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This paper demonstrates a detailed analysis of the feasibility for compact formation system around an L2-type artificial
equilibrium point by means of continuous low-thrust propulsion in the hybrid form of solar sail and Coulomb force
propulsion. Firstly, in view of non-ideal solar sail, the position of L2-type artificial equilibrium point and numerical periodic
orbits around L2 utilized as leader’s nominal trajectory are given. Secondly, considering the external disturbances in the deep
space environment, the nonlinear dynamic model of the spacecraft formation system based on the circular restricted three-
body problem (CRTBP) is derived, under the assumption that the leader covers the nominal trajectory and each follower
adjusts its propulsive acceleration vector (that is, both its sail attitude and electrostatic charge) in order to track a desired
relative trajectory. Thirdly, based on a new double power combination function reaching law, a fast integral terminal sliding
mode control methodology (MFITSM) is ameliorated to achieve orbital tracking rapidly, which has better robustness against
external disturbances and the buffeting effect during spacecraft propulsion simultaneously. To properly allocate control inputs,
a novel optimal allocation scheme is designed to calculate the charge product of the spacecrafts and sail attitude angles, which
can make the magnitude of the acceleration required from the Coulomb propulsion system minimum and avoid formation
geometry instabilities by balancing electrostatic interaction between adjacent spacecraft. Finally, several numerical examples are
conducted to validate the superiority of the proposed control algorithm.

1. Introduction

Formation flight of spacecraft has always been a hot topic in
space research. Spacecraft formation is generally composed
of a group of small space-distributed spacecrafts orbiting
each other, and each satellite in the formation forms a virtual
spacecraft through information interaction and cooperative
work, in order to achieve the functions of large satellites or
the missions that cannot be achieved by traditional single
large satellite. Some of its main applications include outer
space exploration, space scientific experiments, monitoring
the earth and its surrounding atmosphere, and deep space
imaging or exploration. Compared with single spacecraft,
the formation flight of spacecraft can get longer flight dura-
tion, stronger capacity of disturbance rejection, more flexi-
bility for execution of the mission, and lower cost.
Controling the relative position of spacecraft accurately is

crucial for spacecraft formation system. Conventional for-
mation control is performed using chemical thruster, which
consume energy and can generate caustic plumes to contam-
inate onboard equipments. Therefore, the formation control
by means of propellantless propulsion is of great signifi-
cance. As an emerging technology, propellantless control
methods were proposed utilizing the solar sail [1], Coulomb
forces [2], electromagnetic forces [3], tethered systems [4],
momentum exchange [5], etc. In addition, when some
exploration missions are carried out in low orbit (LEO), it
is possible to use the aerodynamic forces [6] and Lorentz
force [7] as the control resource. In this paper, we propose
a novel propellantless propulsion technology by using the
combination of Coulomb force and solar radiation pressure
which would be widely used deep space exploration mis-
sions. The merits of this propulsion technology over the
conventional propulsion method include no fuel
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consumption, and the contamination from plumes is
avoided, higher propulsive efficiency and longer flight
duration.

Formation flight of spacecraft around the libration
points to observe heavenly bodies has been extensively stud-
ied. For example, the cosmic microwave background can be
effectively measured by deploying a formation of spacecraft
in a periodic orbit around L2 point. Since sunlight hitting
the orbits around L1 point is not blocked by the Earth,
spacecraft formation in such orbits can give warning of
interstellar storms [8]. To set aside enough reaction time
for safety protection equipment, the spacecrafts are consid-
ered to be deployed in the orbit around the artificial equilib-
rium point [9], which is closer to the Sun than the natural
equilibrium point. Since the orbits around the artificial equi-
librium point is unstable, a continuous control force is vital
to realize the long-term bounded relative motion of
spacecraft.

