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Autonomous aerial refueling (AAR) has generated great interest in recent years. However, much research has focused on the
vision-based close docking stage; few studies have been conducted on the navigation algorithm for the rendezvous and
following stages. High-precision relative navigation in following stage can provide favourable conditions for successful docking.
Aiming at precise relative navigation in the complex high dynamic environment of aerial refueling rendezvous and following
stages, a two-stage adaptive filtering architecture is exploited in this paper. An adaptive main Kalman filter (AKF) is realized
for ambiguity eliminated GNSS/INS tightly coupled integrated system, and a robust adaptive subfilter is developed for GNSS
individually. Particularly, aiming at the influence of pseudorange observation multipath outliers and state abnormal
disturbances in unmanned air vehicle- (UAV-) tanker proximity, an INS-aided bifactor robust and classified factor adaptive
filtering (IBRCAF) algorithm for single-frequency ambiguity resolution is proposed. Finally, the effectiveness of the algorithm
is verified by the simulation experiments for UAV-tanker. The results indicate that the IBRCAF algorithm can efficiently
suppress the influence of pseudorange multipath gross errors and abnormal state disturbances and greatly raise the success rate
of ambiguity resolution, and the two-stage adaptive filtering algorithm of IBRCAF-AKF can significantly improve relative
navigation performance and achieve centimeter-level accuracy.

1. Introduction

The autonomous aerial refueling (AAR) has played an
important part in the military field, which is considered a
“technical challenge” by the US Air Force [1]. Compared
with manned aerial refueling technology, which has a higher
risk factor and greater difficulty in operation, the unmanned
air vehicle (UAV) technology has greatly reduced opera-
tional costs and risks [2]. There are mainly two methods in
AAR: the boom-and-receptacle refueling system and the
probe-and-drogue refueling system. The operation proce-
dure is different from each other. In the boom-and-
receptacle refueling method, the tanker is an active part that
steers a rigid retractable boom fitted to the rear of the tanker
to a socket installed on the top of UAV; while in the probe-
and-drogue refueling method, the tanker drags a refueling

drogue linked in the end of the flexible hose, and then, the
refueling probe attached on the UAV is controlled to dock
into the drogue. The characteristics of the former method
are that the speed of oil delivery is fast and it is not sensitive
to air turbulence, but the structure of refueling device is
complex and it only fuels one aircraft at a time [3]. Com-
pared to the boom-based refueling method, the structure of
the drogue-based refueling method is simpler and more flex-
ible, which can refuel two or more aircraft at the same time,
but the drogue is susceptible to atmospheric turbulence [4].

The AAR maneuver process is commonly divided into
five stages: rendezvous phase, following phase, docking
phase, refueling phase, and separating phase. In the rendez-
vous and following stage, the UAV flies from several kilome-
ters far away with maneuver flight to following the tanker in
ten-meter distance with level flight; then, the UAV
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approaches the tanker from below and behind and gets
docked with the tanker or the drogue; during the refueling
phase, the fuel oil is pumped from the tanker into the
UAV, and the UAV should try to keep a stationary position
and velocity with the tanker; finally, the separating phase
begins as soon as fuel oil transfer completes, and the UAV
decelerates and becomes detached from the tanker. Since
there is no direct operation of pilots for UAV, a key role in
successful refueling is to estimate the position of the UAV
relative to the tanker very accurately and in real time. In
addition, to ensure safety and operational usefulness, the
navigation strategy must provide high level of integrity. Par-
ticularly, along with UAV-tanker proximity, dynamic mobil-
ity and safety demand that the relative navigation system
meets stringent requirements on accuracy, reliability, and
continuity [5–7].

To meet the requirements in AAR, several instruments
and methods for relative navigation have been pursued.
Most of the previous research in AAR focused on active or
passive visual sensors in close docking stage, which are
mainly interested in two aspects. One is the detection and
tracking of the refueling drogue by the near circular feature
of the inner refueling port [8, 9]; the other is the relative pose
measurement between the UAV and refueling drogue in
close range [10, 11]. The active vision system introduces
obvious features, such as installation of special light sources
or marking points on the drogue to assist visual navigation
[12], while the passive vision system makes no changes to
the drogue, only relying on the characteristics of itself for
detection and positioning [13]. In order to improve the reli-
ability and robustness for AAR, relative navigation architec-
ture based on a multisensor combination system, such as
inertial navigation system (INS), vision-based navigation
(VisNav), global position system (GPS), and infrared search
and track system (IRST), is studied [14–16], which is mainly
concentrated on vision-based navigation in close range or
relative inertial navigation algorithm with low accuracy.
Few studies have been done for the precise relative naviga-
tion algorithm in the rendezvous and following phases,
which is essential for AAR as well.

Generally speaking, there are global navigation satellite
system (GNSS) and INS sensors installed onboard the
UAV and the tanker [17]. So, there are no weight or cost
penalties in expanding their use. However, traditional high
precise relative positioning (RP) of real-time kinematic
(RTK) based on carrier phase observation is limited by the
fixed position of the reference station and limited coverage,
which is difficult to meet the requirement for AAR. Hence,
the RP method based on the moving reference station (also
called kinematic-to-kinematic relative positioning, KKRP)
is used to obtain precise RP results [18, 19]. In addition,
one of the key technologies based on differential carrier
phase is the reliable solution of integer ambiguity. The speed
and quality of ambiguity resolution (AR) directly affect the
accuracy of positioning [20]. There are usually four steps
for AR: least square (LS) or extended Kalman filtering
(EKF) is always utilized to estimate the ambiguity floats
firstly. Then, the least-square ambiguity decorrelation
adjustment (LAMBDA) method is used to search and verify

