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The satellite clock bias (SCB) prediction plays an important role in high-accuracy and real-time navigation and positioning. When
predicting the SCB, the performance of the BP neural network is affected by the local optimum due to inaccurate initial
parameters. Therefore, we propose an improved BP neural network based on the beetle swarm optimization (BSO-BP)
algorithm to improve the performance of SCB prediction in third-generation Beidou satellite navigation system (BDS-3). The
proposed model takes advantage of group learning strategy to optimize the initialization parameters of the BP neural network
and obtains globally optimized parameters. In order to verify the proposed BSO-BP model, 15 BDS satellites are analyzed in
terms of prediction accuracy and stability of SCB. The experimental results show that when predicting 1 hour SCB based on a
12 hours SCB data, the prediction accuracy of the BSO-BP model is the best, with an average accuracy of 0.064 ns. As
compared with the LP, QP, and GM models, the average prediction accuracy of the proposed BSO-BP model increases by
about 72.6%, 43.4%, and 86%, respectively. As the prediction time increases, the influence of the inaccurate initial parameters
on SCB prediction gradually decreases, and the prediction accuracy improves. The proposed BSO-BP model has the best
accuracy and stability when predicting the 1 h SCB based on the same data. The prediction stability of the proposed BSO-BP
model improves by more than 36% as compared with LP, QP, and GM models. In addition, the prediction accuracies of PHM
clock and Rb-II clock improved by more than 47%, as compared with that of the Rb clock. Therefore, the overall performance
of the atomic clock based on BDS-3 is better than BDS-2. The positioning accuracy of the BSO-BP model can reach the
centimeter level in east, north, and up directions.

1. Introduction

The position, navigation, and timing (PNT) service of global
navigation satellite system (GNSS) is closely related to satel-
lite clock bias (SCB) [1, 2]. The SCB as small as 1 ns pro-
duces a distance error of approximately 0.3m, thus
seriously influencing the positioning and timing accuracy
of navigation systems [3, 4]. With the rapid development
of GNSS technology, real-time clock bias prediction has
become a research hotspot. Currently, there are two ways
to obtain the real-time clock bias data, namely, IGS ultra-

rapid ephemeris prediction products (IGU-P) and open
real-time service (RTS). Both of these methods have differ-
ent limitations, when used in GNSS applications. Though
the IGU-P products satisfy the real-time requirements, their
navigation and positioning precision are too low. On the
other hand, the RTS provides real-time products with differ-
ent requirements; however, it is inconvenient to obtain real-
time clock bias products of Beidou navigation system (BDS).
In addition, the RTS products developed by different agen-
cies have different precisions, which seriously affect the
results of high precision positioning [5]. Therefore, it is very
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important to establish a high-precision SCB prediction
model to achieve real-time high-precision SCB products
for real-time positioning.

There are some commonly used SCB prediction models,
including the linear polynomial (LP) model [6], the qua-
dratic polynomial (QP) model [7], the grey model (GM)
[8], the Kalman filter (KF) model [9], and the ARIMA time
series model [10]. Please note that all of the aforementioned
models are linear. However, the complex external environ-
ment results have a nonlinear effect on the SCB data. Conse-
quently, a single linear model is unable to predict the SCB
accurately. Few works proposed a linear combination model
for predicting SCB, but the determination of the weight
value is complex, and the tendency to improve the predic-
tion accuracy is also limited [11].

With the advancements in machine learning, the neural
networks have been introduced in the SBC prediction. The
radial basis function neural network is used to predict the
SCB of GPS for one day [12]. This method achieves a better
accuracy than 1 ns, which verifies the feasibility of the model
for performing SCB prediction. Wang et al. combine the
advantages of fuzzy theory and neural network to predict
the SCB of GPS [13]. The prediction results are 10 times bet-
ter than the accuracies obtained by using IGU-P. When the
wavelet function is used as an activation function in a neural
network, it has a faster convergence speed and approxima-
tion ability, thus achieving highly accurate SCB prediction
[14, 15]. It is noteworthy that the randomization of initial
value of the wavelet neural network leads to the instability
in prediction results. The genetic algorithm is utilized to
optimize the initial value, which improves the accuracy
and stability of SCB predictions [16, 17]. Zhao et al. used
the grey neural network optimized by an intelligent algo-
rithm to predict the clock bias and obtain better predic-
tion accuracy of SCB as compared to the traditional
models [18]. In addition, extreme learning machine opti-
mized by particle swarm optimization algorithms improves
the accuracy of International GNSS Monitoring and Assess-
ment System (iGMAS) ultrafast SCB predictions by 50%
approximately [19]. These works show that the neural net-
works have obvious advantages over the traditional models
in SCB prediction.

The BP neural network was proposed in 1986 [20] and is
used in various fields [21–25], due to its strong nonlinear
learning ability. Zhu et al. used the BP neural network to
predict the clock bias of the hydrogen (PHM) clock, which
enhanced the prediction accuracy of PHM clock [26]. As
the fitting residual has obvious nonlinear changes, the BP
neural network is used to predict the fitting residuals of
QP model with periodic item, which improves the accuracy
of BDS ultrafast clock bias products [27]. In addition, the
BP neural network optimized by the mind evolutionary
algorithm is used to predict the GPS clock bias. The resulting
prediction accuracy improves by more than 80% as com-
pared with the QP model [28].

