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Aiming to address the problem of unknown dynamic target trajectory prediction and search path optimization in unmanned
aerial vehicle (UAV) swarm path planning, this paper proposes a target search algorithm based on a modified target
probability map (TPM). First, using the TPM, the proposed algorithm generates a high-probability distribution region of a
target with directionality to fit the target trajectory and realizes the trajectory prediction of an unknown dynamic target. Then,
the distributed ant colony (ACO) algorithm and the artificial potential field (APF) algorithm are combined to generate and
optimize the UAV swarm search result and return path with the goal of maximizing task execution efficiency. Finally, the
Monte Carlo simulation method is used to analyze the effectiveness of the proposed algorithm, and the results are evaluated
from five aspects, including the number of targets captured. The simulation results show that under the condition of an
unknown dynamic target trajectory, the average target captured rate and average unknown region search rate of the MTPM
method were higher than that of the traditional TPM method, and the performance was improved by 14.6% and 10.7%, respectively.

1. Introduction

In an increasingly complex battlefield environment, recon-
naissance and strike of targets in unknown battlefield areas
are important means of war. Unmanned aerial vehicles
(UAVs) play an increasingly important role in many fields,
including reconnaissance, fire strikes, and electromagnetic
interference, and can effectively reduce war losses and
casualties. However, due to the limited load capacity and
flight capacity of a single UAV, when performing large-
scale combat missions, multiple UAVs have been commonly
used to carry various types of sensors and loads to establish a
wireless sensor network [1], which can improve the combat
efficiency through cooperative mission planning between
multiple UAVs. At present, much research has been
conducted on multi-UAV cooperative task allocation and
path planning, and good research results have been
achieved [2–4].

In practical applications, the UAV path needs to be
replanned frequently under the conditions of changing

terrain data and dynamic target trajectories. However, the
traditional exact solution algorithm has the problem of high
time complexity, and the traditional heuristic algorithm has
the problem of poor adaptability, which cannot quickly gen-
erate the optimal path [5]. Therefore, it is crucial to plan an
efficient and reasonable search path for UAVs under the
uncertain environments [6]. For this reason, it is necessary
to solve the problem of dynamic target trajectory prediction
and then to generate and optimize the search path. The param-
eter setting in the traditional TPM algorithm [7, 8] is not com-
prehensive enough to make full use of the target motion state
data, so it cannot predict the target trajectory well. In addition,
the traditional APF algorithm [9] is commonly used to deal
with the obstacle avoidance problem but is easy to fall into a
local optimum under an uncertain environment.

In this paper, we study the problem of multi-UAV coop-
erative mission path optimization for unknown dynamic
targets. Aiming at this problem, this paper proposes a target
search algorithm based on a modified target probability map
(MTPM). First, the prediction model of unknown dynamic
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targets is improved, and a directional two-dimensional nor-
mal probability distribution map is constructed to fit the tar-
get trajectory, realizing the trajectory prediction of unknown
dynamic targets. Then, the UAV swarm search and return
path with the maximized task execution efficiency are gener-
ated and optimized by a joint distributed ACO–APF algo-
rithm. Finally, 30 batches of data are generated by the
Monte Carlo method to simulate and analyze the efficiency
of the proposed algorithm. The simulation results are evalu-
ated from five aspects: the search rate of an unknown region,
the search rate of TPM, the number of captured targets, the
obstacle avoidance situation of UAV, and the target cap-
tured rate of 30 simulations. The experimental results verify
that the proposed algorithm can solve the problems of tra-
jectory prediction and search path optimization of unknown
dynamic targets. Under the condition of an unknown
dynamic target trajectory, the average target captured rate
and average unknown region search rate of the MTPM
method were higher than that of the traditional TPM
method, and the performance was improved by 14.6% and
10.7%, respectively.

The main contributions of this paper can be summarized
as follows:

(1) The prediction model of an unknown dynamic tar-
get is improved, and a directional two-dimensional
normal probability distribution diagram is generated
to fit the target trajectory

(2) The joint ACO–APF method is introduced to gener-
ate the artificial attractive potential field and the
repulsive potential field based on the target trajectory
prediction

(3) The state transition rules based on the ACO algo-
rithm and MTPM method are designed to generate
the optimal path of the UAV swarm search under
the constraints of multiple systems

The rest of this paper is organized as follows. Section 2
describes the environment modeling method of UAV path
planning. Section 3 introduces the proposed MTPM collab-
orative search path generation and optimization method.
Section 4 presents the experimental simulations and com-
pares the experimental results. Section 5 discusses open
issues. Finally, Section 6 concludes the paper.

2. Related Work

In the research on the UAV cooperative mission path plan-
ning, considering the perspective of uncertainty, environ-
ments can be divided into deterministic environments and
uncertain environments. In deterministic environments,
the size, shape, and position of obstacles are known before
planning, so no unknown dynamic changes in obstacle
parameters and other environmental factors can occur. In
contrast, in uncertain environments, obstacles and environ-
mental factors are completely or partially unknown in a
planning system, obstacles can suddenly appear or move,
and there are dynamic disturbances in an environment [6].

