)

t t
(Vxpm

T

Δ𝜃
t
m

Δ𝜃max

Figure 3: Schematic diagram of motion constraints.
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angle change Δθtm, which should satisfy

Δθtm
�� �� ≤ Δθmax, ð14Þ

where j j represents the absolute value.
The above are the motion constraints that the UAV

should meet and also the parameters that need to be opti-
mized. In this paper, the cooperative detection capability of
the UAV swarm is improved by optimizing the UAV track.

3.2.2. Constraint on Radiated Power. According to formula
(5), it can be seen thatH is related to the degree of power atten-
uation Pmuβ/D2

muD
2
lu and the RCS αml of the target. The degree

of power attenuation is related to the radiated power Pmu allo-
cated to detect the u-th target and the distance between the
transmitter and the target and the target and the receiver. The
distance can be calculated using coordinates.

At the same time, the radiated power should meet

〠
U

u=1
Pmu ≤ Pm: ð15Þ

That is, the sum of the radiation power used by a single
UAV to detect multiple targets cannot exceed its upper
power limit.

3.2.3. Constraint on Channel Capacity. In the process of
detecting the u-th target, the channel capacity Cu needs to
satisfy

Cu ≥ Cmin: ð16Þ

Among them, Cmin represents the minimum channel
capacity requirement that can realize the target detection.

Because in the process of optimizing the detection
resources, a situation is likely to occur. All drones are very close
to one or several targets and will continue to approach. The
closer the distance is, the greater the channel capacity will be,
so that the sum of the channel capacities will be greater. This
will lead to the realization of the objective function getting big-
ger and bigger. But obviously, this is not the optimal solution for
multiple target detection. At the same time, it is difficult to get
out of this situation. Because if the drone is forced to gradually
move away from the target, it will bring about a decline in the
objective function. When the drone is far away from the target,
as the constraints are reduced, it will return to the state where
multiple drones are approaching a target. A situation similar
to oscillation is formed, falling into a local optimum.

Therefore, the constraints of formula (16) need to be set.
Only in this way can each target be effectively detected, and
parameters can be optimized under this premise, thereby
improving the overall detection performance.

4. Improved ABC Algorithm

The optimization of UAV swarm detection resources stud-
ied in this paper is a typical NP-Hard problem. It is difficult
to have an explicit solution for such problems, and the solu-
tion forms are not the same due to the different environment

and task requirements. Therefore, this section realizes the
optimal solution to this problem by improving ABC.

4.1. Artificial Bee Colony Algorithm. The artificial bee colony
algorithm is an intelligent optimization method based on the
biological characteristics of bees. The core framework of the
algorithm can be summarized as

First, the employed bees conduct a wide-area search to
obtain the general location of the nectar source, that is, the
key area where the optimal solution may exist. The informa-
tion on the employed bees is then aggregated to the guard
bees. The guard bees further screen the nectar sources that
may have the optimal solution and search them precisely
to further improve the quality of the optimal solution. How-
ever, if the guard bees search the key area for a period of
time, the quality of the optimal solution does not improve
significantly, or after other guard bees search for better opti-
mal solutions. The guard bee will be converted into an
employed bee, and the wide-area search will be repeated.

The algorithm flow can be expressed as follows.

Step 1. The first step is population initialization.

Assuming that the number of populations is PN and the
spatial dimension to be optimized is R, the first-generation
population with dimension PN × R can be generated:

P1
op =

x11,1 x11,2 ⋯ x11,R

x12,1 x12,2 ⋯ x12,R

⋮ ⋮ ⋱ ⋮

x1PN ,1 x1PN ,2 ⋯ x1PN ,R

2
666664

3
777775 ð17Þ

The corresponding solution vector in formula (17),
which is also the target solution to be optimized, is X1

i = ½
x1i,1 x

1
i,2 ⋯ x1i,R�. The parameter x1i,j corresponding to the j

-th attribute of the i-th particle is generated using formula
(18), where i = 1, 2,⋯, PN, j = 1, 2,⋯, R.

x1i,j = xmin,j + r xmax,j − xmin,j
� 	

, ð18Þ

where xmax,j and xmin,j are the maximum and minimum
values in the feasible solution space of the j-th attribute. r
is a random number that obeys a uniform distribution
between (0, 1).

Step 2. The employed bees search globally.