the integer ambiguity with corresponding covariance matrix.
Thirdly, an integer ambiguity reliability test is performed.
Finally, the exact position solution is obtained with “best”
ambiguity [21]. Among them, improving the accuracy of
ambiguity floats with additional constraints can increase
the success rate of AR significantly. Baseline length con-
straint approaches for enhancing GNSS ambiguity resolution
are studied in [22]. Multivariate constraints for improving
ambiguity resolution success rate of GNSS-based attitude
determination and relative positioning are developed in
[23]. A sequential ambiguity resolution method with a float
solution substitution and double-different iterative correc-
tion is proposed in [24]. Since the GNSS/INS tightly coupled
(TC) integrated system can effectively improve the perfor-
mance of navigation and positioning results, therefore, the
short-term output high-precision position information of
INS can provide prior coordinate information which is used
to assist the rapid solution of GNSS dynamic ambiguity [25].
The improvement in integer ambiguity resolution with INS
aiding for kinematic precise point positioning is revealed by
sufficient theoretical analysis and performance assessment
in [26]. A new inertial-aided ambiguity resolution method
that directly rounds the float ambiguity of the BeiDou
triple-frequency-combined observations is proposed in
[27]. A MEMS-IMU-assisted BeiDou triple-frequency ambi-
guity resolution method in poor satellite geometry and severe
multipath environments is studied in [28]. However, the
fixed efficiency of GNSS ambiguity is also easily affected by
observation gross errors and state predicted outliers, which
directly affect the optimal value of parameter estimation
and further influence the positioning performance [29]. In
the rendezvous and following stages of AAR, the UAV flies
more difficult than normal flight due to the tanker wake tur-
bulence. Particularly, in the UAV-tanker proximity, the
GNSS signal is occluded partially by the tanker, the multipath
effect is enhanced by body reflection, and the state distur-
bance appears by accidental airflow. Thus, the relative navi-
gation performance is reduced due to low success rate and
poor reliability of ambiguity resolution in a complex high
dynamic environment [7, 30]. Therefore, a practical relative
navigation algorithm is important for the rendezvous and
following stages of AAR.

In this contribution, an economical and practical precise
relative navigation scheme is proposed. Conventional tightly
coupled with pseudorange and Doppler observations is
realized on the tanker as moving reference; a two-stage
hierarchical adaptive filtering architecture is operated on
the UAV as rover station. Thus, carrier phase-based
kinematic-to-kinematic precise relative navigation is devel-
oped. Particularly, in order to solve the key issue of ambi-
guity resolution with single-frequency GNSS under the
influence of pseudorange multipath gross errors and model
state abnormal disturbances in the UAV-tanker proximity,
an INS-aided bifactor robust and classified factor adaptive fil-
tering algorithm based on adaptive Kalman filtering of tightly
coupled with eliminated ambiguity parameter is proposed.

The paper is organized as follows. In Section 2, the algo-
rithm models are designed. Firstly, the algorithm overview is
illustrated. Then, the carrier phase-based KKRP model is
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presented. Afterwards, the GNSS/INS tightly coupled inte-
grated system is introduced and an INS-aided bifactor
robust and classified factor adaptive filtering algorithm for
single-frequency AR is elaborated. In Section 3, the algo-
rithm is tested by simulation experiments and results are
discussed in detail. Finally, Section 4 presents our conclu-
sions and future work.

2. The Design of Algorithm Models

2.1. Algorithm Overview. As shown in Figure 1, the relative
position for AAR is the typical KKRP problem, in which
the tanker is the moving reference station, and the UAV is
the rover station. The raw GNSS observations of tanker
including code pseudorange, carrier phase, and Doppler as
well as position and velocity calculated by conventional TC
with pseudorange and Doppler measurements (due to the
limited pages, the conventional TC algorithm is not covered
in this article.) are transmitted to the UAV by data link.
Then, the observations are double-difference (DD) proc-
essed in order to reduce the time and space errors except
for the multipath error and observation noise. Next, the
instantaneous high-precise INS information is used to assist
the DD single-frequency single epoch AR in the subfilter,
which is realized by a bifactor robust and classified factor
adaptive filtering algorithm (see Section 2.4). Afterwards,
the GNSS/INS tightly coupled integrated system by adaptive
Kalman filtering in main-filter is conducted with known
ambiguity parameters (see Section 2.3). Meanwhile, inertial
errors are feedback corrected by filtering estimation param-
eters, and the position, velocity, and attitude of UAV are
output. Finally, the carrier phase-based kinematic-to-
kinematic precise relative position is realized with known
ambiguity (see Section 2.2).

2.2. The Carrier Phase-Based KKRP Model. In the GNSS-
based relative position, the code pseudorange, carrier phase,
and Doppler observations are used to consist DD observa-
tion equations as follows:

Δ∇Pij
ur = Δ∇ρijur + Δ∇Tij

ur + Δ∇Iijur + εijΔ∇P,ur ,

Δ∇Φij
ur = Δ∇ρijur + Δ∇Tij

ur − Δ∇Iijur + λΔ∇N + εijΔ∇Φ,ur ,

−λΔ∇Dij
ur = Δ∇ _ρijur + Δ∇ _T

ij
ur + Δ∇_Iijur + εijΔ∇D,ur ,

ð1Þ

where Δ∇ denotes the symbol of DD operator; subscripts u
and r represent the moving reference and rover station;
superscripts i and j are the observed satellites consisting of
DD; P, Φ, and D are code pseudorange, carrier phase (in dis-
tance), and Doppler observations, respectively. ρ and _ρ are
the geometric distance and its changing rate between station
and satellite. T , I, and _T , _I represent tropospheric delay, ion-
ospheric delay, and their changing rates. λ and N represent
the carrier wavelength and initial integer ambiguity; εP, εΦ,
and εD are the residual errors including multipath and mea-
surement noises of code pseudorange, carrier phase, and
Doppler observations. For a short baseline, the ionospheric

delay and tropospheric delay in DD are too small to be
neglected.