The cooperative path planning method for multiple
UAVs in a deterministic environment can be regarded as
an NP-hard combinatorial optimization problem with many
constraints [10]. In recent years, many scholars have con-
ducted extensive research on how to establish mathematical
models and solve the NP-hard combinatorial optimization
problem [11–18]. The main mathematical models include
the multitrip salesman model (MTSP), mixed linear integer
programming model (MILP), and vehicle scheduling and
path planning model (VRP). These models can be solved
by heuristic algorithms, such as genetic algorithm (GA)
[12], evolutionary algorithm (EA) [13, 14], ant colony
(ACO) algorithm [15, 16], and particle swarm optimization
(PSO) algorithm [17, 18].

Considering the problem of trajectory prediction of
unknown dynamic targets, in reference [7], the authors estab-
lished a rasterized environmental uncertainty map, search
probability map, and pheromone map model and determined
the prediction probability distribution of dynamic time-
sensitive targets by calculating the target transition probability.
Based on the target probability graph method, a linear model
was developed to predict the location of unknown targets
and solve the search problem of linear moving targets [8].
However, this method is not suitable for curved moving tar-
gets and cannot effectively solve the trajectory prediction
problem of unknown dynamic targets.

Aiming at the generation and optimization of the search
path, currently, the general research goal is to maximize the
efficiency of task execution by effectively modeling the
obstacle area [19, 20], and then, the artificial potential field
(APF) method [9], the improved RRT∗ algorithm [21–24],
and heuristic algorithms have been employed to generate
an optimal path while solving spatial conflicts. The Circular
Arc Trajectory method was used to model the irregular
obstacle area, which could simplify the computational
complexity of the obstacle avoidance problem [19]. The
improved APF algorithm and a path optimization method
for multiobstacle avoidance were proposed to solve the
problem of path of UAV swarm falling into deadlock [20].
However, the method was not suitable for dynamic environ-
ments. The approaches abovementioned can solve the prob-
lems of irregular obstacle area modeling and obstacle
avoidance path generation and optimization to a certain
extent. However, under the condition of an unknown battle-
field environment, there have still been a number of prob-
lems, such as an unreachable path, easy falling into a local
optimum, and slow convergence speed. In conclusion, the
abovementioned methods cannot effectively solve the prob-
lem of search path generation and optimization in an
unknown battlefield environment.

3. Problem Description and
Mathematical Model

Aiming at the problem of UAV group mission planning, the
battlefield area is considered a two-dimensional area with a
fixed height. The task content is as follows. Assume there
are NT unknown moving targets and NO unknown obstacle
areas in a battlefield area. Nuav fixed-wing UAVs with initial
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flight resources of Euav are sent to enter the unknown
battlefield area to perform target reconnaissance and capture
tasks. When the target reaches target Ratk , the target is
determined to be captured, and the target stops moving.
When the UAV swarm captures all targets or the flight
resources are insufficient, the UAV swarm returns to the
preset return point. After all UAVs return to the return
point, the mission ends.

This section designs a UAV swarm mission planning
system from three aspects: mission environment modeling,
target modeling, and constraint modeling, and builds an
environment for the search path optimization algorithm in
the next section.

3.1. System Environment Modeling. Using the geometric
graph method [25], the battlefield area can be rasterized into
a set MAP = fðm, nÞjm = 1, 2,⋯, Lx , n = 1, 2,⋯, Lyg, with a
size of Lx × Ly corresponding to the cell in row m and
column n.

The UAV track is connected by adjacent grid nodes. A
UAV is defined as a fixed-wing UAV with a fixed speed
Vuav cruise, a detection radius Ruav , and a target capture
radius Ratk , having the maximum steering angle of φmax.

A set fXuav, Yuav, Euav,Θuavg describes the UAV motion
state, where Xuav and Yuav represent the abscissa and ordi-
nate of the current UAV position, respectively, Euav is the
current flight resource surplus of the UAV, and Θuav
denoted the current motion direction of the UAV.

To facilitate research, this paper makes the following
assumptions:

(i) UAVs can communicate with each other without
considering the communication delay and commu-
nication distance, namely, a UAV can obtain infor-
mation on other UAVs immediately

(ii) The flight resource consumption is not considered
during the take-off and landing of a UAV

(iii) The UAV airborne processor’s data processing time
is not considered

3.2. Moving Target Modeling. First, the attributes and target
trajectory of a target are modeled. It is assumed that a target

Ti with coordinates ðXðiÞ
T , Y ðiÞ

T Þ moves periodically following
the trajectory parameter equations given by

X ið Þ
T = R ið Þ

Tx cos w ið Þ
T t ið Þ

0 + t
� �h i

+ C ið Þ
Tx ,

Y ið Þ
T = R ið Þ

Ty sin w ið Þ
T t ið Þ

0 + t
� �h i

+ C ið Þ
Ty ,

ð1Þ

where i ∈ f1,⋯,NTg; set ðCðiÞ
Ty, C

ðiÞ
TxÞ represents the trajec-

tory center coordinates; RðiÞ
Tx and RðiÞ

Ty represent trajectory
equation’s horizontal and vertical axis wheelbases, respec-
tively; ωi

T is the angular velocity of a target Ti moving on

the trajectory; tðiÞ0 is the initial time of a target Ti motion;
t denotes the current system time.