Use formula (19) to generate candidate solutions after
the ðn + 1Þ-th search.

vn+1i,j = xni,j + ϕ xni,j − xnk,j
� �

, ð19Þ

where k is a uniformly distributed positive integer in [1, PN].
ϕ is a random number between (-1, 1) that obeys a uniform
distribution. The feasible solution vector generated by for-
mula (19) is Vn+1

i = vn+1i,1 vn+1i,2 ⋯ vn+1i,R
� �

.
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Then, calculate the fitness functions Vn+1
i and Xn

i corre-
sponding to FðVn+1

i Þ and the original feasible solution FðXn
i Þ

. Compare the two fitness functions, and select the better
solution for subsequent iterations.

Step 3. The guard bees determine the nectar source.

Guard bees often use the roulette method in formula
(20) to determine the exact nectar source to search.

Pn
i Xn

ið Þ = F Xn
ið Þ

∑PN
i=1F Xn

ið Þ
, ð20Þ

where Pn
i ðXn

i Þ represents the probability that the guard bee
chooses Xn

i . The purpose of using the roulette method is to
ensure that functions with high fitness can be selected with
a high probability, which is also more worthy of subsequent
accurate searches, and more bees will search for it.

Step 4. The guard bee is converted into employed bee.

If the i-th guard bee performs a certain number of
searches, its fitness function does not change significantly.
Then, it will be converted into an employed bee and return
to Step 1 to search again. This ensures that the bees can
jump out of the local optimum. This operation will eliminate
some local optimal solutions, making the ABC algorithm
more likely to search for the global optimal solution.

The above is the algorithm flow and key operations of
the ABC algorithm. Since the ABC algorithm has a clear
division of labor for the bees, it can better avoid the contra-
diction between speed and accuracy in the optimization
algorithm. It also provides a new idea for the improvement
of intelligent algorithms.

But the ABC algorithm itself also has some shortcom-
ings. Therefore, this paper improves it and applies the
improved algorithm to the resource optimization of cooper-
ative detection of UAV swarm.

4.2. Improved Strategy

4.2.1. Improved Search Strategy. When the ABC algorithm
performs iterative update search, the search direction of
the bee is determined by the positive or negative of ϕ in for-
mula (19). While the positive and negative values of ϕ have
strong randomness, which weakens the search efficiency.
Therefore, some scholars have improved the previous for-
mula (19) as

vn+1i,j = xni,j + σni,j ϕ
n
i,j

��� ��� xni,j − xnk,j
��� ���, ð21Þ

where σi,j are just property symbols; that is, the value is -1 or
1. jϕj represents the step size of the search. Other parameter
definitions are the same as formula (19). The improved
method has been verified in the relevant literature to have
good results. It can ensure that the search direction is
directed towards the direction of improving the fitness
function.

However, when the bees are trapped in the local opti-
mum, the improved strategy will cause the bees to oscillate.
For the convenience of introduction and understanding, this
paper uses formula (22) to describe it in detail:

y = 2 + xð Þ sin 2πxð Þ: ð22Þ

The corresponding function curve is shown in Figure 4.
Figure 4 is the form of a typical amplitude modulated

signal. Using the above search method, the minimum value
of the function is searched in the interval of [0.4]. It can be
seen that the global optimal solution is the point corre-
sponding to the red dotted circle. While when the bee
searches for the point corresponding to the black circle, it
falls into a local optimum. According to the search mode
of formula (21), when searching in a certain direction, its fit-
ness function will decrease. At this time, the improved algo-
rithm corresponding to formula (21) will make the bees
search in the opposite direction. But it can be seen from
Figure 4 that when the bees are trapped in the local opti-
mum, it is difficult to jump out of the local optimum when
searching in any direction. That is, at time k, the bee is in
the local optimum shown by the black circle. The bees are
near the local optimum point at time k + 1. It returns to
the local optimum point at time k + 2. In the end, the bees
oscillate near the local optimum.

Therefore, this paper further improves the search strat-
egy on its basis. The search strategy still adopts the model
of formula (21). But compare the fitness functions corre-
sponding to the three solutions of vn+1i,j ð+Þ, vn+1i,j ð−Þ, and xni,j
. Among them, vn+1i,j ð+Þ and vn+1i,j ð−Þ are the corresponding
solutions when the value of σni,j is ±1.

When the fitness function of vn+1i,j ð±Þ is better, the better
one of the two is selected for parameter update. When the
performance of vn+1i,j ð±Þ is weaker than that of xni,j, set the
step size to 2 times and recalculate to obtain the new candi-
date solution. Also select better one to update. If the perfor-
mance is still weaker than xni,j, let the step size be 3jϕni,jj and
recalculate the new solution. By repeatedly increasing the
multiple of the step size, the conversion conditions in Step
4 of the ABC algorithm are met. If there is still no better
solution, let FðXn

i Þ be the local optimum, and keep this value
as a candidate for the global optimum.