Linearing equation (1) with baseline vector and its
changing rate as unknown parameter, thus, it can be written
as

Δ∇Pij
ur = − Ιir − Ιjr

� �
⋅ bur + εijΔ∇P,ur ,

Δ∇Φij
ur = − Ιir − Ιjr

� �
⋅ bur + λ ⋅ Δ∇Nij

ur + εijΔ∇Φ,ur ,

−λ ⋅ Δ∇Dij
ur = − Ιir − Ιjr

� �
⋅ _bur + εijΔ∇D,ur ,

ð2Þ

where bur and _bur are the baseline vector and velocity vector;
Ιir is the unit direction vector between satellite and rover cal-
culated by Iir = ðri − rrÞ/kri − rrk.

If the DD integer ambiguity Δ∇Nij
ur can be solved on fly

accurately, the high-precision baseline vector and velocity
vector can be determined by carrier phase and Doppler
observations [31].

2.3. GNSS/INS Tightly Coupled Model. For the GNSS/INS
tightly coupled navigation system, the system model is
derived from INS instruments, and the observation model
is composed of the differences between GNSS DD observa-
tions and INS-derived counterparts. The integrated system
is implemented by adaptive Kalman filtering with feedback
correction to INS sensor biases.

2.3.1. System Model. The system state-space model depends
on the INS error model and system error description of iner-
tial sensors. The integrated system model can be described as
the following psi-angle error equations [32] without consid-
ering satellite system errors:

δ_r = −ωn
en × δr + δv,

δ _v = − 2ωn
ie + ωn

enð Þ × δv − ψ × fn +Cn
b∇

b,
_ψ = − ωn

ie + ωn
enð Þ × ψ −Cn

bεb,

8>><
>>: ð3Þ

where the subscripts i, e, n, and b represent the inertial,
Earth, navigation (east-north-up), and body frame, respec-
tively; δr, δv, and ψ represent the position, velocity, and
attitude angle error vectors, respectively; fn is the specific
force vector; ωn

ie is the Earth rotation rate with respect to
the inertial frame; ωn

en is the rotation rate of the navigation
frame with respect to Earth. Cn

b is the transformation
matrix from body frame to navigation frame. ∇b repre-
sents the accelerometer error vector; εb represents the gyro
drift error vector.

Accurate models of accelerometer and gyro errors are
important to improve the navigation performance, which
are augmented into the filtering states for real-time parame-
ter estimation. In this paper, the accelerometer error is mod-
eled as first-order Gauss-Markov process; gyro drift error is
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modeled as random constant and first-order Gauss-Markov
process [33] as follows.

_∇a = −
1
Ta

∇a + ωa,

ε = εb + εr + ωg,
ð4Þ

_εr = −
1
Tg

εr + ωr , ð5Þ

where εb is the random constant of gyro error with _εb = 0; Ta
and Tg are the correlation time of the random process of
accelerometer and gyro, respectively; ωa, ωg, and ωr are
the driving white noise.

Therefore, the system state equation can be expressed as
follows:

_X tð Þ = F tð ÞX tð Þ +G tð ÞW tð Þ, ð6Þ

where F is the state coefficient matrix; G is the noise coeffi-
cient matrix. W is the noise vector. X is the state vector,
which includes 9 navigation error states and 9 inertial sensor
bias errors, written as

X = δrEδrNδrUδvEδvNδvUφEφNφUεbxεbyεbzεrxεryεrz∇ax∇ay∇az

� �T
:

ð7Þ

2.3.2. Measurement Model. The measurement model
describes the relationship between the measurements and
the unknown parameters. The differences between GNSS
DD code pseudorange, carrier phase and Doppler observa-
tions, and INS predicted satellite-to-ground distance and rel-
ative velocity consist the measurements. Therefore, the
measurement equations are written as follows:

∇ΔP−∇ΔPINS =Aa ⋅ Ce
n ⋅ δr + ε∇ΔP,

∇ΔΦ−∇ΔPINS − λ ⋅ ∇ΔN =Aa ⋅ Ce
n ⋅ δr + ε∇ΔΦ

,
−λ ⋅ ∇ΔD−∇ΔvINS =Aa ⋅ Ce

n ⋅ δv + ε∇ΔD,
ð8Þ

where PINS is the INS predicted satellite-to-ground distance cal-

culated by PINS =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxINS − xsÞ2 + ðyINS − ysÞ2 + ðzINS − zsÞ2

q
;

Table 1: The trajectory parameters of the UAV.

Flight phase Flight action Duration (s) Acceleration (m/s2) Attitude (°/s) (roll, pitch, yaw angular rate)

1 Level flight 10 [0,0,0] [0,0,0]

2 Preturn 10 [0,0,0] [-0.5,0,0]

3 Turn 45 [0,0,0] [0,0,-2]

4 Level off 10 [0,0,0] [0.5,0,0]

5 Level flight 65 [0,0,0] [0,0,0]

6 Pull up 40 [0,0.1,0] [0,0.01,0]

7 Climb up 80 [0,0,0] [0,0,0]

8 Level off 40 [0,-0.1,0] [0,-0.01,0]

9 Level flight 900 [0,0,0] [0,0,0]
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Figure 3: The trajectories of the tanker and the UAV.
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vINS is the relative velocity between rover station and satellite cal-
culated by vINS =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _xINS − _xsÞ2 + ð _yINS − _ysÞ2 + ð _zINS − _zsÞ2

q
;

Aa is the design matrix calculated by −ðIiINS − IjINSÞ; Ce
n is

the transformation matrix from navigation frame to Earth
frame. Write the measurement equations into matrix form
as follows:

Z tð Þ =H tð ÞX tð Þ +V tð Þ, ð9Þ

where Z is the measurement vector; H is the measurement
model coefficient matrix; V is the measurement noise matrix.