Set fXT , YT , VT ,ΘTg describes the motion state of tar-
gets, where XT and YT represent the current abscissa and
ordinate values of the target, respectively, VT is the current
velocity scalar of the target, and ΘT denotes the current
motion direction of the target.

3.3. System Constraint Modeling. Reference [18] proposed a
circular overfitting method to establish an obstacle area
model, which solved the problem of modeling and obstacle
avoidance in irregular obstacle areas. According to the obsta-
cle regionmodeling method based on a circular trajectory pro-
posed in this paper, the obstacle region can be considered a

circular region, and ðCðiÞ
Ox , C

ðiÞ
OyÞ and RðiÞ

O represent the center
coordinates and radius of the Obstaclei region, respectively.

The following system constraints are defined:

Su : d
ijð Þ
uu ≥ Rsafe,

So : d
ijð Þ
uo ≥ Rsafe,

Se : e
ið Þ
uav kð Þ ≥ λE min d ijð Þ

uE

� �
,

Sp : Sop φj s jð Þ
op − s ið Þ

uav

�����!
,θ ið Þ

uav

�!� �
≤ φmax

� �
,

ð2Þ

where Su and So represent the distance constraint between
UAVs and the distance constraint between UAVs and obsta-
cle region, respectively, and they should be larger than the
minimum threshold; Se represents the UAV flight resource
constraint, which needs to meet the minimum return flight
resource threshold during the task execution process; Sp
represent the UAV flight performance constraint, and the
UAV yaw angle needs to be less than the maximum yaw
angle threshold.

4. Search Path Generation and
Optimization Algorithm

Aiming at the problem of unknown dynamic target trajec-
tory prediction and search path optimization, based on the
system modeling presented in the previous section, this sec-
tion uses the MTPM method to generate a directional two-
dimensional normal probability distribution map to fit the
target trajectory and realize the trajectory prediction of
unknown dynamic targets. The joint ACO–APF algorithm,
where the APF algorithm is used to generate the MTPM
attraction field, obstacle area repulsion field, and interair-
craft repulsion field, is introduced. Combined with the state
transition rules based on the ACO algorithm, the UAV
swarm search and return path are generated and optimized
under the premise of maximizing task execution efficiency.

4.1. Modified Target Probability Map. An unknown dynamic
target refers to a target with uncertain coordinates, velocity,
and direction of motion. To make full use of the limited
known information to describe the distribution of unknown
dynamic targets in the battlefield area, the target probability
map method has usually been used to characterize the exis-
tence probability of the target at certain coordinates in the
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battlefield area. However, due to the limitations on the param-
eter settings of the two-dimensional normal probability distri-
bution model in the traditional algorithm, the traditional
target probability map methods can describe the distribution
only of unknown static targets and cannot solve the trajectory
prediction problem of unknown dynamic targets.

To solve this problem, using the Pauta criterion and the
two-dimensional normal probability distribution model, this
paper maps the motion state of a target to the variance of the
horizontal and vertical axes and generates a directional two-
dimensional normal probability distribution map to fit the
target motion trajectory and realize the trajectory prediction
of unknown dynamic targets.

Define piðm, nÞ as a distribution probability of a target Ti
at coordinates ðm, nÞ and assume that the motion state of
target Ti can be detected as follows. Assume the detection
coordinate is ðm0, n0Þ, the detection interval is τscan, the

velocity is vðiÞT , and the direction of motion is vector θðiÞT .
Based on the two-dimensional normal distribution model,
the probability of the presence piðm∗, n∗Þ of target Ti at
coordinates of ðm∗, n∗Þ ~Nðm0, n0, σ2x, σ2y , ρÞ is given by

pi m
∗, n∗ð Þ = 1

2πσ2
xσ

2
y

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ρ2

p e−1/2 1−ρ2ð Þ m∗−m0ð Þ2/2σ2x−2ρ m∗−m0ð Þ n∗−n0ð Þ/σxσy+ n∗−n0ð Þ2/2σ2y½ �,

ð3Þ

where a set fσ2
x, σ2y , ρg refers to undetermine parameter

groups, representing the horizontal axis variance, the vertical
axis variance, and horizontal-vertical axes correlation coeffi-
cient; τscan represents the time needed for determining the

target motion state; θðiÞT represents the angle between vector

θðiÞT and the horizontal axis’s positive direction.
It is assumed that the motion state of target Ti remains

unchanged during the detection interval τscan, namely, target

Ti moves from point Aðm0, n0Þ to point Bðm + cos ðθðiÞT ÞvðiÞT
τscan, n + sin ðθðiÞT ÞvðiÞT τscanÞ along the direction of θðiÞT ; its

motion time is τscan, and its motion distance is δðiÞAB = vðiÞT
τscan. Substituting the motion state information of target Ti
into the variance theorem yields to

σy = tan2 θ
ið Þ
T

� �
σx, θ

ið Þ
T ∈ −π½ , πÞ: ð4Þ

After obtaining the mathematical relationship between
variances along the horizontal and vertical axes, the next
challenge is to increase the distribution probability of the
projection of line segment AB in the model maximally so
that the probability distribution model can fit the trajectory
of target Ti and achieve the purpose of trajectory prediction.
From the differential point of view, when the line segment
AB is short enough, namely, when the detection frequency
is high enough, continuous target detection can generate a
continuous target trajectory.