The above is the improvement of the search strategy.

4.2.2. An Improved Population Generation Method Based on
Chaotic Sequence. Both Step 1 and Step 4 of the ABC algo-
rithm involve the generation of bee populations. The pur-
pose of initialization is to hope that the bees can explore a
larger area in Step 1 or jump out of the local optimal solu-
tion obtained by the search in Step 4. The more uniform
the distribution of particles, the more comprehensive the
search. In other words, the area that the bees explore is pref-
erably an area that the bees have not searched before. The
population generated in this way is more beneficial to
improve the search efficiency. But judging from the corre-
sponding formula of population generation in the ABC algo-
rithm, it does not have this kind of performance. Therefore,
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this paper reconstructs the population generation strategy in
Step 1 and Step 4 based on the chaotic sequence.

Chaotic systems are random and ergodic. Randomness
ensures that the population is independent of each other
and has a relatively uniform distribution when it is initial-
ized. Ergodicity ensures that as new populations are gener-
ated, the corresponding search space is also traversed step
by step, thereby ensuring the integrity of the search space
exploration.

In formula (18), the random number r only needs to
obey a uniform distribution. Therefore, this paper improves
it so that it is generated by chaotic sequence and has more
randomness and ergodicity.

Typical chaotic sequences include Logistic, Circle, and
Tent sequences. When the sequence is long enough, the Tent
sequence can traverse all states within the bounded space.
Using it to improve the random number r in the ABC algo-
rithm can improve the diversity of the population and the
possibility of the space being traversed. At the same time, a
new population generated by Tent chaotic sequence is also
used in Step 4. Initialize the position of the newly converted
bee so that it can jump out of the local optimum. And it can
search the space that has not been searched with a higher
probability.

The Tent chaotic sequence is generated by recursive iter-
ation, and its process can be described as follows.

Step 1. Take any initial value x0 in the range of (0, 1), but
x0 ≠ 0:2,0:4,0:6,0:8.

Step 2. Use formula (23) to generate a recursive sequence:

xi+1 =
2xt , 0 ≤ xi ≤ 0:5,
2 1 − xtð Þ, 0:5 ≤ xi ≤ 1:

(
ð23Þ

Perform Bernoulli shift operation on xi+1:

xi+1 = 2xið Þ mod 1, ð24Þ

where ðaÞ mod ðbÞmeans that after dividing a by b, the part
of a that is not divisible by b. Then, formula (24) indicates
that only the fractional part of xi+1 is reserved, which also
satisfies the requirement that r should take a value between
(0, 1).
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Step 3. If xi+1 is one of {0, 0.25, 0.5, 0.75}, or xi+1 = xi+1−k, k is
one of {1, 2, 3, 4}. Then, let xi+1 = xi+1 + α, where α is a ran-
dom number that obeys a uniform distribution between (-1,
1).

Step 4. Determine whether the termination condition is
reached. The general termination condition is that the num-
ber of recurrences is reached or the required sequence length
is generated. If the termination condition is reached, output
the generated sequence; otherwise, execute Step 5.

Step 5. Determine whether xi+1 meets the conditions of Step
3. If it is satisfied, return to Step 3, and regenerate xi+1; oth-
erwise, return to Step 2, and use the recursive formula to
generate the subsequent sequence.

Through the above operations, the improvement of Step
1 and Step 4 in the ABC algorithm is completed, that is,
using the Tent sequence to generate the initial population
and optimize the position of the converted bees. Thus, the
possibility of bees traversing the search space is improved,
and the possibility of falling into a local optimum is also
reduced.

5. Joint Optimization Process of Cooperative
Detection Resources Based on Improved
ABC Algorithm

In order to improve the detection ability of the UAV swarm
to the target, combined with the objective function, con-
straints, and the corresponding optimization algorithm con-
structed, the construction of the detection resource
optimization process is shown in Figure 5.

The flow in Figure 5 can be described as follows.

Step 1. Obtain the position and radiation power of each
UAV in swarm at time k. At the same time, combined with
the characteristics of the objective parameters, the objective
function to be optimized is constructed.

Step 2. Combine the UAV performance parameters to con-
struct constraints.