Due to strong global search abilities and fast search
speed, the beetle swarm optimization (BSO) algorithm has
been a focus of research community [29]. Parminder et al.
use the BSO for heart disease detection and achieve accuracy

and precision of 99.1% and 99.37%, respectively [30]. In the
field of intelligent robotics, BSO is used for planning the tra-
jectory of robots, which has a faster calculation speed and
better control performance than the existing algorithms
[31]. Moreover, the BSO is used to plan the three-
dimensional path, which is about 90% of the PSO path plan-
ning length [32]. The BP neural network is easily trapped in
a local optimum. The BSO algorithm is used to optimize the
initial value parameters. In this work, in order to improve
the accuracy and stability of clock bias prediction, the
BSO-BP model is introduced for short-term clock bias
prediction.

The rest of the manuscript is organized as follows. In
Section 2, we present some basic principles about the BSO-
BP model. In Section 3, preprocessing of clock bias data, pre-
diction accuracy, and stability of gray system model (GM
(1,1)), quadratic polynomial (QP) model, linear polynomial
(LP), and BSO-BP model are compared and analyzed. In
Section 4, PPP validation with predicted clock. Finally, in
Section 5, we conclude this work.

2. An Improved BDS Clock Offset
Prediction Mode

In the section, for a clear understanding of the improved
model for SCB prediction, the basic principles of BP neural
network and BSO algorithm are introduced first. Then, the
flow of BSO-BP model is given in details.

2.1. BP Neural Network. The BP neural network is based on
error back propagation and is mainly divided into two pro-
cesses, including forward propagation and back propagation
of error [33, 34]. During the process of back propagation, the
weights and thresholds of the network are updated based on
the feedback error, such that the actual output value of the
network is closer to the expected output value.

As presented in Figure 1, the architecture of BP neural
network comprises an input layer, an output layer, and a
hidden layer. xi denotes the input of the network, and wij

and b1j denote the weights and thresholds for the input to
hidden layer, respectively. The excitation function of the
hidden layer is f1, output value of the hidden layer is F1 j,
and weight and threshold for the hidden layer to the output
layer are expressed as wjk and b2k, respectively. Similarly, the
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Figure 1: The architecture of BP neural network.
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excitation function of output layer is f1, output value
obtained from the output layer is F2k, and yk denotes the
true value.

We normalize the input of the network as follows:

Xi =
xi −min xif g

max xif g −min xif g ,

Ym = ym −min ymf g
max ymf g −min ymf g :

8
>>><

>>>:

ð1Þ

Based on the weights, thresholds, and excitation function
from the input to the hidden layer and, the output value is
computed as follows:

F1j = f1 〠
n

i=1
wij ⋅ Xi + b1j

 !

, ð2Þ

where n denotes the number of neurons in the hidden layer.
Similarly, based on the weights, thresholds, and excitation
function from the hidden to the output layer and F1j, the
output is computed as follows:

F2k = f2 〠
n

j=1
wjk ⋅ F1j + b2k

 !

: ð3Þ

The error between the actual value and the estimated
value is computed as follows:

E = 1
2〠

m

k=1
yk − F2kð Þ2, ð4Þ

where m denotes the number of training samples. Based on
this error, the weight and bias terms are updated by using
the gradient descent method as follows:

w′ =w − Δw, Δw = −η
∂E′
∂w

,

b′ = b − Δb, Δb = −η
∂E′
∂b

,

8
>>><

>>>:

ð5Þ

where E′ denotes the error for each layer of the neural net-
work, η denotes the learning rate, w′ denotes the corrected
weight, and b′ denotes the corrected threshold.

Considering the SCB data of BDS, the number of neu-
rons in the input layer and the output layer of the BP neural
network is both 1. Therefore, the number of neurons l =
ffiffiffiffiffiffiffiffiffiffi
p + q

p + a′, where p denotes the number of neurons in the
input layer, q denotes the number of neurons in the output
layer, and a′ is usually between 1 and 10.

The BP neural network has superior nonlinear mapping
and adaptive learning abilities. Therefore, it is more efficient
than the conventional models in dealing with the nonlinear
problems. However, the precision and convergence speed
of the BP neural network depend on the initial weights and

thresholds. The random generation of these parameters
may trap the network in a local minimum. In order to solve
this aforementioned issue, the BSO algorithm is introduced
to optimize the initial parameters and improve the training
results of the BP neural network.

2.2. Beetle Swarm Optimization (BSO) Algorithm. The BSO
algorithm is an intelligent optimization algorithm that uses
the fitness function value of two tentacle angles of each bull
in the bull group to seek the optimal position of the bull
group. This algorithm has the advantage of individual evolu-
tion and group learning. When searching for the optimal
solution, the optimal fitness value of the current individual
is recorded. Then, the information interaction with the
whole group is performed to determine the optimal fitness
value of the group. Finally, the position and speed of the bee-
tle swarm are updated by combining the group and individ-
ual optimization [35–37].

