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A novel estimation-based and dropout-dependent control design for distributed control systems of aeroengines with packet
dropout is proposed. The packet dropout is described as an independent identically distributed (i.i.d.) Bernoulli process with
known probability. The objective of the control system is to effectively and stably impel aeroengines. An inverse system is
proposed to reconstruct the missing measurements, based on which, a hybrid adaptive Kalman filter (HAKF) is proposed to
provide the estimated states for control design. A new state-feedback control design is developed with the estimated states and
the actual states. For guaranteeing the stability of aeroengines, both the stability of HAKF and the new controlled system are
analyzed and proved. The new design is applied to an aeroengine, HAKF has superior estimation accuracy which ensures the
effectiveness, and the desired stability performance is achieved by controlled system in the presence of packet dropout.

1. Introduction

As propulsion, aeroengines are a typical kind of nonlinear
system with high-performance requirements. In order to
meet the requirements of engine performance and efficiency,
it is warranted to ameliorate the control architecture in
terms of commonality, expandability, flexibility, and
reduced weight [1]. At present, a very effective solution is
to convert the engine centralized control system into a dis-
tributed control system (DCS). Despite the performance
superiority, the distributed control system may cause packet
dropout due to the characteristics of network transmission
[2]. The dropout of data packets in the control system not
only undermines the quality of control but also destroys
the stability of the control system. It is noted that the packet
dropout will lead to some technical difficulties in the
stability-guaranteed control design with packet dropout.
Hence, the problem of packet dropout has attracted the
attention of many scholars.

Generally, the packet dropout is modelled as a random
process with random Bernoulli distribution [3, 4] or time-
homogeneous binary Markov distribution [5, 6] in the previ-
ous research. Both these two descriptions define the arrival
of packet at instant k as a binary random variable γk. In
the Bernoulli process, the variable γk was modelled with
probability distribution:

P γk = 0ð Þ = λ,
P γk = 1ð Þ = 1 − λ,

ð1Þ

where the variable λ is the packet dropout rate. In the Mar-
kov process, the arrival of a packet is featured by a transition
probability matrix:

M+ = P γk+1 = j γk = ij gfð Þi,j∈S =
1 − q q

p 1 − p

" #
, ð2Þ
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where S = f0, 1g is the state space of the Markov process and
the positive parameters p and q are the failure rate and
recovery rate, respectively. Based on these mathematical
descriptions of the packet dropout process, the compensa-
tion or estimation for the lost information is developed
simultaneously.

Considering the information compensation for packet
dropout, researchers have proposed numerous and out-
standing results of estimation approaches with intermittent
observations. Among these approaches, the Kalman filter
(KF) has received a great of attention because it is a mini-
mum mean-square error (MMSE) estimation under the
packet dropout conditions. Sinopoli proposed the Kalman
state estimator by introducing the random binary variable
γk of a Bernoulli packet dropout into the algorithm iteration
and proved the stability of the Kalman estimator [7]. Based
on the Kalman iteration structure proposed in reference
[7], a series of research on the stability of new Kalman filters
is developed and published. Reference [8] introduces the
peak covariance to describe the stability of the Kalman filter
with the stochastic packet dropout and obtains the stability
conditions. An improved stability condition for the Kalman
filter with bounded packet dropout was presented in refer-
ence [9]; a less conservative and sufficient condition for
peak-covariance stability is established by the linear matrix
inequality (LMI) method. Furthermore, the peak-
covariance stability of Kalman filters is proven to be the
mean-square stability for a random packet dropout [10,
11]. These theories extend to the analysis of Kalman filters
with complicated systems [12–16]. The design of Kalman fil-
ters with state-dependent packet dropout for the hybrid
measurement system is investigated in reference [12]. Refer-
ence [13] proposed a specific estimation design with Markov
packet dropout for nonuniform sampling network systems.
Marelli analyzed the stability for Kalman filters with random
measurement matrices, the necessary and sufficient condi-
tions are given in reference [14]. An extension of the fruits
of [14] is made in reference [15] to demonstrate the stability
of multisensor Kalman filter over a lossy network. Similarly,
the stability analysis of multisensor Kalman filter over lossy
networks is also discussed in reference [16]. From all the
above references, the Kalman filter supplies a solution for
the packet dropout problem, which can compensate for the
losing information effectively. In this way, the construction
of an estimator can serve as the basis of information com-
pensation with packet dropout.

Due to the control system performance affecting the
safety of aeroengine directly, the stability is the primary
and most important requirement of the controller design
for aeroengines. To guarantee the safety of aeroengine,
efforts should be devoted to the controller stability analysis
with packet dropout. In the stability with network failure lit-
erature, the classical approach is to consider network failure
as a disturbance and utilize the Lyapunov theorem to ana-
lyze the controller stability [17–21], and then, these authors
take advantage of the controller robustness to cover the poor
effect. Moreover, the other arguably popular problem is the
controller design with unmeasurable states and packet drop-

out. To identify the unmeasurable states, observers are con-
structed and the observer-based controllers come after
[22–24]. Similarly, the observer-based control system frame-
work is also used for the packet dropout and the relative sys-
tem stability analysis is researched. Wang et al. designed an
observer for the unmeasurable states and achieve the expo-
nentially mean-square stability condition for the observer-
based control system [25]. Li et al. proposed a stability anal-
ysis approach for the network nonlinear system with global
Lipschitz nonlinearities and random packet dropout [26].
Similarly, the interesting publications of the observer-based
control system with packet dropout and other problems
(such as consecutive packet delays, multiplicative noises,
and uncertainties) are investigated in references [19–21,
27]. Furthermore, some new control designs for the system
with network failure are proposed [28–30]. The novel con-
trol design is attracted to the event-triggered mechanism,
which can guarantee the control system stability and reduce
the network burden. These studies supply a new direction
for solving the network failure problems by the codesign of
the control and scheduling approach.