To make the distribution probability of the projection of
the motion trajectory in the model the highest and the tra-
jectory the best fit, the Pauta criterion, namely the three-
sigma criterion of normal distribution, is used in this study.

Based on this criterion, a mathematical relationship between
the variance of three times the motion trajectory and the

motion distance δðiÞAB can be obtained as δðiÞAB = 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
x + σ2

y

q
.

Then, Equation (6) can be obtained as follows:

σx =
vTτscan

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4 θ

ið Þ
T

� �
+ 1

r ,

σy =
tan2 θ

ið Þ
T

� �
vTτscan

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4 θ

ið Þ
T

� �
+ 1

r :

ð5Þ

According to the two-dimensional normal probability
distribution theorem and Equation (6), the correlation
matrix Φ can be obtained as follows:

Φ =

vTτscan

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4 θ

ið Þ
T

� �
+ 1

r
2
664

3
775
2

ρ ið Þ
tan θ

ið Þ
T

� �
vTτscan

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4 θ

ið Þ
T

� �
+ 1

r
2
664

3
775
2

ρ ið Þ
tan θ

ið Þ
T

� �
vTτscan

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4 θ

ið Þ
T

� �
+ 1

r
2
664

3
775
2

tan2 θ
ið Þ
T

� �
vTτscan

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tan4 θ

ið Þ
T

� �
+ 1

r
2
664

3
775
2

2
6666666666664

3
7777777777775
, ρ ∈ −1, 1½ �,

ð6Þ

where parameter ρðiÞ describes the linear correlation
between the horizontal and vertical coordinates, and when

θðiÞT ∈ f½0, π/2� ∩ ½−π,−π/2�g, ρðiÞ is positive; otherwise, it is
negative.

Based on the abovementioned method and the motion
state information of multiple targets, multiple directed
two-dimensional normal probability distribution models
can be generated to fit the transient motion trajectories of
multiple targets. Using the normalization method, the target
motion state information is brought into the calculation to
generate the multitarget probability distribution matrix
PMTPM with a size of LX × LY , which can reflect the distribu-
tion probability of multitarget in the battlefield area; matrix
PMTPM is defined by

PMTPM =

p 1,1ð Þ ⋯ p 1,Lyð Þ
⋮ ⋱ ⋮

p Lx ,1ð Þ ⋯ p Lx ,Lyð Þ

0
BBB@

1
CCCA: ð7Þ

System initialization and iterative update of matrix
PMTPM are performed as follows.

Before a task starts, the motion state of an unknown
moving target is detected Nscan times, the detection interval

is τscan, and the initialization Pðk=0Þ
MTPM is performed. During

the mission execution process, matrix PðkÞ
MTPM is updated

through a multi-UAV cooperative search with a search cycle
of τk.
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4.2. Path Generation and Optimization. The traditional ACO
algorithm uses the initialization information for heuristic
search through the positive feedback mechanism, which
has the advantages of skipping a local optimal solution and
approaching the global optimal solution. However, there
are also problems of slow convergence and dependence on
initialization information, which are specific to carpet search
scenarios. The traditional APF algorithm can rapidly gener-
ate a direct path through the repulsion attraction mecha-
nism and is suitable for searching for and approaching
known targets and rapid escapes from obstacle areas, but
there are problems, such as easy falling into a local optimum
and unreachable generation path.

Combining the two aforementioned algorithms and

using the initialization information of matrix Pðk=0Þ
MTPM, a path

generation algorithm, which can rapidly generate paths,
avoid unreachable paths, and solve the above problems
effectively, can be developed. The specific combined method
is as follows. When the APF information is strong, the APF
method is used to approach targets or escape from obstacles;
otherwise, the ACO heuristic transfer method is used to gen-
erate an optimal search path.

4.2.1. Pheromone Map and APF Modeling. First, a phero-
mone matrix Aco with a size of LX × LY is constructed to
describe the current battlefield area search as follows:

Aco =

aco 1,1ð Þ ⋯ aco 1,Lyð Þ
⋮ ⋱ ⋮

aco Lx ,1ð Þ ⋯ aco Lx ,Lyð Þ

0
BBB@

1
CCCA, aco m,nð Þ ∈ acomin, acomax½ �,

ð8Þ

where acoðm,nÞ represents the pheromone value of a position
ðm, nÞ; the higher the pheromone value is, the higher the
search value of the position will be.

System initialization and iterative update are performed
on the matrix Aco as follows. Before the task starts, the pher-
omone matrix value is initialized to ðacomin + acomaxÞ/2.
During the mission, the global pheromone increases with
the system iteration number with an increment of Acorise/
τk, and UAVs cooperatively detect the pheromone value
within the update distance. The update formula is given by

s jð Þ
aco

���
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x ið Þ
uav kð Þ − a

h i2
+ y ið Þ

uav kð Þ − b
h i2r

≤ Ruav

( )

d ijð Þ
ua =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x ið Þ
uav kð Þ − a

h i2
+ y ið Þ

uav kð Þ − b
h i2r

Aco a, bð Þ = 1 − λAco 1 −
d ijð Þ
ua

4

Ruav
4

 !" #
Aco a, bð Þ

, ð9Þ

where λAco represents the pheromone elimination coeffi-
cient. Then, by using the APF algorithm, the repulsion
potential field of the UAV is constructed with an obstacle
area and a UAV as a center, and the collision avoidance

paths between the UAV and the obstacle area and adjacent
aircraft are generated. The attraction potential field of the
UAV is centered on the target and the return point, and the
approach search and return path of the UAV are generated.