When using the BSO algorithm for optimization, we use
a random function to initialize the position and speed of the
beetle swarm:

X = rands D,mð Þ,
V = rands D,mð Þ,

(

ð6Þ

where D denotes the number of parameters, m denotes the
number of beetles, X = ðX1, X2,⋯XmÞ represents the initial
position of the beetle swarm, Xi = ðxi1, xi2,⋯xiDÞ represents
the position of i-th beetle, V = ðV1, V2,⋯VmÞ represents
the initial speed of the beetle swarm, and Vi = ðvi1, vi2,⋯viDÞ
denotes the speed of i-th beetle. Please note that the fitness
of each beetle is calculated based on the initialization param-
eters and fitness function and by recording the optimal value
f g for each beetle and optimal value f b of beetle swarm. The
updated V is mathematically expressed as follows:

Vt+1 =Vt ⋅w + c1 ⋅ r1 ⋅ X − f g
� �

+ c2 ⋅ r2 ⋅ X − f bð Þ, ð7Þ

where Vt and Vt+1 denote speed of the t-th and t + 1-th iter-
ation, respectively, w denotes the inertia weight, c1 and c2
represent the learning factors, and r1 and r2 represent the
random numbers between 0 and 1. In order to enable the
algorithm to avoid the local optimum, the value of V is con-
strained between vmin and vmax. Please note that the inertia
weight is generally a linear variable.

wi =wmax − wmax −wminð Þ ⋅ i
n

� �
, ð8Þ

where wmax and wmin denote the maximum and minimum
inertia weight and n denotes the maximum number of iter-
ations. For t-th iteration, the mathematical expressions for
the left and right tentacles of the beetle are

Xi
l = Xi − Vi ⋅ d0/2

Xi
r = Xi +Vi ⋅ d0/2

(

, d0 =
step
c

, ð9Þ
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where Xi
l and Xi

r represent the positions of left and right ten-
tacles of the beetle, c denotes the ratio of step length of ten-
tacles, and dt0 denotes the distance between the left tentacle
and right tentacle. The update expression of the position of
beetle swarm is

Xi
t+1 = Xi

t + λ ⋅ Vi
t + 1‐λð Þ ⋅ ξit ,

ξit = stept ⋅ Vi
t ⋅ sign f Xi

r

� �
− f Xi

l

� �� �
,

(

ð10Þ

where λ denotes a positive constant and ξit represents the
change in beetle position. The step is updated in a decreasing
manner as follows:

stept+1 = stept ⋅ eta, ð11Þ

where eta represents the updating factor of the step. Based
on (6)–(11), the position and speed of the beetle swarm are
constantly updated until the iterative process is terminated.

The optimal positions of the beetle swarm are used as the
initial parameters of the BP neural network.

2.3. Beetle Swarm Optimization BP Neural Network (PSO-
BP) Model Used for SCB Prediction. The BP neural network
makes the output value of the network approach the true
value by continuously correcting the weights and thresholds.
However, the initial weights and threshold of the BP neural
network are selected randomly, which leads to a nonoptimal
solution. In this work, we use the BSO algorithm to optimize
the BP neural network for predicting the SCB. The main
process is divided into two parts: (1) The BSO algorithm
optimizes the initial parameters of the network. (2) The opti-
mal initial values estimated by the BSO are substituted in the
BP neural network for training. The major steps of the algo-
rithm are shown in Figure 2.

Step 1. The number of hidden layer nodes in the BP neural
network is determined based on the input and output values
of the network, and the parameters of the BSO algorithm are
initialized.

Step 2. The fitness function is used to calculate the fitness
value of each beetle, and the individual optimal and group
optimal are marked.

Step 3. Determine if the BSO algorithm satisfies the termina-
tion conditions. If the termination conditions are satisfied,
go to Step 6. Otherwise, go to Step 4.
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Figure 2: The workflow of the proposed BSO-BP algorithm.

Table 1: Types of BDS satellite clocks used in this work.

Satellite Clock type PRN

BDS-2 Rb C01, C03, C04, C05, C14

BDS-3
Rb-II C20, C22, C23, C24, C32

PHM C26, C27, C28, C29, C34
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Step 4. In order to enhance the searching ability of the algo-
rithm, a condition is added to the algorithm to determine if
the value of optimal fitness function is same for L consecu-
tive iterations. As the step size of the algorithm is progres-
sively updated, the late step size is small, which is not
conducive to global search. Therefore, when the value of
optimal fitness function is same for L consecutive times,
the step size is restored to the initial value.

Step 5. Update the speed and position of the beetle swarm
using expressions (6)–(11).

Step 6. The optimal parameters obtained by the BSO algo-
rithm are substituted in the BP neural network for continu-
ous training and prediction.

3. Experimental Results and Analysis

In this work, we use the final clock products for one week
(DOY 163-169, 2020) from WHU (Wuhan University).
The sampling interval is 30 s. 15 satellites used for experi-
ments are shown in Table 1, which include five rubidium
(Rb) clocks, five new rubidium (Rb-II) clocks, and five
hydrogen (PHM) clocks. The mean absolute deviation
(MAD) is used in data preprocessing to detect the outliers
in SCB data. In addition, we interpolate distorted data by
linear method. Then, the model is established by using the
preprocessed SCB data. Finally, the precise SCB data corre-
sponding to the prediction period is selected as the reference
data. The root mean square error (RMS) [38] and standard
deviation (STD) are used as the accuracy metrics to evaluate
the proposed model. In this work, six tests are performed to
analyze the accuracy and stability of the proposed BSO-BP
model. In Sections 3.1-3.5, we use the day (DOY 163,
2020) of SCB data to analyze. In Section 3.1, the MAD
method is used to preprocess the SCB data. In Section 3.2,
the frequency and phase data to perform predictions and
analyze their prediction accuracies. In Section 3.3, we ana-
lyze the prediction performance of BP and the proposed
BSO-BP models. In Section 3.4, 15 satellites were used to
analyze the prediction accuracies of the proposed BSO-BP
model with different fitting time and different prediction
time. In Section 3.5, the prediction stability of different
models and atomic clocks is analyzed. In Section 3.6, we
use 6 consecutive days (DOY 164-169, 2020) of SCB data
for accuracy and stability analysis.