The abovementioned outstanding researches mainly
focus on the control design for the system with network fail-
ure, robust control, observer-based control, and codesign of
control and scheduling approaches are investigated. Actu-
ally, the network failure in aeroengine DCS would cause
the loss of controller inputs which is the crucial factor for
the aeroengine control system. Hence, it is necessary to com-
pensate for the missing controller inputs for the aeroengine.
To guarantee the performances of aeroengine DCS, the
packet dropout for the specific aeroengine DCS is handled
by a separated design framework which consists of the esti-
mation and estimation-based control design, which is quite
different from the above research in theory [17–21, 27–30].

The traditional Kalman filters are widely used for estima-
tion. And numerous researches on the design and stability
analysis of the Kalman filter with packet dropout were carried
out. It is noted that the Kalman structure in the above refer-
ences gives up the measurement update, an important correct
step, due to the measurement dropout. And this way would
directly decrease the estimation accuracy. Besides, the stability
analysis of both the Kalman filters and the control system are
separated; there is a gap in the connection between informa-
tion compensation and control system stability. Considering
aeroengines are specific time-varying, a complex controlled
plant with strong nonlinearity requires the high control per-
formance and quality. It is necessary to combine the informa-
tion compensation and control system stability analysis for the
high requirements of the aeroengines.

For the purpose to shorten the gap mentioned above,
unlike the popular state estimation methods (traditional
KF, see, e.g., references [7, 8]), we proposed a hybrid adap-
tive Kalman filter (HAKF), an approach with hybrid mea-
surement correct based on the Kalman structure, to
increase the estimation accuracy with packet dropout. The
main difference between HAKF and the above Kalman filters
is that there is a measurement reconstruction step in ours
which improves the accuracy. Moreover, the stability of the
aeroengine control system with HAKF which incorporates
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information compensation into the control system stability
is investigated. The corresponding stability conditions of this
control system were presented in the formulation of linear
matrix inequalities (LMIs).

The salient novelties and contributions in this paper are
as follows:

(1) The new approach deals with packet dropout and the
control design separately, which significantly
improves the flexibility of the control system design
and boosts the performance of the control system.
In theory, the novel estimator effectively compen-
sates the missing states, and the controller guaran-
tees the desired stability performance

(2) The inverse system combined with references recon-
structs the missing measurable information. The
reconstructed information serves as the basis of the
measurement update in state estimation and
improves the accuracy of the new estimation

(3) By taking advantage of the reconstructed informa-
tion, the measurement, and the packet dropout flag
γk, the HAKF improves the estimation accuracy
obviously, which is distinctly different from the tra-
ditional Kalman filters [7, 8]. Moreover, the stability
of the HAKF is guaranteed in theory

(4) The proposed control design employs the hybrid
information, namely, actual and estimated informa-
tion. Furthermore, by a new mathematical
expectation-based Lyapunov function, the stability
of this hybrid control system is guaranteed

(5) The new approach is applied to a turbofan engine.
The results demonstrate that the HAKF decreases
the RMSEs of the estimation by over 57% compared
to the traditional Kalman filters, and the control sys-
tem has superior performances with the proposed
control

This paper is organized as follows. In Section 2, the mathe-
matical description of the aeroengine distributed control system
with packet dropout is formulated. Section 3 proposes the
design and stability analysis of the HAKF. Section 4 presents
the dropout-dependent stability analysis of the hybrid signal
closed-loop control system. In Section 5, the numerical exam-
ples are given to illustrate the comparison of novel HAKF and
the traditional filter in references [7, 8]; besides, the stability
simulations on the aeroengine are also described. Some conclu-
sions of this paper are drawn finally.

2. Problem Formulation

The aeroengine system is described as

xk+1 = Axk + Buk +wk,
yk = Cxk +Duk,
zk =Wxk + vk,

8>><
>>: ð3Þ

where xk ∈ℝn and uk ∈ℝm are the state and control inputs,
yk ∈ℝ

p is the output, zk ∈ℝl is the measurement, and wk

∈ℝn and vk ∈ℝl are the system and measurement noises.
The matrices A ∈ℝn×n, B ∈ℝn×m, C ∈ℝp×n, D ∈ℝp×m, and
W ∈ℝl×n are known. The noises wk and vk are Gaussian
noise with

E wk½ � = 0, E vk½ � = 0, ð4Þ

E wkw
T
k

� �
=Qk, E vkv

T
k

� �
= Rk: ð5Þ

To improve the aeroengine controller performance and
design flexibility, an estimation-based control framework
for aeroengine DCS is shown in Figure 1. Data packets are
transmitted from sensors to the controller and then to the
actuators via a shared network in the DCS. Inevitably, a
sophisticated packet may dropout in the data transmission.

Assumption 1. For the aeroengine DCS with stochastic
packet dropout, the following assumptions are introduced:

(1) Sensors are time-triggered, and the controller is
event-triggered

(2) The sensor data is sent following a sequence of
sampling

(3) The initial states transmitted from the controller to
the actuator are consistent at the initial moment

(4) The actuators take advantage of the data received in
the latest previous sample when the packet dropout

Remark 2. The data packets may dropout in the transmis-
sion from sensors to controller or/and from the controller
to actuators. Assumption 1 provides a strategy to compen-
sate for the lost information between the controller and
actuators based on the time-triggered network transmission
protocol. While the packet dropout between the sensors and
controller, it would cause the performance deterioration of
the controlled system (3). Hence, this paper focuses on com-
pensation and control with problem of the missing data
packet.

Due to the uncertainties of the external environment,
network characteristics, etc., the packet dropout is com-
monly designed as a random process. The packet dropout
in the network channel is considered a statistic random pro-
cess with multicycle information missing because of the sto-
chastic and disordered uncertainties. Define a random
variable γk to describe whether the controller receives the
observations at the sample instant k [31–33], and it is for-
mulated as follows:

P γk = 0ð Þ = λ, γk ∈ 0, 1gf : ð6Þ

Here, γk is a binary random variable subject to indepen-
dent identically distributed (i.i.d.) process. The variable γk
= 1 indicates that the controller accepts the sensor signals
successfully and there are no data dropout at instant k.
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Using γk = 0 demonstrates that the controller fails to accept
the sensor signals and the packet lost. Therefore, the net-
work transmission process in an aeroengine DCS can be
shown as Figure 2, in which ~zk is actual information that
the controller can receive at instant k.