2.3.3. Adaptive Kalman Filtering Model. Since the integrated
navigation performance of GNSS/INS is always affected by
the abnormal predicted states such as UVA maneuvering
or wrong ambiguity fixed values in GNSS, thus, the adaptive
Kalman filtering algorithm is used to improve the reliability
of the TC integrated system. The estimation of state param-
eters can be expressed as
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X̂k,k = X̂k,k−1 +Kk Zk −HkX̂k,k−1
� �

, ð10Þ

Kk =
1
αk

Pk,k−1HT
k Hk

1
αk

Pk,k−1HT
k + Rk

� �−1
, ð11Þ

where X̂k,k−1 and Pk,k−1 are the predicted state vector and its
covariance matrix. Rk is the measurement covariance
matrix. Kk is the adaptive filtering gain matrix, and αk is
the adaptive factor. The adaptive factor is constructed by
Huber weight function [34] as follows:

αk =
1 Δ ~Mk

		 		 ≤ k0,
k0

Δ ~Mk

		 		 Δ ~Mk

		 		 > k0,

8>><
>>: ð12Þ

where k0 is the threshold constant, which is valued at
0.85~3.0 [35]. Δ ~Mk is the test statistic, which is calculated as

ΔMk =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VT

kVk

tr QVk

� � ,
s

ð13Þ

where Vk is the innovation vector calculated by Vk =Hk

X̂k,k−1 − Zk and QVk
is its covariance matrix calculated by

QVk
=HkPk,k−1HT

k + Rk.

2.4. INS-Aided Bifactor Robust and Classified Factor
Adaptive Filtering AR Model. As mentioned in Section 2.1,
accurate ambiguity parameters are the premise of high pre-
cision positioning for KKRP. However, it is difficult to
resolve with a single-frequency carrier phase, especially in
complex high dynamic environments. Since INS can provide
instantaneous high precision and continuous positioning
ability with the GNSS/INS TC integrated system, the accu-
racy of ambiguity floats solved by INS-aided can be
improved, which can constrain the ambiguity search space
and improve the efficiency of AR.

2.4.1. Single-Epoch INS-Aided GNSS AR Filtering Model. The
system model is constructed by GNSS only with a constant
acceleration (CA) kinematic model, and the carrier phase
ambiguity parameters are modeled as a random walk
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process. The state vector is defined by

X = δx, δy, δz, δvx , δvy, δvz , δax, δay , δaz , Δ∇N1, Δ∇N2,⋯,Δ∇Nm

� �T ,
ð14Þ

where δx, δy, δz, δvx, δvy, δvz , δax , δay, and δaz are the com-
ponents of the position, velocity, and acceleration increment,
respectively. Δ∇Ni ði = 1, 2,⋯,mÞ represent the DD carrier
phase ambiguities.

In the INS-aided AR process, the DD pseudorange and
carrier phase observation equations are linearized at the
INS-derived position. Moreover, the INS-derived position
is used to construct additional coordinate constraint by a
virtual observation. Therefore, the observation equations
can be written as [36]

Δ∇P − Δ∇PINS

Δ∇Φ − Δ∇PINS

Xins −X0

2
6664

3
7775 =

Aa 0m×3 0m×3 0m×m

Aa 0m×3 0m×3 λIm×m

I3×3 03×3 03×3 03×m

2
6664

3
7775

⋅X +

εΔ∇P
εΔ∇ϕ
εins

2
6664

3
7775,

ð15Þ

where Xins represents the INS-derived position; X0 repre-
sents the initial position; I is the identity matrix; εins is the
observation noise of the INS system obtained by the tightly
coupled filtering prior equation.

Discrete state equations and observation equations are as
follows:

Xk =Φk,k−1Xk−1 +Wk−1,
Zk =HkXk−1 +Vk,

ð16Þ

where Φk,k−1 is the one-step state transition matrix, which is
defined by
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Figure 12: The ratio means of various schemes (Data 1–4).

Table 2: The success rates of various algorithms for Data 1–4.

Schemes Data 1 Data 2 Data 3 Data 4

WLS 57.5 43.6 — —

EKF 88.1 73.7 84.0 81.1

IEKF 94.4 81.3 87.5 84.2

IBRKF — 94.6 89.2 87.9

IBRCAF — — 93.7 93.8

“—” means no use of the algorithm for the data.
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Figure 13: The baseline errors of various algorithms (Data 1).
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Figure 14: The velocity errors of various algorithms (Data 1).
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Φk,k−1 =
F9×9 09×m
0m×9 Im×m

" #
,

F9×9 =
I3×3 TI3×3 0:5T2I3×3
03×3 I3×3 TI3×3
03×3 03×3 I3×3

2
664

3
775:

ð17Þ

Wk−1 is the system noise vector, whose covariance
matrix is Qk−1. They are constructed as follows:

Wk−1 = 0, 0, 0, 0, 0, 0, ωax
, ωay

, ωaz
, ωΔ∇N1

,⋯,ωΔ∇Nm

h iT
,

ð18Þ

Qk−1 = diag 0, 0, 0, 0, 0, 0, Tσ2ax , Tσ
2
ay
, Tσ2az , Tσ

2
Δ∇N1

,⋯,Tσ2
Δ∇Nm


 �
,

ð19Þ
where σax

= σay = σaz = σa and σΔ∇Ni
= σΔ∇Nði = 1,⋯,mÞ are

the standard deviation of acceleration process noise and

DD carrier phase ambiguity process noise, respectively. T
is the time interval.