Although the solar radiation pressure provided by the
solar sail around the artificial equilibrium point can offset
the gravitational imbalance between the Sun and the Earth,
orbit motion is still unstable, so active orbit control is
needed. At present, the research results on orbit control of
solar sail around the artificial equilibrium point are abun-
dant. Lawrence and Piggott [10] and Zhang et al. [11] pro-
posed LQR controller with attitude angle amplitude
constraint. Bookless and McInnes [12] realized the transfer
of a solar sail spacecraft from Earth orbit to an artificial equi-
librium point orbit using an LQR controller. All the above
methods take the two attitude angles of the sail surface as
the control input to control the position of the solar sail in
the three-dimensional space, which leads to the underactu-
ated case of the control system. To that end, some solutions
have been proposed for the underactuated problem. Gong
and Li [13] proposed a variable reflectivity solar sail model
(RCD) based on the reflectivity control principle used by
the IKAROS solar sail, and designed an artificial equilibrium
point orbit keeping controller based on Floquet theory. But
the design of variable reflectivity solar sail model is too ideal,
such as continuous treatment of discrete RCD, ignoring the
power supply film covered by sail, and the assumption of
high surface to mass ratio, which are difficult to be applied
in engineering practice. Soldini et al. [14] proposed a vari-
able structure solar sail model, taking the sail area as the
third control input, and designed a Hamiltonian structure
holding controller. However, once solar sail is applied in
practice, it is usually difficult to achieve flexible structural
changes, so the scheme’s practicality is questionable. Zhang
[15] adopted the ideal reflective solar power sail structure,
ignored the influence of solar cells, and designed an active
disturbance rejection track keeping controller. This scheme
is also too ideal, and its electric propulsion fuel consumption
is large, which cannot meet the long-term mission require-
ments. At present, the studies of formation around AEP
mainly focus on large-scale formation, with formation spac-
ing ranging from several thousand meters to tens of kilome-
ters [16, 17], and the research on extremely close formation
is few (below 100 meters). On the one hand, the extremely
close formation requires higher control precision; a slight

mistake may lead to the loss of configuration and collision
damage. On the other hand, ion propulsion and chemical
propulsion, which are commonly used in large-scale forma-
tion and cannot be used in extremely close formation due to
plume pollution. Recognizing these open issues of the previ-
ous work, we propose a propellantless propulsion method
using the combination of Coulomb force and solar radiation
pressure for deep space exploration missions.

King et al. [18] firstly proposed the idea of using electro-
static force for spacecraft formation. Recently, considering
that the constraint conditions mainly include maximum cur-
rent saturation limit and maximum spacecraft charging
value, Felicetti and Palmerini [19] investigated three space-
crafts formation configuration control problem in GEO by
means of electrostatic force. And an optimal charge alloca-
tion strategy [20] is proposed and discussed, that is, the
charge is distributed to all spacecrafts starting from the cal-
culated charge product. Coulomb force, also known as elec-
trostatic force, is a propellantless propulsion method
controlled by electrostatic attraction or repulsion between
charged spacecrafts. Solar sail can generate continuous small
thrust for long-lived formation missions due to the momen-
tum exchange caused by solar photons hitting the sail mem-
brane, which has been widely applied to spacecraft
formation flying around the equilibrium point, halo orbit,
displaced orbit, etc. Similarly, the continuous thrust required
to maintain a non-Keplerian orbit could be provided by a
solar sail [21]. However, the requirements of large size and
lightweight materials limit the practical application of solar
sail. In addition, the component of the propulsive accelera-
tion produced by the solar sail be pointed towards the Sun
[22]. Compared to solar sail, Coulomb force is the inter-
spacecraft force, which can be used to adjust the formation
geometry and size [18–20]. And Coulomb propulsion is
capable of generating propulsion components towards the
Sun. As a clean energy source, Coulomb propulsion has been
used for some formation missions due to its ability to gener-
ate low thrust and high specific impulse. Since Coulomb
force is the internal force of formation, Coulomb propulsion
cannot be used to change the position of the center of mass
and formation orientation. Therefore, the external force of
formation is required for the formation maneuver missions,
such as electric thruster, chemical thruster, solar sail, E-sail,
or magnetic sail.

At present, the research on hybrid propulsion for space-
craft formation has seen a lot of interest, which can be
roughly divided into two categories: propellant and propel-
lantless propulsion.