~zk = γkzk: ð7Þ

From (7), when γk = 0, the information for controller
was lost, which immediately destroy the controller quality
and performance. Considering the information compensa-
tion, an estimator is designed as a guard for the controller
and the novel controller framework with signal transmission
is shown in Figure 3.

3. Hybrid Adaptive Kalman Filter

3.1. Structure of the HAKF. In view of the system (3) with
packet dropout, we propose the hybrid adaptive Kalman fil-
ter (HAKF) to compensate for the missing information.

The HAKF time update is

x̂−k+1 = Ax̂k + Buk, ð8Þ

P−
k+1 = E e−k+1e

−
k+1

T� �
= APkA

T +Qk, ð9Þ
and the posteriori estimated state is

x̂k+1 = x̂−k+1 + Kk+1 ~zk+1 −Wx̂−k+1ð Þ, ð10Þ

Pk+1 = E ek+1ek+1
T� �
, ð11Þ

where x̂k ∈ℝn is the estimated state at instant k, x̂−k+1 and
x̂k+1 ∈ℝn are the priori and posteriori estimated states, and
e−k+1 and ek+1 ∈ℝn are the priori and posteriori estimation
errors with

e−k+1 = x̂−k+1 − xk+1, ek+1 = x̂k+1 − xk+1, ð12Þ

P−
k+1 and Pk+1 ∈ℝn×n are the priori estimation error

covariance and the posteriori estimation error covariance,
Kk+1 ∈ℝn×l is the gain of HAKF, and ~zk+1 ∈ℝl is the hybrid
measurement.

Remark 3. The HAKF time update (8) and (9) supply the
priori estimated state, and then, the correct module (10)
was designed to update the priori estimated state. In view
of the time update, equations (8) and (9) are just model
based which are irrelevant to the measurements; the priori
estimated state and priori error covariance matrix of HAKF
are regular as the LKF as shown in [34].

Remark 4. According to the LKF theory, the adjustment of
the KF estimation state was motivated by the measurement
errors ~zk+1 −Wx̂−k+1. Equation (7) shows that no measure-
ment is included when a packet dropout and the traditional
KF has no correct module to update the priori estimation [7,
8]. When a continuous package dropout occurs, the accu-
racy of the KF decreases significantly. In practice, the packet
dropout comes up occasionally, which means the controller
can receive the measurements when the network works.
Hence, the HAKF adaptively adopts measurements or
reconstructed measurements when the network works or
package dropout occurs.

Remark 5. The key and primary difficulty is to design an
approach to reconstruct the missing measurements for the
HAKF. In Section 3.2, this difficult is addressed by the mea-
surement reconstruction with an inverse system.

3.2. Measurement Reconstruction. The meaningless mea-
surements need to be reconstructed when γk = 0, inspired
by the intelligent inverse control [35], we reconstruct the
measurement by combination of inverse system and refer-
ences. The inverse system connects with a previous system
in a series is shown in Figure 4, which can distinctly reveal
the relationship between inverse system S−1L and the original
system S.

Turbofan Engine

Sensor

Communication bus

data dropoutdata dropout

Actuator

Controller

Aeroengine distributed control
system

Aeroengine
nonlinear

model

Linear
model

Controller

Aeroengine

Measure-
ment update

H,Ma

�rust

Estimation based control framework

Inverse
system

Time update

HAKF

xk

zk

rk

uk

rk+1

rk+1

ũk+1

wk

�훾k+1 = 0

�훾k+1 = 1

ẑk+1 = 0

�훾k+1 = 0
x̂k+1

�훾k+1 = 1
xk+1

zk+1

Sensor

Figure 1: Framework of aeroengine DCS with estimation-based control approach.
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Considering system (3) at the instant k + 1, its input-
output system is

yS = SuS: ð13Þ

Here, uS = ½xTk+1 uTk+1�T ∈ℝn+m, yS = ½xTk+2 yTk+1�T ∈ℝn+p,

and S =
A B

C D

" #
∈ℝðn+pÞ×ðn+mÞ. The subscript k + 2 means

one step after k + 1.
The inverse system of (13) is defined as

u_k+1 = S−1L y_k+1, ð14Þ

here, u_k+1 = ½x_T
k+1 u

_T
k+1�

T
,y_k+1 = ½xTk+2 rTk+1�T ∈ℝn+p, rk+1 is

the reference, and S−1L ∈ℝðn+mÞ×ðn+pÞ satisfying S−1L S =
Iðn+mÞ×ðn+mÞ.

Remark 6. In an aeroengine closed-loop tracking control sys-
tem such as Figure 1, the ideal system response perfor-
mances are outputs yk+1 tracking for the reference signals
rk+1 without steady errors, and this performance can be
achieved by controller design, a tracking error-driven feed-
back approach [35]. Based on this characteristic, we recon-
struct the sensor signals ẑk+1 by the aeroengine inverse
system S−1L combined with the references rk+1, and x_k+1
would be equal to the actual xk+1 with the assumption of
no tracking errors.

Based on the inverse system (14), we reconstruct the out-
put as

ẑk+1 =W In×n 0n×m½ �S−1L y_k+1 =Wx_k+1: ð15Þ

Finally, the receiving measurements ~zk+1 can be written
as

~zk+1 = γk+1zk+1 + 1 − γk+1ð Þẑk+1: ð16Þ

Remark 7. By introducing the packet dropout variable γk+1,
equation (16) merges the measurement zk+1 and its recon-
structed value ẑk+1 to ~zk+1. When the network transmission
works, ~zk+1 = zk+1, while the packet dropout occurs, ~zk+1 =
ẑk+1, which can effectively rectify the abandoned correct
module in references [7, 8].