Next, set the farthest distance of the repulsive potential
field to Rrep, the minimum safe distance around a drone is
Rsafe, the modulus of the repulsive potential field force is
jFuðijÞj, jFoðijÞj ∈ ½ðRsafe/RrepÞ2, 1�, and it is negatively corre-
lated with the distance; then, the resultant repulsive force
is obtained by

Frep ið Þ
x = 〠

NO

j=1
Fo ijð Þ

x + 〠
NT

j=1
Fu ijð Þ

x ,

Frep ið Þ
y = 〠

NO

j=1
Fo ijð Þ

y + 〠
NT

j=1
Fu ijð Þ

y ,

ð10Þ

where FrepðiÞx and FrepðiÞy represent the transverse and
longitudinal components of the resultant repulsive force;
FuðijÞx and FuðijÞy denote the transverse and longitudinal

components of the repulsive force FuðijÞ between UAVi

and UAVj; FoðijÞx and FoðijÞy are the transverse and longitu-

dinal components of the repulsive force FoðijÞ between
UAVi and Obstacle j

The farthest action distance of the target attraction
potential field is Ruav, indicating that when the drone detects
the target, the target can attract the drone, and the attraction
mode is given by jFattðijÞj ∈ ½ðRatk/RuavÞ2, 1�.

Then, set the action distance of the return point attrac-
tion potential field to be unlimited; the return attraction is
a unit vector, and the potential field action condition is given

byeðiÞuavðkÞ ≤ λE min ðdðijÞuE Þ, where eðiÞuav represents the current

flight resource surplus of UAVi, d
ðijÞ
uE is the distance from

UAVi to the return point j, and λE is the return parameter.
If the condition is judged to be true, then the UAV flight
resources are insufficient and need to return immediately;
parameter λE is used to adjust the UAV return time point.

When a drone is affected by multiple attraction potential
fields at the same time, only the attraction potential field
force with the maximum modulus is retained; namely, the
drone can be subjected to the attraction potential field force
only in one direction at a time, as given by

Fatt ið Þ = Fatt arg max
jð Þ

Fatt i,jð Þ
��� ���

 !
, ð11Þ

where FattðijÞ represents the attraction vector of the target
pair, argmaxjFattðijÞj

ðjÞ
is the attraction potential field force

number with the largest modulus, and FattðiÞ denotes the
current attraction vector.
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In summary, the generation formula of the artificial poten-

tial force FðiÞ of UAVi at position ðxðiÞuav, yðiÞuavÞ is defined by

F ið Þ
x = Frep ið Þ

x + Fatt ið Þ
x ,

F ið Þ
y = Frep ið Þ

y + Fatt ið Þ
y :

: ð12Þ

4.2.2. Route Generation Algorithm. The optimal decision-
making method based on a battlefield environment of a
UAV is as follows.

When APF information is strong, the APF method is
used to approach targets or escape from obstacles; otherwise,
the ACO heuristic transfer method is used to determine an
optimal search path according to the target probability
graph matrix and the pheromone matrix.

First, an optional grid set Sop can be obtained based on

the flight performance constraint set Sp : fSopjφðsðjÞop − sðiÞuav
�����!

,

θðiÞuav
�!

Þ ≤ φmaxg by Equation (3), where sðjÞop represents the coor-

dinates of the optional grid j; sðiÞuav and θðiÞuav denote the current
coordinates and motion direction of UAVi; φðx, yÞ is the
angle between the two vectors. Then, the optimal path grid
number jbest is obtained according to the optimal decision

method; namely, sðjbestÞop is the next transfer coordinate of
UAVi.

When jFðiÞj
��!

≠ 0, that is, when the APF information exists,
the APF method is used to generate the optimal search path.
The grid in Sop with the smallest angle with vector FðiÞ rep-
resents an optimal grid, and it is given by

jbest = arg min
jð Þ

φ s jð Þ
op − s ið Þ

uav
�����!

, F ið Þ�!� �� �
: ð13Þ

When jFðiÞj
��!

= 0, that is, when the APF information does
not exist, the ACO heuristic transfer method is used to gen-
erate an optimal search path. The target probability graph

matrix PðkÞ
MTPM and pheromone matrix AcoðkÞ are substituted

into the ACO algorithm transfer probability formula, and

the Bayesian probability pðjÞi ðkÞ of sðjÞop is calculated. Then,
the roulette algorithm is used to generate an optimal grid
as follows:

p jð Þ
i kð Þ =

P kð Þ
MTPM n,mð Þ ijð Þ

h iα
× Aco kð Þ n,mð Þ ijð Þ
h iβ

∑
s jð Þ
o ∈Sop

P kð Þ
MTPM n,mð Þ ijð Þ

h iα
× Aco kð Þ n,mð Þ ijð Þ
h iβ ,

ð14Þ

where parameter α is a heuristic factor, which represents the
relative importance of the target probability distribution

matrix PðkÞ
MTPM, and parameter β is a pheromone factor,

which represents the relative importance of pheromone
matrix AcoðkÞ.