Zk is the observation vector; Hk is the observation
matrix; Vk is the observation noise vector. Among them,
the covariance matrix of Vk is Rk.

Here, the random function model based on the elevation
angle is used for Rk. The variance of undifferenced observa-
tion is calculated as [37]

σ2 = σ2
0 +

σ20
sin2 elð Þ , ð20Þ

where σ0 is the standard deviation factor, which is valued
according to the type of observation.

2.4.2. Bifactor Robust and Classified Factor Adaptive Filtering
for AR. In the UAV-tanker proximity, the multipath effect
due to the strong reflection and state abnormal disturbance
by accidental airflow reduce the accuracy of ambiguity floats,
which affect the success rate of ambiguity fixing greatly.
Therefore, the bifactor robust and classified factor adaptive
filtering for AR is developed.
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As shown in Figure 2, the Kalman filtering solution is
obtained with the code pseudorange and carrier phase
observations update sequentially; then, the residual statistic
and state discrepancy statistic are calculated for testing the
outliers in the observations and predicted states. If the sta-
tistics are both smaller than the thresholds, it means that
the observations and predicted states are acceptable. Oth-
erwise, if the statistics are larger than the threshold, robust
bifactor and classified adaptive factors are calculated.
Then, covariance matrices are reconstructed by the equiv-
alent weight matrices and updated in the filter. Thus, the
robust adaptive filtering solution is obtained. Finally, the
ambiguity floats are fixed with the LAMBDA method
and ratio test for reliability verification. If the fixed solu-
tion passes the ratio test, the fixed solution is adopted.
Otherwise, the float solution is used.

(1) Sequential Kalman filtering

Assuming that the observations are not related to each
other, the classified observations sequential Kalman filtering
parameter estimation method is employed. For one thing,
sequential processing can improve the computational effi-
ciency as well as the stability of numerical calculation; for
another, it enables to detect the outliers in individual mea-
surement channels.

In the sequential Kalman filtering, the time update step
is as follows:

X̂k,k−1 =Φk,k−1X̂k−1,k−1,

Pk,k−1 =Φk,k−1Pk−1,k−1ΦT
k,k−1 +Qk−1:

ð21Þ

The measurement update steps are then processed with
code pseudorange and carrier phase observations sequentially.

Firstly, the measurement update steps are processed with
DD code pseudorange and INS virtual observations.

X̂k,k1 = X̂k,k−1 +Kk1 Zk1 −Hk1X̂k,k−1
� �

,

Kk1 = Pk,k−1HT
k1 Hk1Pk,k−1HT

k1 + Rk1
� �−1,

Pk,k1 = I −Kk1Hk1ð ÞPk,k−1,

ð22Þ

where

Zk1 =
Δ∇P − Δ∇PINS

Xins −X0

" #
,

Hk1 =
Aa 0m×3 0m×3 0m×m

I3×3 03×3 03×3 03×m

" #
,

Rk1 =
RΔ∇P  

  Rins

" #
:

ð23Þ
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Figure 16: The baseline errors of various algorithms (Data 2).
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Secondly, the measurement update step is processed
with DD carrier phase observations.

X̂k,k2 = X̂k,k1 +Kk2 Zk2 −Hk2X̂k,k1
� �

,

Kk2 = Pk,k1HT
k2 Hk2Pk,k1HT

k1 + Rk2
� �−1,

Pk,k2 = I −Kk2Hk2ð ÞPk,k1,

ð24Þ

where Zk2 = ½Δ∇Φ − Δ∇PINS�, Hk2 = ½Aa 0m×3 0m×3 λ
Im×m� and Rk2 = ½RΔ∇ϕ�.

(2) Design of robust bifactor

Considering that the code pseudorange multipath error
is usually much larger than the carrier phase multipath
error. The code pseudorange multipath gross errors influ-
ence the accuracy of ambiguity float solution greatly. There-
fore, it is necessary to conduct robust processing for code
pseudorange observations with multipath gross errors.

Due to the correlation of GNSS double-difference obser-
vations, the robust bifactor is calculated by the IGGIII model
[38] as follows:

rij,k1 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rii,k1 ⋅ rjj,k1

p , ð25Þ

with

rii,k1 =

1, ~vi,k1
		 		 ≤ c0,

c0
~vi,k1
		 		 c1 − ~vi,k1

		 		
c1 − c0

 !2

, c0 < ~vi,k1
		 		 ≤ c1,

10−12, ~vi,k1
		 		 > c1,

8>>>>>><
>>>>>>:

ð26Þ

where ~vi,k1 is the standardized residual statistic; c0 and c1 are
the threshold parameters, which are valued as c0 = 1:0 ~ 2:5
and c1 = 3:5 ~ 8:0.

Therefore, the equivalent observation covariance matrix
is given by the corresponding observation equivalent weight
matrix.

Rk1 =

p11,k1r11,k1 p12,k1r12,k1 ⋯ p1m,k1r1m,k1

p21,k1r21,k1 p22,k1r22,k1 ⋯ p2m,k1r2m,k1

⋮ ⋮ ⋱ ⋮

pm1,k1rm1,k1 pm2,k1rm2,k1 ⋯ pmm,k1rmm,k1

2
666664

3
777775

−1

,

ð27Þ

where pij,k1 represents the DD code pseudorange observation
vector weight matrix element at k time.
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Figure 17: The velocity errors of various algorithms (Data 2).
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(3) Design of classified adaptive factors

To reduce the influence of dynamic model disturbances
on filtering results, classified adaptive factors are introduced
to adjust the dynamic model real-timely. The state parame-
ters are classified into two categories, the first class includes
the position, velocity, and acceleration that are not always
reliable due to the aircraft maneuvering motion. The second
class includes the DD carrier phase ambiguities that are reli-
able when there are no cycle slips.