It is noted that the HAKF gain Kk+1 in (10) will affect the
posteriori estimation error ek+1 defined in (12). So, in the

next subsection, we present the optimization of Kk+1 to min-
imize the error ek+1.

3.3. Design of HAKF Gain Matrix. Define the performance
function as

J Kk+1ð Þ =min
Kk+1

〠
n

i=1
e2k+1 ið Þ, ð17Þ

here, ek+1ðiÞ is the ith entry of ek+1. Therefore, the perfor-
mance function JðKk+1Þ can be regarded as

J Kk+1ð Þ =min
Kk+1

Tr Pk+1ð Þ, ð18Þ

where Trð·Þ is the trajectory of a matrix [34, 36].
Introducing equations (10) and (16) into (12), it yields

ek+1 = x̂k+1 − xk+1 = x̂−k+1 + Kk+1 ~zk+1 −Wx̂−k+1ð Þ − xk+1 ð19Þ

where υk+1 is the residual of HAKF with

υk+1 = γk+1zk+1 + 1 − γk+1ð Þẑk+1ð Þ −Wx̂−k+1 = e−k+1
+ Kk+1 γk+1zk+1 + 1 − γk+1ð Þẑk+1ð Þ −Wx̂−k+1ð Þ

= e−k+1 + Kk+1υk+1,
ð20Þ

By formulas (3) and (15) and Remark 6, it follows:

υk+1 = γk+1zk+1 + 1 − γk+1ð Þẑk+1ð Þ −Wx̂−k+1
= −We−k+1 + γk+1vk:

ð21Þ

By formula (21), the error ek+1 in (19) can be rewritten as

ek+1 = e−k+1 + Kk+1 −We−k+1 + γk+1vkð Þ
= I − Kk+1Wð Þe−k+1 + γk+1Kk+1vk,

ð22Þ

and then, Pk+1 in equation (11) is

Pk+1 = I − Kk+1Wð ÞE e−k+1e
−
k+1

T� �
I − Kk+1Wð ÞT

+ γk+1 I − Kk+1Wð ÞE e−k+1vk
TKk+1

T� �
+ γk+1 I − Kk+1Wð ÞTE Kk+1vke

−
k+1

T� �
+ γk+1

2Kk+1E vkv
T
k

� �
Kk+1

T :

ð23Þ

Since the measurement noises vk are uncorrelated to the
priori estimated error e−k+1 [37], equation (23) can be simpli-
fied as

Pk+1 = I − Kk+1Wð ÞE e−k+1e
−
k+1

T� �
I − Kk+1Wð ÞT

+ γk+1
2Kk+1E vkv

T
k

� �
Kk+1

T :
ð24Þ

By equations (5) and (9), it follows

Pk+1 = I − Kk+1Wð ÞP−
k+1 I − Kk+1Wð ÞT + γk+1

2Kk+1RkKk+1
T :

ð25Þ

Network
channel Controller

wk

vk
�훾k

zk

Aero-
engine z̃k

Figure 2: Network transmission process.
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To solve (18), the partial differential to Kk+1 is

∂ J Kk+1ð Þð Þ
∂Kk+1

= −2P−
k+1W

T + 2Kk+1WP−
k+1W

T + 2γ2k+1Kk+1Rk

= −2 I − Kk+1Wð ÞP−
k+1W

T + 2γ2k+1Kk+1Rk:

ð26Þ

Let ∂ðJðKk+1ÞÞ/∂Kk+1 = 0 [38, 39], and it yields

Kk+1 = P−
k+1W

T WP−
k+1W

T + γ2k+1Rk

� �−1
: ð27Þ

Finally, considering system (3) with the reconstructed
measurements (16), by equations (8)–(10), (25), and (27),
the HAKF state estimation approach is summarized as

x̂−k+1 = Ax̂k + Buk, ð28Þ

P−
k+1 = E e−k+1e

−
k+1

T� �
= APkA

T +Qk, ð29Þ
x̂k+1 = x̂−k+1 + Kk+1 ~zk+1 −Wx̂−k+1ð Þ, ð30Þ

Pk+1 = I − Kk+1Wð ÞP−
k+1 I − Kk+1Wð ÞT + γk+1

2Kk+1RkKk+1
T ,

ð31Þ
Kk+1 = P−

k+1W
T WP−

k+1W
T + γ2k+1Rk

� �−1
: ð32Þ

3.4. HAKF Design Procedure. The design procedure of
HAKF is summarized as follows, and the iteration steps of
the new estimation approach are shown in Figure 5.

Step 1. Set up the initial state values for x̂0,u0,P̂0 and the
noise and system matrix Qk,Rk,Α,B,C,D, and W

Step 2. Calculate the prior estimated state x̂−k+1 and prior esti-
mation error covariance P−

k+1 at instant k + 1 based on (28)

and (29) with the state variable x̂k and input variable uk at
instant k

Step 3. Determine the situation of network channel and
reconstruct the measurement signals ~zk+1 based on (15)
and (16) by the binary variable γk+1

Step 4. Calculate the Kalman gain Kk+1 based on (32)

Step 5. Update the posterior state x̂k+1 with (30) by measure-
ment information ~zk+1 and calculate the posterior estimation
error covariance Pk+1 based on (31)

Step 6. Output x̂k+1,Pk+1, and update the time instant.

3.5. Stability Analysis of HAKF with Packet Dropout. The
proposed HAKF (28)–(32) takes advantage of the recon-
structed measurement (16), which results in the additional
estimated deviation. In this subsection, we present the fol-
lowing main result to investigate the stability of the new esti-
mation algorithm.

Theorem 8. Consider the system (3) with packet dropout (4).
If the matrices Qk ≥ 0 and Rk > 0, the HAKF (28)–(32) is
stable.