4.2.3. System Iterative Update. After obtaining the optimal

grid number jbest, s
ðjbestÞ
op represents the next grid coordinates

of a UAV, the UAV path is generated, and the system is
iteratively updated. The updating process is as follows.

Update a UAV’s position sðiÞuavðk + 1Þ, flight resource surplus
eðiÞuavðk + 1Þ, and motion direction θðiÞuavðk + 1Þ as follows:

s ið Þ
uav k + 1ð Þ = s jbestð Þ

op kð Þ

e ið Þ
uav k + 1ð Þ = e ið Þ

uav kð Þ − d s ið Þ
uav kð Þ, s jbestð Þ

op kð Þ
h i

θ ið Þ
uav k + 1ð Þ = θ s jbestð Þ

op kð Þ
����!

− s ið Þ
uav kð Þ
���!� � : ð15Þ

The algorithm flow of the path generation and optimiza-
tion method based on the improved target probability graph
is shown in Figure 1.

5. Simulation Experiments

This section presents the numerical simulation results of col-
laborative search tasks in uncertain dynamic environments.
In the simulations, it was assumed that there were NT
unknown moving targets and NO unknown obstacle areas
in the battlefield area of a fixed height; Nuav fixed-wing
UAVs with the initial flight resources Euav were dispatched
to perform reconnaissance and capture tasks. A target was
judged to be captured when the distance between the UAV
and the target was less than Ratk , and then, the target stopped
moving. When the UAV captured all targets or flight
resources were insufficient, the UAV returned to the preset
return point. After all UAVs returned to the return point,
the mission ended.

5.1. Parameter Settings. The mission of a UAV group was as
follows. It was assumed that 20 patrol vehicles (unknown
dynamic targets) patrolled at a constant speed around a cer-
tain point in a mission area. Then, four UAVs, which took
off from the airports located at the four vertices of the mis-
sion area map, were dispatched to enter the mission area
and perform a search and capture patrol vehicle mission.
To improve the search efficiency of a UAV, the patrol vehi-
cle was detected at intervals of τscan before the UAV swarm
entered the task area, and the detection results were
imported into the UAV swarm path planning system as a
prior information. There were multiple unknown no-fly
zones (unknown obstacle zones) in the mission area, and
the minimum safe distance Rsafe between the UAV group
and the no-fly zone had to be maintained.

The battlefield area size was 200 km × 200 km, and it was
rasterized into 1,000 grid × 1,000 grid, so 1 grid = 0:2 km.
The UAV path defined the system iteration step size to be
τk = 5 s, and the system clock was tk = τk × ðk − 1Þ. The sim-
ulation parameters are given in Table 1.

The Monte Carlo method was under the condition that
the intersection of the target motion trajectory, and the
obstacle area was empty. To mobilize the UAV group fully
to perform a wide search of the task area, the special
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situation of the target trajectory concentration should be
avoided as much as possible. Therefore, according to the
two-dimensional uniform distribution, multiple batches of
relevant parameters were generated. Each batch contained
10 moving targets and 20 obstacle areas. The relevant
parameters included the trajectory center of a moving target,
long-axis wheelbase, short-axis wheelbase, the angular veloc-
ity of motion, the initial phase of motion, motion direction
(clockwise or counterclockwise), and center and radius of
the obstacle area. The ranges of parameters were set as pre-
sented in Table 2.

The Monte Carlo method was used to generate 30
batches of experimental data, and the experimental results
were described and compared. The distribution of unknown
dynamic target trajectory and obstacle area is shown in
Figure 2. As shown in Figure 2, 10 moving targets and 20
obstacle areas were evenly distributed in the task area. The
moving target moved in a periodic closed-loop around the
center of the trajectory as shown in the blue curve, and the
obstacle areas overlapped, forming an irregular obstacle area
as shown in the black area. There was no intersection
between the moving target trajectory and the obstacle area
to avoid the situation of a drone entering the obstacle area
to search for a target.

5.2. Experimental Results and Analysis. Aiming at the prob-
lem of unknown dynamic target trajectory prediction and
search path optimization, the traditional TPM method is
compared. The simulation results are shown in Figures 3

and 4, where the initial distribution of target probability
(k = 0) and the cooperative search path are presented,
respectively. Then, the effectiveness of the proposed method
in an uncertain dynamic environment was evaluated using
several evaluation indices, which included the search rate
of an unknown region, the search rate of a target probability
distribution, the obstacle avoidance of UAV, the number of
captured targets, the number of captured targets in 30 times’
simulations, and the unknown region search rate in 30
times’ simulations, shown in Figures 5–8, respectively. The
task execution efficiency was comprehensively evaluated in
comparison with the traditional TPM method.

After importing the prior information into the system,

the initial target probability distribution matrix Pðk=0Þ
TPM was

generated using the proposed MTPM method and the tradi-
tional TPM method, as shown in Figure 3.