Hybrid sail propulsion combining solar sail with solar
electric propulsion (SEP) has been proposed for non-
Kepler-orbit maintenance, and some of the major contribu-
tions in this area are described below. Simo and McInnes
[23] investigated the hybrid sail spacecraft formation flying
around the libration point orbit using feedback linearization
methodology. Based on an ADRC technique, Zhang et [24]
realized the hybrid sail spacecraft formation control around
the heliocentric displaced orbit. Qin et al.[25] established a
hybrid propulsion strategy based on SEP and solar sail, con-
ducted simulation experiments for geosynchronous
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displaced orbit under different lightness numbers, and opti-
mized the control process of solar sail attitude angle and
electric propulsion acceleration. Chen et al.[26] proposed a
novel sliding mode controller to realize the spacecraft for-
mation control around the heliocentric displaced orbit,
which is robust to internal unmodeled dynamics and exter-
nal unknown disturbances. In addition, the control algo-
rithm has a high control accuracy. Notably, the above
hybrid sail propulsion mode belongs to a propellant propul-
sion due to the fuel requirements of the solar electric
propulsion.

For the research on other hybrid propulsion methods,
Huang et al. [27, 28] introduced a new hybrid propulsion
strategy by means of Lorentz force and control force gener-
ated by the thruster, which is the part of propellant propul-
sion system. The formation keeping of spacecraft can be
effectively controlled using a propellantless propulsion
method [29], which combines Lorentz force and aerody-
namic force. An adaptive output feedback control law is
introduced to verify the feasibility of the proposed propul-
sion method against external disturbances and velocity
uncertainties. Recently, the designed hybrid propulsion sys-
tem for the linearized spacecraft formation model around
planetary displaced orbits has been presented, which guar-
antees a given formation geometry by using the combination
of ideal solar sail and Coulomb force as a propellantless con-
trol method [30].

In recent years, various advanced control algorithms
have emerged and been applied to spacecraft formation con-
trol around artificial equilibrium points. The linear qua-
dratic controller is the first to be used because of its simple
structure and easy implementation. Wang et al. [31], Marc-
hand and Howell [32] and Roberts [33] used LQR method to
solve the formation control problem around the equilibrium
point. Feedback linearization control is another linearization
technique to solve nonlinear system control problems, and it
also can be applied to formation flight around the equilib-
rium point. Folta et al.[34] proposed a basic LQR control
law to linearize orbits around the libration point. Based on
the LTI model, Hamilton et al.[35] designed a LQR control
method for formation-keeping and orbital maneuver of SI
mission around L2-type libration point. The nonlinear sys-
tem is approximated to linear system in the above study,
and the control effect often cannot meet the requirements
of high-precision formation missions, and the system
robustness is poor. For the purpose of improving the perfor-
mance of the control algorithms, some scholars proposed
different nonlinear control strategies based on the nonlinear
dynamics system of formation flight. Wong and Kapila et al.
[36] provide an adaptive controller for the spacecraft forma-
tion system around the L2-type libration point. Peng et al.
[37] designed an optimal period control law to simulta-
neously solve the problem of orbit maintenance and forma-
tion control in the leader-follower formation configuration.
Based on polynomial eigenstructure assignment, Wang
et al.[38] designed a nonlinear controller to control forma-
tion flying around the L2-type equilibrium point. In addi-
tion, nonlinear sliding mode control has been applied
many times in equilibrium point formation flight problems.

Compared with LQR and other linear control strategies,
these nonlinear control strategies achieve higher control
accuracy and better system robustness. The above control
methods have been verified that they have good control per-
formance for formation keeping. However, some deficiencies
still exist and cannot be ignored: the dependence on system
model especially poor capability of disturbance rejection.
These external disturbances are unavoidable in the execution
of formation missions, so they need to be taken into account
in the establishment of dynamic models. To ensure system
stability and robustness, enhance control accuracy, and get
faster convergence rate, the modified fast integral terminal
sliding mode control law with a new double power combina-
tion function reaching law, known as MFITSMC, is pre-
sented in this note.