Therefore, the classified adaptive factors are calculated as

γk =
γk1  

  γk2

" #
, ð28Þ

with

γki =
1, Δ~Xki

		 		 ≤ c2,
c2

Δ~Xki

		 		 , Δ~Xki

		 		 > c2,

8><
>: ð29Þ

where i represents classification type; Δ~Xki is the state dis-
crepancy statistic of corresponding class [38]; c2 is the regu-
lation factor, and the value is usually 0.85~3.0.

Therefore, the equivalent predicted state covariance
matrix is provided by corresponding equivalent weight
matrix ΣXk,k−1

, as [39]

Pk,k−1 = γk1/2 ⋅ ΣXk,k−1
⋅ γk1/2

h i−1
: ð30Þ

Finally, Rk1 and Pk,k−1 are used to update the Rk1 and
Pk,k−1 in the filtering (Equation (22)). Therefore, the accurate
ambiguity floats are obtained. Then, the LAMBDA method
is adopted to fix the ambiguities and the ratio test is used
to check the reliability.

3. Simulation Experiment and Discussion

3.1. Simulation Conditions. In order to verify the feasibility
of the algorithm proposed, simulation experiment has been
made using Matlab between the tanker and UAV for aerial
refueling from rendezvous to following stage. The simula-
tion conditions are set as follows:
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(1) Set the gyro error with a constant bias 1°/h. The cor-
relation time constant of random process is
1500 ppm, and driving white noise is 0.01°/h. The
correlation time constant of random process for
accelerometer is 4000 ppm, and driving white noise
is 0.3mgm/s2. The frequency of INS is 200Hz

(2) Set the standard deviation of GNSS code pseudor-
ange with 0.37m, carrier phase with 0.01m, and
Doppler with 0.01m/s. The frequency of GNSS is
1Hz. The cutoff degree is 25°

(3) The tanker and UAV fly level from the initial posi-
tion [118.00014°, 31.73087°, 7010.0] and
[117.94924°, 31.75862°, 6913.25] with a velocity of
[0, 100m/s, 0] in the body coordinate frame and atti-
tude of [0, 0, 0] and [0, 0, 90°] in the navigation
frame, respectively. The tanker keeps flying level in
the designated airspace, while the UAV is
approaching from 4.5 km away to 50m with maneu-
ver flight firstly and then flying level following the
tanker. The trajectory parameters of the UAV are
shown in Table 1. The trajectories of the tanker
and the UAV are shown in Figure 3

(4) The GNSS observations are simulated based on B1
frequency with actual BDS satellite ephemeris. The
skyplot of visible satellites simulated is shown in

Figure 4. The Ratio threshold is valued 3 in the suc-
cess rate reliability test

3.2. Simulation Results and Discussion

3.2.1. The Performance of Various Algorithms for AR. In
order to evaluate the AR effects with different algorithms,
three indicators of ratio value, ADOP value, and empirical
success rate PSE are defined, respectively, as follows:

ratio = Ωsec
Ωmin

, ð31Þ

where Ωsec and Ωmin are the suboptimal and optimal qua-
dratic form of ambiguity residual determined in LAMBDA.

ADOP =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det QX∧a

� �q� �1/m
, ð32Þ

where QX̂a
is the covariance matrix of ambiguity floats; m is

the number of ambiguity floats.

PSE =
number of correctly f ixed epochs

total number of epochs : ð33Þ

In order to simulate the multipath gross errors caused by
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Figure 19: The baseline errors of various algorithms (Data 3).
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the strong reflection effect and state outliers emerged by air-
flow interference in UAV-tanker proximity, the data is proc-
essed as follows to test the various algorithms for AR.

Data 1. Original data.
Data 2. Gross errors of 5m, 10m, 20m, and 40m are

added to the pseudorange observations randomly to simu-
late multipath errors at epochs from 200 s to 210 s, 500 s to
510 s, 800 s to 810 s, and 1100s to 1110s, respectively.

Data 3. Velocity error of 5m/s is added to the velocity
predicted parameters to simulate kinematic model abnor-
mality at epochs from 400 s to 410 s and 600 s to 610 s.

Data 4. Pseudorange observation gross errors of 20m
and velocity errors of 5m/s are added simultaneously at
epochs from 300 s to 310 s and 700 s to 710 s.

The following four schemes are performed for AR,
respectively.

Scheme 1. Weighted least square algorithm (WLS).
Scheme 2. Extend Kalman filtering algorithm (EKF).
Scheme 3. INS-aided extend Kalman filtering algorithm

(IEKF).
Scheme 4. INS-aided bifactor robust Kalman filtering

algorithm (IBRKF).
Scheme 5. INS-aided bifactor robust and classified fac-

tors adaptive filtering algorithm (IBRCAF).
The test thresholds are taken as the empirical value of

c0 = 1:5, c1 = 4:5, and c2 = 2:0.