3.1. Data Preprocessing. It is notable that the phase data of SCB
has obvious trends and large values, which make it difficult to
effectively detect the outliers using the original SCB data.
Moreover, the BP neural network effectively adapts to nonlin-
ear data. Therefore, it is necessary to convert the original SCB
data into frequency data by using the following expression:

yi =
xi+1 − xi

τ
, ð12Þ

where xi represents the SCB sequence, τ denotes the sampling
interval of SCB, yi represents the frequency data, n represents

the total number of epochs for a sequence, and i = 1, 2, 3,⋯,
n − 1. In order to evaluate the prediction accuracy and facili-
tate the user’s application, the frequency data is reduced to
the SCB data by using as follows:

xj = xl + τ ⋅ 〠
g

j=1
yj, ð13Þ

where xl denotes the last SCB data used for training the BP
neural network, yj denotes the predicted frequency data, and
xj denotes the predicted SCB data. When detecting the gross
error of the clock bias, theMADmethod is generally used con-
sisting of following steps.

Step 1. Convert the SCB data to frequency data using (12).

Step 2. Arrange the frequency data from small to large and
compute the median (m) of the sequence.

Step 3. Calculate the value of MAD based on m, MAD =
medianfjyi −mj/0:6745g.

Step 4. The value of k timesMAD is used as the threshold for
detecting the outliers, and the yi exceeding the threshold is
marked as outliers. Generally, k is between 3 and 5. In this
work, k = 3.

Step 5. If the i-th frequency is marked as an outlier, the SCB
of the i + 1-th epoch is eliminated, and the SCB of the epoch
is restored by linear interpolation.

As presented in Figure 3, there are many gross errors in
the original frequency data. After preprocessing the data
using MAD, the gross errors are effectively eliminated. The
values of frequency data are between 0.55 and 0.75 (10-
11Hz), so its fluctuations are more stable. In addition, the
value of phase data is large and does not change significantly
after preprocessing. Therefore, the frequency data is more
suitable for gross error detection of SCB data.

3.2. Comparative Analysis of Phase and Frequency Data. The
SCB data of C01 (Rb clock), C23 (Rb-II), and C34 (PHM
clock) are selected to analyze that the BP neural network
has better adaptability to frequency data. We use the phase
and frequency data obtained during the first 12 hours of
the day for predicting the SCB value of the next 10min (20
epochs) using the BP network. The predicted SCB value
for 30 consecutive times is recorded, and the RMS value is
used as the metric to evaluate the prediction result.

As presented in Figure 4, the RMS of 30 consecutive SCB
values predicted using phase data of C01, C23, and C34 are
larger than using the frequency data. Therefore, when the BP
neural network is used for clock bias prediction, the predic-
tion accuracy for frequency data of Rb clock, Rb-II clock,
and PHM clock improves by different degrees as compared
with the phase data. In addition, the variations in the RMS
values of the three satellites show that when the frequency
data is used to predict, the prediction accuracy of the three
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satellites is generally within 0.1 ns, while the prediction accu-
racy of the phase data is within 0.4 ns. Therefore, the varia-
tions in prediction accuracy of phase data for 30
consecutive times are larger, especially for C34, i.e., 0.23 ns.
Contrary, the prediction accuracy for frequency data is
about 0.13 ns. Therefore, the BP neural network using the
frequency data for SCB prediction significantly improves
the performance of predictions.

3.3. Comparative Analysis of BS0-BP and BP. The section
selects three different types of atomic clocks C01, C23, and
C34 as discussed in the aforementioned experiments to ver-
ify the prediction performance of the improved BSO-BP
model. We use the data obtained during the first 12 hours
of the day to fit the clock error half an hour after the predic-
tion. The BP and proposed BSO-BP models are used to pre-
dict the clock errors for 10 consecutive times, and RMS
values are recorded. The changes in the RMS values pre-
dicted by the BP and BSO-BP models are compared and
analyzed.

As presented in Figure 5, the RMS value of BSO-BP
model is significantly smaller than that of the BP model. In
addition, the RMS values of the proposed BSO-BP for 10
consecutive times are relatively stable. In addition, for C01,
C23, and C34 satellites, the prediction accuracy of BSO-BP
model improves by 69.5%, 80.8%, and 86.7%, respectively,
as compared with the BP model. The minimum RMS value
predicted by the BSO-BP model is better than that of the
BP model. As the weights and thresholds of the BP neural
network are not optimal, its prediction accuracy is low,
and the RMS value changes significantly. The BP neural net-
work optimized using the BSO enhances the global optimi-
zation ability of the BP neural network and improves its
prediction accuracy.

3.4. Accuracy Analysis of Predicted SCB. In order to analyze
the prediction accuracy of the proposed BSO-BP model,
Rb (C01, C03, C04, C04, C14) of BDS-2, Rb-II (C20, C22,
C23, C24, C32), and PHM (C26, C27, C28, C29, C34) clocks
of BDS-3 are selected to perform experiments. The
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experimental process is as follows: (1) The SCB data of the
first 6 hours of the day is used to predict the clock bias of
next 0.5 and 1 hour. (2) The SCB data of the first 12 hours
of the day is used to predict the clock bias of next 0.5 and
1 hour. The RMS values of prediction accuracies obtained
for different schemes are counted, and the accuracy analysis
of different fitting time and different prediction time is per-
formed by using the LP, QP, GM, and BSO-BP models.