Step 3. Use the improved ABC algorithm to jointly optimize
the detection resources. The optimized spatial position and
radiated power are obtained.

Step 4. Determine whether the optimization result satisfies
the constraints in Step 2. If not, return to Step 3 to reopti-
mize; otherwise, execute Step 5.

Step 5. Update the position and radiated power of the UAV
at the next moment with the optimization results. Return to
Step 1, and reoptimize until the final optimization moment
K is reached.

The above is the optimization process of UAV swarm
detection resources.

6. Simulation Verification and
Algorithm Comparison

6.1. Comparison of Detection Method. In order to verify and
compare the performance of the algorithm constructed in
this paper, the algorithm in this paper is compared with
the trajectory optimization algorithm based on the Bayesian
Fisher optimization algorithm, the posterior Fisher informa-
tion is optimal, and the fixed configuration only optimizes
the radiation power.

Suppose four UAVs detect the target. The target is three
aircrafts, and the movement mode adopts the method of
constant velocity, constant acceleration, and constant turn
rate alternately. The above four methods are used for opti-
mization, and the trajectory comparison is obtained as
shown in Figure 6.

It can be seen qualitatively from Figure 6 that all four
detection methods can ensure that the UAV swarm is flying
towards the target group. With the shortening of the dis-
tance, the positioning accuracy of the target is gradually
improved. Comparing the three figures in Figures 6(a)–
6(c), it can be seen that UAV swarm in Figure 6(a) is obvi-
ously more flexible than the other two methods in terms of
position transformation. This is because the detection per-
formance is effectively quantified by using the channel
capacity. Therefore, there will be a movement state where
UAVs often adjust their positions and the trajectory changes
significantly. The method in this paper is more beneficial to
improve the detection effect of the target.

In order to further quantify and compare the perfor-
mance of the four methods, this paper conducts 50 Monte
Carlo simulation experiments for the above four methods,
respectively. The average of the results of each step is taken
to obtain the mean square error (MSE) comparison curve
of positioning, as shown in Figure 7.

From the average MSE in Figure 7, it can be seen that the
algorithm in this paper outperforms other algorithms. This
is because the performance of both Bayesian Fisher and pos-
terior Fisher methods relies heavily on the estimation of the
probability distribution of target locations. The more accu-
rate the estimation of the probability distribution of the tar-
get position, the better the detection effect. While when the
target state changes in a short time, the performance of such
methods is limited. This also reflects the better performance
of the algorithm in this paper for the detection of maneuver-
ing targets in the air.

At the same time, it can be seen from Figure 7 that the per-
formance of the algorithm that only optimizes power is not sig-
nificantly different from those of other algorithms. As can be
seen from Figure 6(d), the UAVs flew towards the target group
in a fixed configuration. This will continue to shorten the dis-
tance between the UAV swarm and the target, helping to
improve detection accuracy. Secondly, power optimization will
further ensure the detection performance. Finally, it is due to
the number effect of the UAV swarm and the split mode of
transmitter and receiver in the MIMO system. These will result
in a nonlinear increase in detection performance as the number
of UAVs increases. This is also an emergent feature of swarm,
and this advantage applies to all swarm detection methods.
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6.2. Comparison of Optimization. In order to further measure
the performance of the improved ABC algorithm in this paper,
the advantages of this algorithm are highlighted. The improved
ABC algorithm in this paper, the ABC algorithmwith improved
search direction, and the improved Particle Swarm Optimiza-
tion (IPSO) algorithm are used for comparison.

In the optimization process, only the optimization algo-
rithm used in the process in Figure 5 is changed, and other
processes are exactly the same. The above three algorithms
are used to optimize the trajectory and radiation power of
the UAV, and the results are shown in Figure 8.

It can be seen from Figure 8 that the ABC algorithm and
the IPSO algorithm can also achieve good optimization of
the trajectory and radiated power. But compared with
Figure 6(a), there is a difference in performance.

Comparing Figures 8(a) and 6(a), it can be seen that the
trajectory of the UAV in Figure 8(a) is more tortuous. Com-
pared with the improved algorithm, the ABC algorithm does
not fully explore in the search space, resulting in a local opti-
mum. This is shown in Figure 8(a) as oscillations around the
local optimum, that is, where there are obvious bends in the
UAV3’s trajectory. Because the particles are trapped in a
local optimum, this causes the drone to both want to
approach the target and to return to the optimum point.
Thus, there is an obvious bending process. Obviously, this
process is not only difficult to obtain good detection results.
At the same time, due to this obvious change of motion state,
the stability of the UAV will also be reduced.