Firstly, the performances of WLS, EKF, and IEKF algo-
rithms for AR are compared with Data 1. As shown in
Figures 5 and 6, the efficiency of AR with EKF is better than
the WLS method, which is owing to both the system model
and observation model established in dynamic conditions.
Moreover, as shown in the subgraph of Figure 5, the ratio
values of IEKF are greater than the test threshold, whereas
they are smaller with WLS and EKF in comparison to IEKF.
The ratio means are 4.35, 6.21, and 13.03 for WLS, EKF, and
IEKF, respectively. The ratio mean is improved by 109.8%
with INS-aided in comparison to without INS-aided. The
ADOP value is decreased obviously by INS-aided as well.
Those are benefit from the improvement of accuracy of
ambiguity floats and reduction of research space of ambigu-
ity. The success rates are 57.5%, 88.1%, and 94.4% of WLS,
EKF, and IEKF for AR, respectively, in which the success
rate is improved by 7.2% with INS-aided. Hence, the prior
INS-derived position provides a useful constraint to enhance
the probability of rightly fixing ambiguity. In addition, since
the accuracy of ambiguity floats is closely relative to the
pseudorange precision and INS-derived position precision,
the ADOP value is further analysed with different pseudor-
ange precisions and INS-derived position precisions at
epoch 300 s. As shown in Figure 7, the ADOP value
increases obviously as the pseudorange precision decreases
with the WLS algorithm. However, they increase gently with
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Figure 20: The velocity errors of various algorithms (Data 3).
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EKF and IEKF methods, which can obtain higher precision
floats in a dynamic environment. As shown in Figure 8,
AR performance with IEKF is better than EKF when INS-
derived position precision is within 1.5m. At this moment,
the INS-derived position can play a positive role of coordi-
nate constraint. Otherwise, the INS-aided effect becomes
worse [27].

Aiming at the multipath outliers in the observations in
the UAV-tanker proximity, the WLS, EKF, IEKF, and
IBRKF algorithm effects are compared with Data 2. As
shown in Figure 9, the ratio values reduce greatly at the
epochs of the outliers appearing without a robust algorithm
so as to decrease the success rate of AR. In the subgraph of
Figure 9, it can be seen that the ratio values calculated by
the IBRKF algorithm remain larger than the test threshold
at the epochs from 800 s to 810 s when 20m gross error is
added, which is obviously superior to the other methods.
The same results can be achieved when gross errors of differ-
ent magnitudes are added. The ratio means are 3.26, 6.11,
9.21, and 12.11, and the success rates are 43.6%, 73.7%,
81.3%, and 94.6% for the four algorithms, respectively.

Aiming at the state predicted abnormities with the
maneuvering or airflow interference, the EKF, IEKF, IBRKF,
and IBRCAF algorithm effects are compared with Data 3. As
shown in Figure 10, the ratio values decrease significantly at
the epochs of the state abnormities emerging except for the
IBRCAF algorithm. Furthermore, it can be seen in the sub-
graph of Figure 10; the IBRCAF algorithm can produce a
good adjustment effect at the epochs from 600 s to 610 when
there are moderate deviations in the state predicted parame-
ters. The ratio means are 6.98, 7.92, 9.31, and 12.43, and the
success rates are 84.0%, 87.5%, 89.2%, and 93.7% for the four
algorithms, respectively.

Furthermore, in order to test the full performance of the
IBRCAF algorithm for AR, the EKF, IEKF, IBRKF, and IBR-
CAF algorithm effects are compared with Data 4. As shown
in Figure 11 and its subgraph, the IBRCAF algorithm can
keep better performance for AR than other algorithms in
the presence of the observation outliers and state predicted
abnormities simultaneously. The ratio means are 6.01, 7.31,
8.77, and 12.17, and the success rates are 81.1%, 84.2%,
87.9%, and 93.8% for the four algorithms, respectively.
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Figure 21: The RMS errors of baseline and velocity of various algorithms for Data 3.
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The ratio means of various schemes for Data 1–4 are
shown in Figure 12. And the success rates of various algo-
rithms for Data 1–4 are shown in Table 2.

3.2.2. The Performance of Two-Stage Adaptive Filtering for
RP. In order to verify the two-stage filtering performance
for RP, the following ten algorithms are conducted for RP,
respectively. The data are the same with Section 3.2.1.

Algorithm 1a. Weighted least square for AR and
standard Kalman filtering for TC (WLS-SKF).

Algorithm 1b. Weighted least square for AR and
adaptive Kalman filtering for TC (WLS-AKF).

Algorithm 2a. Extend Kalman filtering for AR and
standard Kalman filtering for TC (EKF-SKF).

Algorithm 2b. Extend Kalman filtering for AR and
adaptive Kalman filtering for TC (EKF-AKF).

Algorithm 3a. INS-aided extend Kalman filtering for AR
and standard Kalman filtering for TC (IEKF-SKF).

Algorithm 3b. INS-aided extend Kalman filtering for AR
and adaptive Kalman filtering for TC (IEKF-AKF).

Algorithm 4a. INS-aided bifactor robust Kalman filtering
for AR and standard Kalman filtering for TC (IBRKF-SKF).

Algorithm 4b. INS-aided bifactor robust Kalman filter-
ing for AR and adaptive Kalman filtering for TC (IBRKF-
AKF).

Algorithm 5a. INS-aided bifactor robust and classified
factor adaptive filtering for AR and standard Kalman filter-
ing for TC (IBRCAF-SKF).

Algorithm 5b. INS-aided bifactor robust and classified
factor adaptive filtering for AR and standard Kalman filter-
ing for TC (IBRCAF-AKF).

Firstly, Algorithms 1a–3b are adopted for Data 1. As
shown in Figures 13 and 14, compared with WLS-SKF and
EKF-SKF algorithms, the baseline error and velocity error
decrease with the IEKF-SKF algorithm, which are owing to
the success rate of AR increasing with the IEKF algorithm.
Compared with WLS/EKF/IEKF-SKF, the baseline error
and velocity error show minor fluctuations with the WLS/
EKF/IEKF-AKF algorithms. Particularly, in the presence of
maneuvering of UAV in the rendezvous phase, the velocity
error increases obviously with the SKF algorithm at epoch
of 20 s, 65 s, 180 s, and 300 s due to the changing of flight
state parameters. However, the phenomenon is improved
greatly with the AKF algorithm, which can adaptively adjust
the proportion of the abnormal state estimation by model
deviation. The RMS errors of baseline and velocity of various
algorithms are shown in Figure 15. Compared with IEKF-
SKF, the RMS errors of baseline and velocity with the
IEKF-AKF algorithm are improved by 11.11% and 30.76%,
respectively.