As presented in Figure 6, among the four models, the
prediction accuracies of LP, QP, and GM are poor. In addi-
tion, the RMS of the predicted values for different satellites
change significantly. The results show that the prediction

RMS values of the LP model for C04 and C26 are about
0.6 ns and 0.1 ns, respectively, the prediction RMS values of
the QP model for C01 and C28 are about 0.8 ns and 0.1 ns,
respectively, and the prediction RMS values of the GM
model for C05 and C28 are about 0.8 ns and 0.1 ns, respec-
tively. Therefore, the variation in prediction accuracies is at
least 0.5 ns. Contrary, the RMS values of SCB prediction
obtained using the proposed BSO-BP model are all within
0.2 ns. Moreover, the variation in accuracies is better as com-
pared to other methods.

At the same time, as presented in Figure 7, the BSO-BP
model maintains high prediction accuracy with an increase
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in the prediction time. On the other hand, the accuracies of
other models do not change significantly. It is noteworthy
that when the four models have different prediction time,
the best prediction accuracy is for the PHM clock, followed
by the Rb-II clock, and the Rb clock. This is related to the
physical characteristics of different atomic clocks and does
not change with the increase in prediction time.

As presented in Figure 8, with an increase in fitting time,
the prediction accuracy of the BSO-BP model remains opti-
mal. Please note that this accuracy is slightly better than the
accuracy obtained for 0.5 hours based on the data of 6 hours.
In addition, with an increase in fitting time, the changes in
accuracies for the LP, QP, and GM models for different sat-
ellites are also different. The results show that the prediction
accuracy of the LP model for C01 decreases with an increase
in the fitting time, while the prediction accuracy for C20 is
significantly improved. Similarly, the QP and GM models
also depict the same phenomenon. As presented in
Figure 9, with an increase in the forecast time, the results
are similar to those presented in Figures 6 and 7.

The prediction residuals reflect the accuracy of the pre-
dicted value. The farther the residual is from 0, the worse
is the prediction accuracy and vice versa. Therefore, the pre-
diction residuals of C01 (Rb clock), C23 (Rb-II clock), and
C27 (PHM clock) satellites are selected to perform analysis,
as shown in Figures 10 and 11.

It is evident from Figures 10 and 11 that when the fitting
time is 6 hours and the prediction time is 1 hour, the predic-
tion residuals of the BSO-BP model for the SCB of three sat-

ellites fluctuate around 0, which is the closest to the true
value of SCB. However, the LP, QP, and GM models are
affected differently for different satellites, and the degree of
deviation from the true value varies significantly. For
instance, the prediction residuals of QP model for C01 devi-
ate from the true value critically, and the prediction residuals
of C23 and C27 are similar to the BSO-BP model, i.e., close
to the true value. The degree of deviation in cases of LP and
GM models is obviously larger than that of the BSO-BP
model. The results show that by increasing the fitting time,
the prediction residual of the BSO-BP model is still near 0,
while the prediction residuals of the LP, QP, and GMmodels
are not stable. The deviation of the prediction residual in
case of LP model for C01 is larger as compared to C23.
The deviation in the predicted residual from the true value
is smallest in case of the BSO-BP model. Moreover, the pre-
dicted residuals for the proposed model do not vary by
changing the fitting time.

Based on the aforementioned analysis, the prediction
accuracy of the proposed BSO-BP model is the best. In order
to further analyze the prediction accuracy of the aforemen-
tioned models, the average prediction accuracy of different
atomic clocks is calculated, as shown in Tables 2 and 3.

It is evident from Tables 2 and 3 that when the fitting
time is 6 hours, the prediction accuracy of the proposed
BSO-BP model for PHM clock and Rb-II clock is within
0.05 ns, and the prediction accuracy for Rb clock is also
approximately 0.1 ns, which is much better as compared to
the other models. The analysis of prediction accuracy for
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Figure 8: The prediction accuracy of 15 BDS satellites for 0.5 hours using 12 hours SCB data.
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Figure 9: The prediction accuracies of 15 BDS satellites for 1 hour using 12 hours SCB data.
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residual value of C23 forecast 1 hour; (c) the residual value of C27 forecast 1 hour.

Table 2: The average prediction accuracy for 0.5 hours and 1 hour for three different types of clocks based on 6-hour SCB data.

Clock type
0.5 h 1 h

LP QP GM BSO-BP Mean LP QP GM BSO-BP Mean

Rb 0.342 0.453 0.291 0.070 0.289 0.319 0.398 0.336 0.101 0.289

Rb-II 0.429 0.160 0.095 0.028 0.178 0.397 0.133 0.113 0.041 0.171

PHM 0.096 0.045 0.082 0.028 0.063 0.094 0.044 0.100 0.033 0.068

Mean 0.289 0.220 0.156 0.042 0.270 0.191 0.183 0.058

Table 3: The average prediction accuracy for 0.5 hours and 1 hour for three different types of clocks based on 12-hour SCB data.

Clock type
0.5 h 1 h

LP QP GM BSO-BP Mean LP QP GM BSO-BP Mean

Rb 0.554 0.317 0.636 0.043 0.387 0.508 0.273 0.694 0.068 0.386

Rb-II 0.221 0.070 0.170 0.026 0.122 0.192 0.064 0.181 0.040 0.119

PHM 0.122 0.089 0.073 0.022 0.076 0.111 0.081 0.070 0.031 0.073

Mean 0.299 0.158 0.293 0.030 0.270 0.139 0.315 0.046
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different prediction times under the same fitting time shows
that when 6-hour SCB data is used, the prediction accuracies
of the GM and BSO-BP models decrease by increasing the
prediction time. The prediction accuracies of the LP and
QP models increase with an increase in prediction time. This
is caused by the trend of prediction residual and the initial
prediction residual. For instance, the initial residual of the
QP model in Figure 9(a) is about 1 ns. With an increase in
prediction time, the prediction residual decreases, and the
prediction clock difference constantly approaches the true
value. Therefore, the prediction accuracy increases. Simi-
larly, in Figure 9(b), the LP model depicts the same trend.
These trends are also similar in the case of using 12 hours
for fitting to predict 0.5 h and 1h.