Comparing Figures 8(b) and 6(a), it can be seen that the
trajectory of IPSO is more direct. This is due to the fact that
the PSO algorithm and its improved algorithm retain the
characteristics of the high-speed optimization of the PSO
algorithm itself. However, when the optimization problem
is more complicated, it is difficult for the particles to obtain
the global optimal solution. This is also the contradiction
between the optimization speed and the precision that the
intelligent algorithm is always difficult to overcome. And
obviously, the IPSO algorithm focuses on the speed of the
algorithm. This leads to the performance of the IPSO algo-
rithm being worse than that of the algorithm in this paper.

To further compare the performance of the three optimi-
zation algorithms, using the above three optimization algo-
rithms, 30 Monte Carlo simulation experiments were
carried out, respectively. The optimization results are aver-
aged for comparison, as shown in Figure 9.

As can be seen from Figure 9, the performance of the
improved ABC algorithm has been significantly improved.
This is because the improvement of the ABC algorithm in
this paper will significantly reduce the possibility of falling
into a local optimum. The performance will not be inferior
to the ABC algorithm with improved search direction. And
due to the improved population generation method, with
the increase of the number of optimization iterations, the
probability of the improved algorithm to search and obtain
the global optimum is higher than that of the ABC algorithm
with improved search direction.
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At the same time, it can be seen that the performance of
the improved ABC algorithm is better than that of the
improved PSO. This is also because for more complex prob-
lems, the ABC algorithm can compromise the speed of the
algorithm performance and the quality of the search. Com-
pared with the PSO algorithm that focuses on the optimiza-
tion speed, with the improvement of the dimension and
difficulty of the optimization problem, the advantages of
the algorithm in this paper will gradually become
prominent.

7. Conclusion

(1) In order to improve the situational awareness of the
UAV swarm, this question is converted into a prob-
lem of improving the channel capacity between the
transmitter and the receiver. The cooperative detec-
tion model is constructed, and the optimization solu-
tion process is given to realize the optimization of
detection resources

(2) This paper deduces the quantitative representation
equation of channel capacity. And use it as the objec-
tive function to optimize the cooperative detection
resources. At the same time, constraints are con-
structed with the characteristics of the UAV. The
problem of improving the detection ability is con-
verted into a typical optimization problem, and the
optimization solution process is given

(3) In view of the shortcomings of the ABC algorithm,
the search direction of the individual is improved,

and the chaotic sequence is used to construct a pop-
ulation generation method, thereby improving the
efficiency of the ABC algorithm

(4) This paper constructs a resource optimization
method for UAV swarm cooperative detection based
on the improved ABC algorithm. And through sim-
ulation verification and algorithm comparison, the
performance and advantages of the algorithm are
highlighted. This research has a positive effect on
improving the combat effectiveness of UAV swarm
and the ability to perceive the battlefield

(5) In the actual combat process, the situation of the
enemy and the enemy changes drastically in a short
period of time. The time for us and the enemy to
make decisions and optimize is extremely short.
Therefore, it is planned to improve and optimize
the architecture in the future to realize real-time
decision-making
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Supplementary Materials

Supplementary 1. The trajectories of the three targets in
Figure 6 are in “Figure 6 target’s trajectory.txt.”

Supplementary 2. The data of the trajectory of the UAV
obtained by the algorithm in this paper in Figure 6(a) are
in “Figure 6(a) the optimization results of the algorithm in
this paper.txt.”

Supplementary 3. The data of the trajectory of the UAVs
obtained by Bayesian Fisher algorithm in Figure 6(b) are in
“Figure 6(b) the optimization results of Bayesian Fisher
algorithm.txt.”

Supplementary 4. The data of the trajectory of the UAVs
obtained by posterior Fisher Information algorithm in
Figure 6(c) is in “Figure 6(c) the optimization results of pos-
terior Fisher Information algorithm.txt”.

Supplementary 5. The data of the trajectory of the UAVs
obtained by fixed configuration in Figure 6(d) are in
“Figure 6(d) the optimization results of fixed
configuration.txt.”

Supplementary 6. The data of the MSE comparison of differ-
ent detection algorithms in Figure 7 are in “Figure 7 MSE
comparison of different detection algorithms.txt.”

Supplementary 7. The data of the MSE comparison of differ-
ent optimization algorithms in Figure 8 are in “Figure 8 MSE
comparison of different optimization algorithms.txt.”
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