Proof. Consider the Lyapunov function candidate

Vk = eTk P
−1
k ek, ð33Þ

for any arbitrary ek ≠ 0, Vk > 0. Let

ΔVk+1 =Vk+1 − Vk = eTk+1P
−1
k+1ek+1 − eTk P

−1
k ek: ð34Þ

By (3), (10), and (12), we have

ek+1 = x̂k+1 − xk+1 = A − Kk+1WAð Þek
+ γk+1Kk+1W − Ið Þwk + γk+1Kk+1vk:

ð35Þ

Define

F = γk+1Kk+1W − I,G = γk+1Kk+1: ð36Þ

By formulas (34)–(36), it follows

ΔVk+1 = A − Kk+1WAð Þek½ �TP−1
k+1 A − Kk+1WAð Þek½ �

+ A − Kk+1WAð Þek½ �TP−1
k+1 Fwk +Gvkð Þ

+ Fwk +Gvkð ÞTP−1
k+1 A − Kk+1WAð Þek½ �

+ Fwk +Gvkð ÞTP−1
k+1 Fwk +Gvkð Þ − eTk P

−1
k ek:

ð37Þ

Network
channel

wk

vk

zk

Aero-
engine Estimator Controller

New controller
�훾k

z̃k

Figure 3: Network transmission with estimator.

Inverse
system

A B
C D

S
L
–1  S

y⁀k+1

y⁀k+1 y⁀k+1u⁀k+1

y⁀k+1

Figure 4: Inverse system of an aeroengine system.
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Since the noise vk always exists, ek cannot decay to 0 at
the end; the best hope is the homogeneous part of (35) must
decay with time. Considering the dynamics of (35) is explic-
itly irrelevant to the noises [40, 41], the stability condition
(37) can be simplified as

ΔVk+1 = eTk A − Kk+1WAð ÞTP−1
k+1 A − Kk+1WAð Þ − P−1

k

h i
ek:

ð38Þ

Define

CM = A − Kk+1WAð ÞTP−1
k+1 A − Kk+1WAð Þ − P−1

k , ð39Þ

Φ = A − Kk+1WAð ÞTP−1
k+1

h i−1
,

Π = PkA
T I − Kk+1Wð ÞT :

8<
: ð40Þ

Premultiply and postmultiply equation (39) by Φ andΠ,
and we have

ΦCMΠ = I − Kk+1Wð ÞAPkA
T I − Kk+1Wð ÞT − Pk+1, ð41Þ

by introducing equations (9) and (25) into (41), we have

ΦCMΠ = I − Kk+1Wð ÞAPkA
T I − Kk+1Wð ÞT

− I − Kk+1Wð Þ APkA
T +Qk

� �
I − Kk+1Wð ÞT

− γ2k+1Kk+1RkK
T
k+1 = − I − Kk+1Wð ÞQk I − Kk+1Wð ÞT

− γ2k+1Kk+1RkK
T
k+1:

ð42Þ

As γk. is a binary random variable subject to the i.i.d.
process, Qk ≥ 0 and Rk > 0, ΦCMΠ ≤ 0 and ΔVk+1 ≤ 0.
Hence, the Lyapunov function Vk is negative.

Theorem 8 is proved.☐

Remark 9. Because the package dropout rate λ is not 100%,
the binary random γk+1 is 1 with the probability of 1 − λ.
Hence, ΔVk+1 and ΔVk+1 are negative with the same proba-
bility and Vk will damp with the time.

Remark 10. Taking the advantage of γk+1, the HAKF renders
the state estimation to adapt to the network environment,
which characterize the new approach distinctly different
from the LKF.

Considering the existence estimation error of the HAKF
algorithm and for the purpose of improving system perfor-
mance, two states are in the aeroengine closed-loop control
system. First, when the controller received the measurement
information successfully, the actual system states are con-
tributed to design the controller. Otherwise, the inputs of
the controller are estimated state by the HAKF with mea-
surement reconstruction. It is worth noting that the state
estimator iteratively computes at each sample time, while
the inputs of controller vary with the random variable γk.

4. Dropout-Dependent Stability Analysis for
Control System

In Section 3, the stability of HAKF is discussed. In this sec-
tion, we further investigate the dropout-dependent stability
of this controlled system.

We consider the controlled system (3) with the state esti-
mation of HAKF. As shown in Figure 1, to reduce the influ-
ence of the estimation error, the controller receives the
actual state xk when γk = 1 and utilizes the estimated state
x̂k while γk = 0. Therefore, the closed-loop control system

Correct step Construction step

Initialization step Predictive step

Initialize initial input values and
system coefficient matrix for
x̂k, uk, Qk, Rk, A, B, C, D, W

Calculate the priori state estimate
x̂−k+1 and priori error P−

k+1 based on the
LKF state update equations 

Calculate the posterior state estimate
x̂−k+1 and posterior error P−

k+1 based on
measurement update equations with
reconstruction measurement

Construct measurement signal base on
whther the packet dropout occurred,

z̃k+1 = �훾k+1zk+1 + (1 + �훾k+1)z̃k+1

Figure 5: Iteration steps of HAKF.
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(3) with hybrid signals can be described as

~xk+1 = ~A~xk + ~B~uk + ~wk, ð43Þ

where the system hybrid state ~xk ∈ℝ2n and input ~uk ∈ℝ2m

are

~xk = xk
T x∧k

T
� �T , ~uk = uk

T u∧k
T

� �T , ð44Þ

where ûk ∈ℝm is the control variable calculated by x̂k
and ~A and ~B are matrices with appropriate dimension. State
equation (43) simply reveals the relationship of state at time
k and k + 1, but it is worth paying attention that, because of
the estimated state in the system (43), the system process
noise variable ~wk is not as same as wk in (3).

Remark 11. Since the two states switch in the system (43) at
each sample instant k, there are challenges to the stability of
the control design. The next stability analysis will respond to
the challenges.