Based on the analysis of prediction accuracies obtained
for the same prediction time under different fitting time
shows that when fitting 6 hours and 12 hours to forecast
0.5 hours, respectively, for the Rb clock, the prediction accu-
racies of the LP and GM models decrease with an increase in
the fitting time, while the prediction accuracies of the QP and
BSO-BP models increase with an increase in the fitting time.
For the Rb-II clock, the prediction accuracies of the LP, QP,
and BSO-BP models increase with an increase in the fitting
time, while the GM model shows an opposite trend. For
PHM clocks, the accuracies of the LP and QPmodels decrease
with an increase in fitting time, while the GM and BSO-BP
models improve constantly. The results show that the LP,
QP, and GMmodels have different variations under the influ-
ence of different atomic clocks, while the proposed BSO-BP
model is relatively stable under different types of atomic
clocks. In addition, the prediction accuracy of the proposed
model increases with an increase in fitting time.

It is evident from the prediction mean values of different
models that the prediction accuracy of BSO-BP model
improves by varying degrees as compared with other
models. For instance, when fitting 6 hours to predict the next
0.5 hours and 1 hour clock bias, the prediction accuracy of
the BSO-BP model improves by about 85.5%, 81%, and
73.1% and 78.5%, 58.3%, and 68.3% as compared with the
LP, QP, and GM models, respectively. When the fitting time
changes, the prediction accuracy of the proposed BSO-BP
model is still better than the other three models. It is evident
from the prediction mean values of different atomic clocks
that the prediction accuracies of PHM clock and Rb-II clock
increase by about 80.4% and 68.5%, respectively, as com-
pared with that of the Rb clock, and do not change with
the change in fitting time and prediction time. In addition,
when the fitting time is the same, the prediction accuracies
of the three atomic clocks for 0.5 hours and 1 hour are
almost unchanged. Therefore, the prediction accuracies of
different atomic clocks do not improve significantly with
an increase in fitting time.

3.5. Stability Analysis of Predicted SCB. The section selects 15
satellite atomic clocks as discussed in the aforementioned
experiments to evaluate the prediction stability of the pro-
posed model. Moreover, the experiment increases a lot of
data to improve the accuracy and reliability of analysis. We
use five groups of clock bias data, i.e., 1-6, 2-7, 3-8, 4-9,

and 5-10 hours, of a day to predict the clock bias of next 1
hour. The residual values of the five groups of prediction
data are counted, and the prediction STD of the LP, QP,
GM, and BSO-BP models by fitting 6 hours are calculated.
In this work, since the STD reflects the degree of deviation
of data, it is considered to be a metric to evaluate the stabil-
ity. In addition, in order to analyze the influence of different
fitting times on the prediction stability, five groups of clock
bias data of 1-12, 2-13, 3-14, 4-15, and 5-16 hours of a day
are used to predict the next 1-hour clock bias. The STD of
the four models fitting 12-hour clock bias is compared with
the STD of fitting 6-hour clock bias.

As shown in Figure 12, the shorter the length of the box,
the more concentrated is the data and more stable is the pre-
diction model. It is evident from Figure 12(a) that the resid-
ual value of BSO-BP model is more concentrated, and the
prediction results are more stable as compared to other
models. The residual values of the BSO model fluctuate
around 0, and the residual values of other models vary sig-
nificantly. For instance, the prediction stability of the GM
model for CO3 is better than that of the BSO-BP model.
However, for other satellites, the prediction stability of the
GM model is much worse than the proposed BSO-BP
model. The prediction stabilities of the QP and LP models
also vary significantly for different satellites. Similar conclu-
sions can be drawn between Figures 12(b) and 12(c).

In addition, for the Rb and Rb-II clocks, the prediction
residuals obtained by using the LP model are far from 0, so
the prediction SCB of the LP model deviates from the true
value critically. For PHM clocks, the prediction SCB of the
GM model largely deviates from the true value, and the
residual value is dispersed, leading to poor prediction stabil-
ity. The stability of the QP model for different atomic clocks
also changes substantially. Therefore, the prediction stability
of the model is influenced by the type of atomic clock.

The box plots of different atomic clocks show that the
residual value of Rb clock changes between the range of
-1.5 ns and 1ns, the residual value of Rb-II clock changes
between the range of -0.4 ns and -0.8 ns, and the residual
value of PHM clock changes between the range of -0.3 ns
and 0.4 ns. Therefore, the stability of PHM clock is better
as compared to Rb-II and Rb clocks.

It is evident from Figure 13 that with an increase in fit-
ting time, the prediction results of different models change
differently. For Rb-II clock, the distance between the predic-
tion residual of the LP model and 0 is very smaller, and the
change in the prediction residual of the QP model is not
obvious, while the degree of concentration of the prediction
residual values of the GM model and the degree of deviation
from 0 are better. The prediction stability of the BSO-BP
model shows small changes and the best prediction stability.