The initial distribution of target probability reflected a tar-
get’s movement in the task area at the beginning of the task.
The higher the target probability was, the more likely the tar-
get was to move around the position. In Figures 3(a) and 3(b),
the results of theMTPMmethod are presented. In Figures 3(c)
and 3(d), the results of the TPM method are illustrated.
Figures 3(a) and 3(c) show the 3D images, and Figures 3(b)
and 3(d) display the 2D images. Further, in Figures 3(c) and
3(d), the high-probability area of the target in the distribution
map obtained by the traditional TPMmethod is dotted. Com-
pared with the real motion trajectory of the target presented in
Figure 2, the high-probability area of the target is discontinu-
ous and has poor directivity, which cannot predict the target

Current status of UAVs
Suav(k)

Path decision
based on APF method

APF method to solve
argmin (𝜑)

(j)

Status of UAVs updates
Suav (k +1), Euav (k +1) 

Path decision
based on heuristic method

Pheromone matrix
Aco (k)

No Yes

Environmental
information judgment

|F(i)| = 0?

TPM matrix
P(k)

MTPM

Heuristic method to solve

aco(k)P(j)

opS(jbest)
Optimal path node

Update environment
information

MTPM, Aco (k + 1)P(k+1)

Figure 1: The block diagram of the proposed path generation and optimization method based on the MTPM.
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trajectory. Further, as shown in Figures 3(a) and 3(b), the dis-
tribution map obtained by the MTPM method showed a
banded distribution of the high-probability region of the target.
Compared with the actual motion trajectory of the target,
which is displayed in Figure 2, the trajectory presented in
Figure 3 could accurately reflect the motion trend and process
of the target, indicating that the proposed MTPM method is
more suitable for the motion trajectory prediction and fitting
of the curve trajectory target than the traditional TPMmethod.

After the mission began, the UAV planned the search
path according to the initial distribution of the target prob-
ability and reduced the target probability value of the
explored area as the system iterated, updating the target
probability distribution map. Figures 4(a) and 4(b) show

the drone’s search path. Figure 4(a) shows the results of
the MTPM method. Further, Figure 4(b) shows the results
of the traditional TPM method.

As shown in Figure 4(a), under the combined action of
the distributed ACO algorithm and the APF algorithm, after
the UAV effectively searched the high-probability area of the
target, it captured all targets and successfully returned to the
predefined return point, and the system iterations ended at
k = 1639. The results in Figure 4(b) demonstrate that the
UAV searched the high-probability area of the target, but
due to the lack of effective target trajectory prediction, the
drown cannot capture all targets, and the system iteration
was ended at k = 1686. The comparison of the results
showed that the initial distribution of the target probability
generated by the MTPM method could accurately describe
the motion trend of an unknown target. The joint distrib-
uted ACO–APF algorithm could correctly guide the UAV
to search the high-probability area of the target effectively
and jump out of the path deadlock.

The unknown area search rate and the target probability
distribution search rate were calculated by Equations (16)
and (17).

rcov kð Þ = Scov kð Þ/SLx×Ly , ð16Þ

rTPM kð Þ = 1 −
∑

Ly
b=1∑

Lx
a=1P

kð Þ
TPM a, bð Þ

∑
Ly
b=1∑

Lx
a=1P

k=0ð Þ
TPM a, bð Þ

" #
: ð17Þ

Figure 5(a) reflects the comparison of the two methods
on the unknown region search rate which reflects the extent
of the drone’s search for unknown region, and Figure 5(b)
reflects the comparison of the two methods on the TPM
search rate which reflects the extent of the drone’s search
for the high-probability distribution region of targets. With
the iteration of the system, the drone’s search for unknown
region gradually deepens based on the TPM matrix. In
Figure 5, the end point represents the number of system iter-
ations at the end of the task.

Figure 6 reflects the comparison of the two methods on
the number of target capture which reflects the task effi-
ciency of the drone. With the iteration of the system, the
drone continuously discovers and captures the targets when
searching the unknown region. In Figure 6, the end point
represents the number of system iterations at the end of
the task.

As shown in Figures 5 and 6, the MTPM method
completed the iteration process at k = 1639, achieving a
search rate of an unknown region of 44.7%, a search rate
of the target probability distribution of 97.3%, and the num-
ber of captured targets of 10, which were better than those of
the traditional TPM method. The three mentioned metrics
of the traditional TPM method were 41.4%, 88.5%, and 9
at k = 1686, indicating that the effective trajectory prediction
of the moving target by the MTPM method could accurately
guide a UAV to search the path planning and achieve a
better task execution effect.

Figure 7 reflects the comparison of the two methods on
the distance to obstacle which reflects the obstacle avoidance

Table 1: Simulation parameters.

Parameter Simulated value Actual value

Detection range Ruav 50 grid 10 km

Catching range Ratk 5 grid 1 km

UAV speed Vuav 1,
ffiffiffi
2

ph i
grid/τk (144,200) km/h

Flight resources Euav 2,400 grid 480 km

Safety distance Rsafe 4 grid 0.8 km

Repulsive force distance Rrep 10 grid 2 km

System step length τk 1 step 5 s

Sampling period τscan 120 step 600 s

Table 2: Target and obstacle area parameters.