Algorithms 1a–4b are utilized for Data 2. As shown in
Figures 16 and 17, the baseline error and velocity error
increase rapidly at the epochs in the presence of gross errors
with the WLS/EKF/IEKF algorithms. Among them, the per-
formance of WLS is the worst, which mainly depends on the
quality of observations. Furthermore, the errors obviously
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Figure 22: The baseline errors of various algorithms (Data 4).
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increase as the magnitude of gross errors increases. How-
ever, the IBRKF algorithm has a strong ability to resist the
gross errors of different magnitudes. The maximum errors
of baseline and velocity of the IBRKF-AKF algorithm are
0.76m and 0.08m/s, which maintain good performance in
the measurement gross error environment. The RMS errors
of baseline and velocity of various algorithms are shown in
Figure 18.

Algorithms 2a–5b are used for Data 3. As shown in
Figures 19 and 20, the baseline error and velocity error
increase significantly in the presence of state predicted out-
liers at epoch of 400~410 s and 600~610 s without adaptive
adjustment. However, the IBRCAF-AKF algorithm can
effectively adjust the contribution of state outliers and model
deviation in the two-stage filter. The maximum errors of
baseline and velocity of the IBRCAF-AKF algorithm are
0.55m and 0.05m/s. In addition, it can be found that the
IBRKF algorithm is inability for state abnormalities, which
is insufficient performance in the high dynamic environ-
ment. The RMS errors of baseline and velocity of various
algorithms are shown in Figure 21.

Furthermore, the performance of the IBRCAF-AKF
algorithm is tested with Data 4. As shown in Figures 22
and 23, the baseline error and velocity error of the
IBRCAF-AKF algorithm can maintain high precision level
in the presence of observation gross errors and state pre-
dicted abnormities simultaneously. The smoother error
curves are achieved than the other algorithms. The maxi-

mum errors of baseline and velocity of the IBRCAF-AKF
algorithm are 0.45m and 0.06m/s. The RMS errors of base-
line and velocity are 0.056m and 0.009m/s. The RMS errors
of baseline and velocity of various algorithms are shown in
Figure 24. The satisfactory results are owing to two main
reasons. For one thing, the high success rate of AR with
the IBRCAF algorithm is obtained in complex conditions;
for another, the adaptive TC algorithm with correctly fixing
ambiguity parameters provides a precision INS-derived
position. Hence, the IBRCAF-AKF algorithm is well applica-
ble for relative position in the complex high dynamic envi-
ronment in rendezvous and following stage in the AAR.

4. Conclusion

High precision relative navigation based on the GNSS/INS
integrated system is one of the key technologies for AAR
mission. A reliable and continuous AR algorithm is the pre-
requisite for high-precision positioning using carrier phase
observations. However, the ambiguity fixing efficiency is
greatly affected by code pseudorange multipath observation
gross errors and model state abnormal disturbances during
following stage, whose accuracy and reliability are critical
for docking mission. In addition, short-term high-precision
INS-derived position fused by the GNSS/INS TC integrated
system can provide favourable prior knowledge for AR.
Moreover, the parameter estimation method of the GNSS/
INS TC integrated system is important for the precision of
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Figure 23: The velocity errors of various algorithms (Data 4).
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INS-derived position as well. Therefore, a novel two-stage
adaptive filtering-based GNSS/INS TC precision relative
navigation algorithm for AAR is studied in this paper. Par-
ticularly, an IBRCAF algorithm for AR is developed.
According to the theoretical analysis and numerical simula-
tion results, the following conclusions can be drawn:

(1) Compared with WLS and EKF, the IEKF algorithm
can decrease the ambiguity search space and
improve the accuracy of ambiguity floats effectively
so as to raise the success rate of AR. The success rate
of the IEKF algorithm without outliers is improved
by 64.2% and 7.2% compared with WLS and EKF,
respectively. Hence, the INS-derived position can
provide a helpful prior coordinate constraint for
AR. However, the INS-aided effect reduces as the
INS-derived position precision decreases

(2) Compared with WLS, EKF, and IEKF, the IBRKF
algorithm can suppress the influence of observation
gross errors, except for state-predicted outliers.
However, the IBRCAF algorithm can reduce the
influence of observation outliers and state predicted
abnormalities simultaneously, which is superior to

the other methods in a UAV-tanker proximity
environment

(3) Compared with IEKF-SKF, the IEKF-AKF algorithm
can obtain smoother error curves with higher preci-
sion of baseline and velocity results, which can adap-
tively adjust the model predicted state deviation. The
means of baseline and velocity errors of the IEKF-
AKF algorithm are within 10 cm and 2 cm/s under
normal conditions

(4) Compared with IEKF-AKF and IBRKF-AKF, the
IBRCAF-AKF algorithm can improve the relative
positioning accuracy significantly in a complex high
dynamic environment in the rendezvous and follow-
ing stages in AAR. It obtains centimeter-level accu-
racy, which provides a favourable condition for
further docking mission in AAR

With the development of the GNSS system and sensors,
a multifrequency, multiconstellation, and multisensor fusion
method may provide a new idea for AAR; the future work
will focus on the further study of the GNSS/INS/MV inte-
grated navigation and high-precision data fusion algorithm
for the whole AAR mission.
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