It is evident from Table 4 that the prediction STD of the
proposed BSO-BP model for different types of atomic clocks
is the smallest. When we use the SCB data of 6 hours for pre-
dicting the clock bias of next 1 hour, the prediction stability
of the BSO-BP model improves by approximately 50%, 50%,
and 56.5% as compared with the LP, QP, and GM models,
respectively. With an increase in the fitting time, the predic-
tion stabilities of the LP, GM, and BSO-BP models
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deteriorate gradually; however, the prediction stability of the
QP model improves. It is noteworthy that the stability of the
BSO-BP model is still the best, which improves by approxi-
mately 57.6%, 33.7%, and 64.2% as compared with the LP,
QP, and GM models, respectively. Therefore, the proposed
BSO-BP model has strong stability in the short-term clock
bias prediction that does not change with the fitting time.

From the mean values of different atomic clocks, it is evi-
dent that the stability of PHM clocks is the best for different
models, the stability of Rb-II clock is the second best, and the
stability of the Rb clock is the worst. In addition, the stability

of different atomic clocks does not change with the increase
in fitting time, which is related to the material and physical
properties of different atomic clocks. Therefore, the perfor-
mance of the new generation BDS-3 satellite atomic clocks
is greatly improved as compared with BDS-2.

3.6. Data Validation. To increase the convince of analysis,
we use 6 consecutive days (DOY 164-169, 2020) of SCB data
for accuracy and stability analysis. The first 6 hours and 12
hours of the daily SCB data are used to fit the predicted
SCB of the next 1 hour, and the daily prediction accuracy
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residual distribution of five Rb-II clocks; (c) residual distribution of five PHM clocks.

11International Journal of Aerospace Engineering



is counted to calculate the average value of the 6-day predic-
tion accuracy. The results of prediction accuracy are shown
in Figures 14 and 15.

It can be seen from Figures 14 and 15 that the BSO-BP
model maintains the best prediction accuracy in the 6 con-
secutive days. At the same time, the four models have obvi-
ous differences in the prediction accuracy of different types
of satellite clocks. The prediction accuracy of the PHM clock
is the best, followed by the Rb-II clock, and the Rb clock is
the worst. In general, the prediction accuracy value of the
BSO-BP model for 6 consecutive days is very concentrated,
which indicates that the model is not affected by SCB data
of different dates. Tables 5 and 6, respectively, show the
average prediction accuracy and stability of different clocks.

It can be seen from Table 5 that when fitting 6 hours and
12 hours to predict the next 1-hour clock bias, the prediction
accuracy of the BSO-BP model improves by about 73.4%,
54.5%, and 54.3% and 72.6%, 43.4%, and 86% as compared
with the LP, QP, and GM models, respectively. In addition,
the prediction accuracies of PHM clock and Rb-II clock
improved by more than 47%, as compared with that of the
Rb clock. It can be seen from Table 6 that when fitting 6
hours and 12 hours to predict the next 1-hour clock bias,
the prediction stability of the BSO-BP model improves by
about 50.9%, 50.3%, and 42.4% and 55.2%, 36%, and 77.8%
as compared with the LP, QP, and GM models, respectively.
In addition, the prediction stability of PHM clock and Rb-II
clock improved by more than 54%, as compared with that of
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the Rb clock. This is consistent with the above analysis. There-
fore, according to the 6-day analysis results, it can be seen that
the prediction performance of the new-generation BDS-3
satellite atomic clock is greatly improved compared with that
of the BDS-2.

4. PPP Validation with Predicted Clock

In order to verify the impact of the proposed clock model in
static PPP, FHMJ and LEIJ of IGS stations are selected for
the experiment. The processing strategies of static PPP are
as follows: single BDS system is selected, without iono-
spheric combination; the parameter estimation adopts for-
ward Kalman filtering. The observation file is downloaded
from Crustal Dynamics Data Information System (CDDIS),

and the sampling interval is 30 s. The orbit data adopts
WUM precision orbit product. The DCB (Differential Code
Biases) adopts the Chinese Academy of Sciences (CAS)
product, and the antenna phase center adopts igs14_2186.
The WUM precision clock data of the first 12 hours of the
day (DOY 103, 2021) is used to predict the clock bias of next
1 hour. Predict SCB data is used for static PPP experiment.
Static PPP was experimented with open source GAMP,
and the residuals of every station in E (east), N (north),
and U (up) directions can be calculated by comparing with
the “reference values” which are published on the IGS web-
site. Figures 16 and 17 are the static PPP positioning errors
of FGMJ and LEIJ stations.

It can be seen from Figures 16 and 17 that the position-
ing errors of FFMJ and LEIJ stations can converge in static

Table 4: The statistics of 1-hour average STD of four models based on 6-hour and 12-hour SCB data.

Clock type
6 h 12 h

LP QP GM BSO-BP Mean LP QP GM BSO-BP Mean

Rb 0.166 0.185 0.169 0.076 0.149 0.202 0.125 0.221 0.071 0.155

Rb-II 0.086 0.077 0.102 0.045 0.077 0.097 0.061 0.135 0.054 0.087

PHM 0.047 0.041 0.085 0.031 0.051 0.078 0.056 0.087 0.036 0.064

Mean 0.100 0.101 0.118 0.050 0.125 0.080 0.148 0.053
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Figure 14: The prediction accuracy of 6 days for 1 hour using 6-hour SCB data: (a) residual distribution of five Rb clocks; (b) residual
distribution of five Rb-II clocks; (c) residual distribution of five PHM clocks.
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PPP. In general, the convergence time of FFMJ station is
about 40 epochs in E, N, and U directions, but the GM
model is about 80 epochs in U direction. The convergence
time of the LEIJ station is basically the same as those of
the FFMJ station in E and N directions. But the convergence

time in the U direction is slower which is achieved after 60
epochs. Therefore, the convergence time of the BSO-BP,
LP, QP, and GM models is basically the same, while the con-
vergence time of the E and N directions is better than that of
the U direction. In addition, this paper conducts precision
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Figure 15: The prediction accuracy of 6 days for 1 hour using 12-hour SCB data: (a) residual distribution of five Rb clocks; (b) residual
distribution of five Rb-II clocks; (c) residual distribution of five PHM clocks.