In system (43), the four cases of state at instant k + 1
come after.

Case 1. The system information is missing at both instants k
and k + 1, and there is

γk = 0, γk+1 = 0,
x̂k+1 = Ax̂k + Bûk + Kk+1 ẑk+1 −Wx̂−k+1ð Þ:

(
ð45Þ

Case 2. The system information was sent successfully at
instant k, while it is missing at instant k + 1. There is

γk = 1, γk+1 = 0,
x̂k+1 = Ax̂k + Buk + Kk+1 ẑk+1 −Wx̂−k+1ð Þ:

(
ð46Þ

Case 3. The system information is missing at instant k, while
it was sent successfully at instant k + 1. There is

γk = 0, γk+1 = 1, xk+1 = Ax̂k + Bûk +wk: ð47Þ

Case 4. The system information is sent successfully at both
instants k and k + 1, there is

γk = 1, γk+1 = 1, xk+1 = Axk + Buk +wk: ð48Þ

Considering these four cases, the state in (44) can be fur-
ther written as

xk+1 = γk+1 1 − γkð Þ Ax̂k + Bûkð Þ + γk+1γk Axk + Bukð Þ + γk+1wk,
x̂k+1 = 1 − γk+1ð ÞAxk + 1 − γk+1ð Þ 1 − γkð ÞBûk + 1 − γk+1ð ÞγkBuk:

ð49Þ

The matrices and the noise ~wk in the system (43) can be

explicated as

~A =
γk+1γk γk+1 1 − γkð Þ
1 − γk+1ð Þ 0

" #
A,

~B =
γk+1γk γk+1 1 − γkð Þ

1 − γk+1ð Þγk 1 − γk+1ð Þ 1 − γkð Þ

" #
B,

~wk =
γk+1wk

0

" #
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð50Þ

Let the state feedback control law is

~uk = KX~xk: ð51Þ

Introduce equation (51) into (43), and we have

~xk+1 = ~A + ~BKX

� �
~xk + ~wk: ð52Þ

Lemma 12. (Schur complement, see [42]). For a symmetric

matrix L = LT =
L11 L12

∗ L22

" #
, L11 ∈ℝr×r , the following state-

ments are equivalent:

L < 0,
L11 < 0, L22 − LT12L

−1
11 L12 < 0,

L22 < 0, L11 − L12L
−1
22 L

T
12 < 0:

ð53Þ

Lemma 13. Consider a given discrete-time system:

xk+1 = f xk, tð Þ,
f xe, tð Þ = 0,∀t:

(
ð54Þ

If there exists a positive definite function Vð∙Þ ∈ℝn ×ℝ
⟶ℝ+, for any k ∈ℕ and xk ≠ 0 ∈ℝn such that

ΔV xk, kð Þ =V xk+1, k + 1ð Þ −V xk, kð Þ < 0, ð55Þ

system (54) is asymptotically stable.

Theorem 14. Consider a closed-loop state feedback control
system (43) under control (51) with the packet dropout rate
λ. If there exist matrices Ν =ΝT > 0 and KX , such that

−Ν E ~A + ~BKX

� �h i
E ~A + ~BKX

� �h iT
−Ν−1

2
64

3
75 < 0, ð56Þ
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where

E ~A + ~BKX

� �h i
=

1 − λð Þ2 1 − λð Þλ
λ 0

" #
A +

1 − λð Þ2 1 − λð Þλ
λ 1 − λð Þ λ2

" #
BKX ,

ð57Þ

controlled system (52) is asymptotically stable.

Proof. Consider the Lyapunov function candidate

V ~xkð Þ = E ~xk½ �TΝE ~xk½ �, ð58Þ

V ~xk+1ð Þ = E ~xk+1½ �TΝE ~xk+1½ �, ð59Þ

The deviation of Vð~xk+1Þ along the time trajectory of the
system (43) under control (51) is

ΔV ~xk+1ð Þ =V ~xk+1ð Þ −V ~xkð Þ = ~xTk E ~A + ~BKX

� �h iT
ΝE

� ~A + ~BKX

� �h i
~xk + ~xTk E ~A + ~BKX

� �h iT
ΝE ~wk½ �

+ E ~wk½ �TΝE ~A + ~BKX

� �h i
~xk + E ~wk½ �TΝE ~wk½ �

− E ~xk½ �TΝE ~xk½ �:
ð60Þ

By (4), equation (60) can be simplified as

ΔV ~xk+1ð Þ = ~xTk E ~A + ~BKX

� �h iT
ΝE ~A + ~BKX

� �h i
−Ν

� 	
~xk:

ð61Þ

According to Lemma 12 and formula (56), we have

E ~A + ~BKX

� �h iT
ΝE ~A + ~BKX

� �h i
−Ν < 0: ð62Þ

Therefore, ΔVð~xk+1Þ < 0. Theorem 14 is proved.☐

Remark 15. In the proof of Theorem 14, the Lyapunov func-
tion candidates (58)–(59) are designed with mathematical
expectation E½∙� of the hybrid system states ~xk and ~xk+1,

which introduce the packet dropout rate λ. Hence, stability
condition (56) is dropout dependent.

Remark 16. Due to the introduction of the network in the
DCS, the packet dropout generates consequentially and
causes the performance deterioration of the controlled sys-
tem. To deal with this problem, a new framework consisting
of the missing information compensation and the dropout-
dependent control is proposed. The packet dropout is mod-
elled as (6) and a HAKF approach (28)–(32) estimates the
missing states. A dropout-dependent control design with
stability condition (56) is presented based on the estimated
information. The closed-loop control system is proved stable
with the packet dropout.