Parameter
Simulation value

range
Actual value

range

Target trajectory radius RT (20,50) grid (4, 10) km

Target moving speed VT 0:4, 0:7ð Þ grid/τk (57,100) km/h

Obstacle area radius RO (20,50) grid (4, 10) km

1000

800

600

400

200

y/
gr

id

x/grid

0
0 200 400 600 800 1000

Target trajectory
Obstacle area

Figure 2: Unknown dynamic target trajectory and obstacle area
distribution graph.
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Figure 4: The cooperative search results.

9International Journal of Aerospace Engineering



situation of the drone. The vertical axis in Figure 5 repre-
sents the minimum distance from the drone to the obstacle
area. The black solid line that changes with time corresponds
to the data of the MTPM method, and the black dotted line
corresponds to the data of the TPM method. The constant
bold black solid line represents the maximum repulsive force
distance Rrep(Rrep = 2km) in the APF algorithm. If the dis-
tance from the UAV to the obstacle area exceeds Rrep, the
repulsive force from the obstacle area would be no longer
applied to the UAV. The constant bold black dotted line rep-
resents the safety distance Rsafe(Rsafe = 0:8km) of the UAV in
the APF algorithm. If the distance from the UAV to the
obstacle area is less than Rsafe, a collision would be happened
between the UAV and the obstacle area.

As shown in Figure 7, the minimum distance between
the UAV and the obstacle area is always longer than the safe
distance Rsafe, which shows that the obstacle repulsion
potential field can avoid collisions between the UAV and
the obstacle area. The reason is that the modulus of the
repulsive force is inversely proportional to the square of
the distance, so that the UAV can avoid obstacles at the right
time and position.

Figure 8 reflects the comparison results in 30 simulations
of the two methods. In Figure 8, the black color corresponds
to the data of the MTPM method, and the blue color corre-
sponds to the data of the TPM method.

In Figure 8(a), the vertical axis represents the number of
targets captured by the drone. The dotted lines represent to
the number of captured targets in 30 simulations, and the
solid lines represent to the average number of captured tar-
gets in 30 simulations. After the subsimulation, the average
number of captured targets of the MTPM method was
9.63, and the average number of captured targets of the
TPM method was 8.4.

In Figure 8(b), the vertical axis represents the unknown
region search rate. The dotted lines represent to the
unknown region search rate in 30 simulations, and the solid
lines represent to the average unknown region search rate in
30 simulations. After the subsimulation, the average
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unknown region search rate of the MTPM method was
43.3%, and the average unknown region search rate of the
TPM method was 39.1%.

According to the above-presented evaluation results,
after the subsimulation, the average target captured rate
and average unknown region search rate of the MTPM
method were higher than that of the traditional TPM
method, and the performance was improved by 14.6% and
10.7%, respectively, indicating that the traditional TPM
method is deficient in trajectory prediction of dynamic
targets. In contrast, the proposed method could effectively
solve the search path optimization problem of unknown
dynamic targets.

6. Conclusion

Under the condition of an uncertain dynamic environment,
this paper studies the cooperative search problem of UAV
swarm. In this study, an uncertain dynamic environment is
defined as an unknown region, including the multiobstacle
region and dynamic target with the periodic motion of curve
trajectory. In addition, a cooperative search algorithm for
UAVs based on the MTPM is proposed. From the aspect
of prior information processing of a battlefield environment,
aiming at improving the TPM method and making full use
of limited target motion state information, a directional tar-
get probability distribution map is constructed and used to
predict the target motion trajectory. To generate a UAV
swarm’s path, this paper combines the distributed ACO
algorithm and the APF algorithm to develop the path gener-
ation method according to environmental information
under the multisystem constraint. When the target informa-
tion is sufficient, the APF method is used to obtain the target
trajectory attraction potential field and the capture path.
However, when the target information is insufficient, the
ACO algorithm is combined with the MTPM method into
a heuristic ACO-based probability transfer method, which
is used to determine a search path. After the mission ends,
the UAV can return to the predefined return point. Finally,

the Monte Carlo method is used to perform simulation exper-
iments, and five indicators are used for evaluation, namely, the
unknown region search rate, the TPM search rate variations,
the number of captured targets, the UAV obstacle avoidance
result, and the comparison results of targets captured in 30
simulations using different methods. The experimental results
verify that the proposed search path planning method based
on the improved target probability graph can achieve high effi-
ciency under the condition of limited target motion informa-
tion. The average target captured rate and average unknown
region search rate of theMTPMmethod were higher than that
of the traditional TPM method, and the performance was
improved by 14.6% and 10.7%, respectively, indicating that
the proposed algorithm can effectively solve the problem of
UAV cooperative search task planning in uncertain dynamic
environments. At present, there are some shortcomings in
the design method of the UAV flight model. We are reading
relevant literature on the mobile robots and quadrotors
control algorithm [26–30], hoping to improve our work by
combining these technologies in the next step. Future research
will focus on how to improve the UAV flight model and
smooth its path. In addition, a new UAV swam path planning
algorithmwill be designed for the improved UAV flight model
to generate a better multi-UAV cooperative search path that
can better meet actual needs.
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