Table 5: The average prediction accuracy for 1 hour for three different types of clocks based on 6-hour and 12-hour SCB data.

Clock type
6 h 12 h

LP QP GM BSO-BP Mean LP QP GM BSO-BP Mean

RB 0.473 0.352 0.339 0.145 0.327 0.428 0.205 0.964 0.107 0.426

RB-II 0.383 0.129 0.115 0.059 0.172 0.189 0.075 0.268 0.045 0.144

PHM 0.104 0.079 0.104 0.050 0.084 0.087 0.058 0.141 0.040 0.082

Mean 0.320 0.187 0.186 0.085 0.234 0.113 0.458 0.064

Table 6: The average STD for 1 hour for three different types of clocks based on 6-hour and 12-hour SCB data.

Clock type
6 h 12 h

LP QP GM BSO-BP Mean LP QP GM BSO-BP Mean

RB 0.253 0.266 0.197 0.154 0.218 0.192 0.153 0.567 0.104 0.254

RB-II 0.159 0.151 0.122 0.052 0.121 0.147 0.083 0.187 0.047 0.116

PHM 0.093 0.084 0.114 0.043 0.083 0.089 0.064 0.111 0.041 0.076

Mean 0.169 0.167 0.144 0.083 0.143 0.100 0.288 0.064
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analysis on the positioning results of the four models, and
the statistical results are presented in Table 7.

As can show in Table 7 that positioning accuracy of the
BSO-BP model is basically within 5 cm in E, N, and U direc-
tions, while MMFJ station is 6.48 cm in E direction. More-

over, positioning accuracy of the LP model can reach
10 cm in the N and U directions, and positioning accuracy
of the E direction can reach 20 cm, so positioning accuracy
of the LP model is poor in E direction. Positioning accuracy
of the QP model can reach 10 cm in the N directions, and

0 20 40 60 80 100 120
−4

−2

0

2

0 20 40 60 80 100 120
−4

−2

0

2

0 20 40 60 80 100 120
−4

−2

0

2

0 20 40 60 80 100 120
−4

−2

0

2

E
N
U

Re
sid

ua
l (

m
)

FFMJ

BSO-BP LP

Epoch

Re
sid

ua
l (

m
)

GM

Epoch

QP

Figure 16: Residuals of the static PPP base on four clock model for FFMJ.
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positioning accuracy of the E and U directions can reach
20 cm. In addition, positioning accuracy of the GM model
is the worst that it can reach 20 cm in E and N directions,
and the U direction can reach 36.54 cm.

Depending on the above analysis, we can know that the
positioning accuracy of the BSO-BP model is better than
the LP, QP, and GM models. In general, the LP model is
preferable to the QP model, and the GM model is the worst.
In the E direction, the positioning accuracy of the BSO-BP
model improves by approximately 64.4%, 21.4%, and
16.8% as compared with the LP, QP, and GM models,
respectively. In the N direction, the positioning accuracy of
the BSO-BP model improves by approximately 65.6%,
63.3%, and 75.9% as compared with the LP, QP, and GM
models, respectively. In the U direction, the positioning
accuracy of the BSO-BP model improves by approximately
49.2%, 74.2%, and 88.7% as compared with the LP, QP,
and GM models, respectively. Therefore, the positioning
accuracy of the BSO-BP model can reach the centimeter
level in E, N, and U directions, and the E and N directions
are greatly improved for the LP, QP, and GM models.

5. Conclusions

Considering the simple structure and poor prediction accu-
racy of the traditional SCB prediction models, we present
the BSO-BP model to predict the SCB. The prediction accu-
racy and stability of the model are further analyzed to eval-
uate the proposed method.

First, we observe that the frequency data is more suitable
for performing predictions using the BP neural network. In
addition, the BP model optimized by using the BSO per-
forms better as compared to the original BP model.

Second, the prediction accuracy of the BSO-BP model
gradually increases with an increase in fitting time. In addi-
tion, when using 6 hours and 12 hours data for predicting
the next 1 hour, the prediction accuracy of the BSO-BP
model improves by approximately 73.4%, 54.5%, and
54.3% and 72.6%, 43.4%, and 86% as compared with LP,
QP, and GM models, respectively.

Third, when using 6-hour and 12-hour SCB data, the
prediction stability of the proposed BSO-BP model improves
by approximately 50.9%, 50.3%, and 42.4% and 55.2%, 36%,
and 77.8% as compared with the LP, QP, and GM models,
respectively.

Four, the analysis of different atomic clocks shows that
the prediction accuracy of the PHM clock and Rb-II clock
improved by more than 47%, as compared with the Rb clock.
Moreover, the prediction stability also improves significantly
as compared with the Rb clock. Therefore, the overall perfor-

mance of the atomic clock based on BDS-3 is better than
BDS-2.

Finally, the positioning accuracy of the BSO-BP model
can reach the centimeter level in E, N, and U directions,
and the E and N directions are greatly improved for the
LP, QP, and GM models.
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