5. Application to Turbofan Engine

Consider a two-spool turbofan engine shown in Figure 6
that is described as (3) with

xk = nL nH½ �Tk , uk = Wf A8
� �T

k
,

yk = nL nH½ �Tk , zk = T t3 Pt3 Tt6 Pt6½ �Tk ,

8<
: ð63Þ

where nL and nH are the low-pressure (LP) rotor speed and
the high-pressure (HP) rotor speed, Wf is the main fuel
flow, A8 is the nozzle throat area, T t3 and Pt3 are the total
temperature and pressure at the outlet of the compressor,
and T t6 and Pt6 are the total temperature and total pressure
at the outlet of LP turbine.

At the typical operation point (H = 0 km, Ma = 0) in the
flight envelope, the resulted matrices are

A =
0:929 −0:07
−0:046 −0:953

" #
, B =

0:052 0:049
0:034 0:032

" #
,

C = I2×2,D = 02×2,W =

0:118 0:252
0:171 0:619
0:045 −0:258
0:574 −0:005

2
666664

3
777775,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð64Þ

where I2×2 is an identify matrix and 02×2 is a zero matrix.

0 1 2 22 3 4 43 5 6 7

8

9

13 16

FanInlet Compressor Combustor NozzleAfterburnerMixerLPTHPT

Figure 6: Diagram of a two-spool turbofan engine.
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Next, we first present the specific implementation pro-
cess for the simulation, and then, by this process, two cases
of simulations are conducted. The process for the simulation
can be summarized below.

Step 1. Based on the nonlinear model formulated by thermo-
dynamic characteristics of the turbofan engine, the matrices
A, B, C, D, andW in equation (3) are obtained by small per-

turbation methods [43, 44] at the typical operating point H
= 0 km, Ma = 0.

Step 2. Input the packet dropout rate λ for the simulation
and then calculate the state feedback controller KX by the
LMI (56).

Step 3. Set up the initial state values for x̂0,u0, and P̂0 and the
simulation noise with covariance matrix Qk,Rk.

Step 4. Based on the matrices A, B, C, D, andW with the ini-
tials, reconstruct the measurements by equations (15)–(16)
and then update the estimated state by (28)–(32).

Step 5. The controller ~uk is obtained by equation (51) and
then imports the inputs into the turbofan engine.

nH

Actual state nH with noise
Estimated n̂H in [7]
Estimated n̂H of AKF
Estimated n̂H of HAKF
Actual state n̂H without noise

0 2 4 6 8 10
0.992

0.996

1.000

1.004

1.008

1.012

1.016

4.0 4.1 4.2 4.3 4.4 4.5 4.6

1.004

1.005

Time (s)

Figure 11: State nH and its estimations of three methods.
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Time (s)

-0.001

0.000
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wk

Figure 8: System noise.
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0.996

1.002

1.008

1.014

1.020

1.026

Actual Tt3
Actual Pt3
Actual Tt6
Actual Pt6

Reconstructed T⌃t3
Reconstructed P⌃t3
Reconstructed T⌃t6
Reconstructed P⌃t6

Time (s)

Figure 9: Comparison between reconstructed measurements and
actual measurements.

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8
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Time (s)

�훾k

Figure 7: Packet dropout history with λ = 10%:

0 2 4 6 8 10
Time (s)

0.996

1.002

1.008

1.014

1.020

1.026

1.032

4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8

1.012

1.013

1.014

1.015
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Actual state nL with noise
Estimated n̂L in [7]
Estimated n̂L of AKF
Estimated n̂L of HAKF
Actual state n̂L without noise

Figure 10: State nL and its estimations of three methods.
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5.1. State Estimation Simulation for Turbofan Engines with
Packet Dropout. We first verify the estimation performance
of the HAKF by simulation under the operation condition
H = 0 km, Ma = 0. The packet dropout is a Bernoulli process
with λ = 10% and the initials are given as

x0 = 1 1½ �T , P0 =Q0 = 0:001I2×2, R0 = 0:001I4×4: ð65Þ

By equations (16) and (28)–(32), the reconstructed mea-
surements and the estimated states are, respectively,
obtained with the presence of packet dropout. Figure 7
shows packet dropout history by the variable γk. In the fig-
ure, “1” indicates the successful measurements receive of
estimator. On the contrary, “0” suggests the packets dropout.
Figure 8 gives the noise history. Figure 9 shows the compar-
ison between reconstructed measurements and its actual
value. It is clearly to find that the reconstructed measure-
ments can track the actual quickly and precisely, which
guarantees the accuracy of HAKF.

Figures 10 and 11 show the histories of estimated states
n̂L, n̂H and their true values nL, nH . We can discover that

the estimation states of HAKF (blue line) are close to the
actual value even at the packet dropout instant. Figures 12
and 13 further give the estimation errors of nL and nH .
The RMSEs of nL and nH by the HAKF are 0:901 × 10−4
and 0:91 × 10−4, which are shown in Figure 14.

To compare the new estimator with the traditional Kal-
man estimation approach shown in [7], the adaptive Kalman
filter (AKF) is conducted under the same simulation condi-
tions as the HAKF. The simulation results of these two
approaches are also depicted in Figures 10–14. From
Figures 10 and 11, we can find that the filter in [7] has bigger
jitter than the HAKF at the steady state. There is a significant
droop at 1 s resulted by the step of inputs when the aeroen-
gine transits to another steady state. The measurements vary
sharply in Figure 9, which cause the significant droop in
Figures 10 and 11. By Figure 14, we can find that, comparing
with the filter in [7] and the AKF, the RSMEs of the new fil-
ter are reduced by 67.95% and 65.55% for nL and by 83.61%
and 83.35% for nH . It demonstrates that, because of the col-
laboration of the measurements and their reconstructions
when packet dropout, the estimation accuracy of HAKF is
significantly superior.

Furthermore, we conducted the simulation under more
different operation conditions with different packet dropout
rate λ in the flight envelope. The RMSEs of the two states of
three estimation methods are listed in Tables 1 and 2. The
results in Tables 1 and 2 show that the RMSEs of HAKF
decreases over 57% compared to the traditional Kalman fil-
ter in [7] at all simulation conditions, and the maximum
error reduction is 83.61%. It can be intuitively concluded
that the HAKF has the significant improvement in estima-
tion accuracy compared to the traditional Kalman filter.

5.2. Stability Simulation for the Controlled Turbofan Engines
with Hybrid Signals. In this subsection, we performed the
simulation to verify the stability of the controlled turbofan

nHnL
0

1

2

3

4

5

6

RM
SE

nL RMSE of filter in [7]
nL RMSE of AKF
nL RMSE of HAKF
nH RMSE of filter in [7]
nH RMSE of AKF
nH RMSE of HAKF

(10–4)

Figure 14: RMSEs of three estimation methods.
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Figure 12: The estimated error enL .
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Figure 13: The estimated error enH .
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0 2 4 6 8 10
Time (s)

2.44

2.46

2.48

2.50

2.52

2.54

Wf A8

Wf
A8

0.240

0.246

0.252

0.258

0.264
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Figure 16: Histories of control inputs Wf and A8.

Table 1: nL RMSE of three methods.

Operation
points

λ
RMSE (10-4)

Filter in
[7]

AKF HAKF
Decrease to [7]

(%)

H = 0 km
Ma = 0

10% 2.81 2.62 0.90 -67.95

20% 2.82 2.60 0.82 -71.11

30% 2.89 2.42 1.22 -57.74

H = 4 km
Ma = 0:4

10% 4.86 4.48 1.57 -67.63

20% 4.33 3.99 1.30 -69.98

30% 4.38 3.81 1.83 -58.24

H = 6 km
Ma = 0:8

10% 3.28 3.13 0.79 -75.82

20% 3.16 2.95 0.77 -75.77

30% 3.00 2.72 1.06 -64.55

H = 10 km
Ma = 1

10% 5.49 5.22 1.21 -77.90

20% 4.72 4.28 0.93 -80.19

30% 4.87 4.29 1.41 -71.05

Table 2: nH RMSE of three methods.

Operation
points

λ
RMSE (10-4)

Decrease to [7]
(%)

Filter in
[7]

AKF HAKF

H = 0 km
Ma = 0

10% 5.55 5.47 0.91 -83.61

20% 5.39 5.29 1.07 -80.10

30% 4.96 4.79 1.29 -74.05

H = 4 km
Ma = 0:4

10% 3.91 3.61 1.14 -70.82

20% 3.74 3.48 1.02 -72.66

30% 3.52 3.14 1.33 -62.31

H = 6 km
Ma = 0:8

10% 3.02 3.03 0.94 -68.93

20% 2.99 3.01 1.08 -63.82

30% 2.99 3.02 1.47 -50.80

H = 10 km
Ma = 1

10% 8.15 7.99 1.71 -79.03

20% 8.12 7.88 2.01 -75.20

30% 7.68 7.30 2.54 -66.99

0 2 4 6 8 10
Time (s)

0.984
0.986
0.988
0.990
0.992
0.994
0.996
0.998
1.000
1.002

Aeroengine state nL
Aeroengine state nH

Figure 15: States nL and nH stabilization history of control system
with λ = 10%.
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Reconstructed P⌃t6
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0.97
0.98
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1.00
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Figure 17: Measurements and their reconstructed values.
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Estimated n̂H of HAKF
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0.992
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Figure 18: States and their estimations by HAKF.
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system (3), (63), and (64) with HAKF (28)–(32) and the
state feedback controller (51).

Remark 17. It is worth noting that the stability simulation is
also conducted at the typical operation point (H = 0 km, M
a = 0). The system mathematical description is same with
(64) and the simulation contained the HAKF estimation
module under packet dropout.

By Theorem 14, solving the LMI (56), the control gain of
(51) was obtained as

KX =

−3:725 −0:455 −0:412 −0:053
−0:455 −13:211 −0:064 −1:467
−0:412 −0:064 −0:0004 0:029
−0:053 −1:467 0:029 −0:001

2
666664

3
777775: ð66Þ

The simulation results are displayed in Figures 15–18.
Figure 15 demonstrates the aeroengine states with λ = 10%.
By Figure 15, we can observe that the states can converge
to the equilibrium points x0 = 0:9993 0:9987½ �T after 2 s,
which means this controlled turbofan with a hybrid signal
system is stable under the packet dropout. The control
inputs are shown in Figure 16. The measurement recon-
struction and estimation of HAKF are depicted in
Figures 17 and 18. Figure 16 shows that the inputs Wf and
A8 jitter due to the presence of packet dropout and noises.
We can find that, in Figure 17, the measurement reconstruc-
tion has a good recovering ability to the missing measure-
ments, and in Figure 18, the HAKF has excellent
estimation accuracy.

6. Conclusions

For controlling the aeroengine with distributed control sys-
tem framework, there is a challenge, the packet dropout,
which should be investigated. The literature researches focus
on the estimation for packet dropout or the robust control
that covering packet dropout independently. We proposed
an estimation-based and dropout-dependent control
approach. The estimation is first concerned about the mea-
surement reconstruction by an inverse system combined
with references. Then, a hybrid adaptive Kalman filter is
proposed to estimate the missing states with the assistance
of reconstructed measurements, and the stability of this esti-
mation approach is proved to be specific and sufficient.
Finally, a simply and intuitively design method for the
estimation-based and dropout-dependent control is pro-
posed. The novel control scheme is applied to a turbofan
engine. The simulations demonstrate that under the same
simulation conditions, comparing to the estimation
approach in [7], RSMEs of HAKF is reduced by 67.95% for
nL and by 83.61% for nH which directly and clearly shows
that the HAKF has significant estimation accuracy advan-
tage. It can be concluded that the HAKF has satisfactory
and effective ability (effectiveness) for compensating missing
states. And the stability of a turbofan engine controlled sys-

tem is guaranteed and verified by the simulation. This paper
presents a novel estimation in combination with state feed-
back control for the aeroengine distributed control system
with network packet dropout.
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