The aim of this note is to investigate the problem of for-
mation flying control around the artificial equilibrium point
by means of the combination of Coulomb force and non-
ideal solar sail, which can achieve extremely compact forma-
tions at distances of 100 meters or less. The hybrid propul-
sion is a novel formation control method, which has the
characteristics of no fuel consumption, high efficiency, the
ability to provide continuous small thrust, and so on. More-
over, it overcomes the deficiency that simple solar sail pro-
pulsion cannot provide the propulsion component pointing
towards the sun, so it is suitable to carry out some specific
deep space exploration missions. Compared with the previ-
ous hybrid propulsion research, the nonlinear research
method and the non-ideal solar sail model are adopted in
this paper, which are more suitable for dealing with the
strong coupling and nonlinear problems existing in actual
spacecraft orbit control. Additionally, the modified fast inte-
gral terminal sliding mode controller is designed with a new
double power combination function reaching law for space-
craft formation system. Then, in order to allocate control
commands more reasonably, the novel optimal allocation
scheme is designed by means of particle swarm optimization
algorithm and the MATLAB’s fmincon function, which
ensures the magnitude of the acceleration required from
the Coulomb propulsion system is minimum and avoids for-
mation geometry instabilities by balancing electrostatic
interaction between adjacent spacecraft. Finally, numerical
simulation results illustrate that the proposed control algo-
rithm has better control performance than the conventional
control laws against the perturbations in space environment
and system uncertainties.

The rest of this paper is organized as follows. The math-
ematical model of spacecraft formation flying around the
L2-AEP is put forward in Section 2. The control algorithm
is proposed for the nonlinear dynamics model in Section 3.
Numerical simulations are analyzed in Section 4. Finally,
the paper is summarized in Section 5.

2. Mathematical Model

This paper considers a mission scenario in which multiple
spacecrafts flying around an L2-type artificial equilibrium
point to explore the surface of the Sun and deep space. In
the process of formation establishment, the leader moves
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along the nominal trajectory and each follower adjusts its
thrust vector (that is, the combination of solar radiation
pressure and Coulomb force) in order to track a desired rel-
ative trajectory. In this section, the halo orbit around L2
point is designated as the nominal trajectory and the nonlin-
ear relative dynamic model of the spacecraft formation sys-
tem is derived. The research in this paper is assumed to be
carried out in the Circle Restricted Three-Body Problem
model. The following are the contents about artificial equi-
librium points, nominal trajectory, spacecraft relative
dynamic model, and the external disturbance model.

2.1. Generation of the Artificial Equilibrium Point and
Nominal Trajectory of the Leader. The base case of the
CRTBP used in this paper is described in Figure 1, which
can be assumed that two celestial bodies (Sun and Earth)
rotate around their center of gravity in circular orbits with
a constant angular velocity. The mass of the spacecraft can
be ignored with respect to the mass of the two celestial bod-
ies. Therefore, the effects of the third body spacecraft on the
two central bodies are negligible. Three collinear libration
points L1, L2, and L3 are also shown in Figure 1. For conve-
nience, the reference frames used in the paper are given
below.

RI - Sun-Earth barycenter synodic reference frame: the
origin of this reference is located at the Sun-Earth’s center-
of-mass, with plane XY coinciding to the ecliptic. The X unit
vector is pointed from the Sun towards the Earth, the Z-axis
is normal to the plane of the celestial bodies’ orbit, and the Y
-axis completes the right hand orthogonal frame system and
is thus defined as normal to the X-axis in the plane of the
celestial bodies’ orbit and along the prograde rotational
direction.

RB - body-fixed reference frame located at the space-
craft’s center of mass: with origin at the spacecraft center
of mass o, which also coincides with the solar sail center of
mass. The unit vectors i, j, and k are assumed to lie along
the principal axes of inertia of the (ideal) unwrinkled sail.

In order to facilitate the subsequent calculation, the sys-
tem parameters are normalized. The total system’s mass is
defined as:

m =m1 +m2, ð1Þ

where m1 and m2 represent the masses of the celestial bodies
(Sun and Earth), while μ is the mass ratio of the planetary
system.

μ = m2
m1 +m2

: ð2Þ

To make it easier to normalize variables, the following
assumptions need to be made:

(1) The total mass of the celestial bodies is normalized to
one

(2) The distance between the celestial bodies is normal-
ized to one

(3) The angular velocity of the central bodies rotating
around their center of mass is normalized to one

Accordingly, the period of one Earth–Sun revolution is
2π, the Sun-[Earth+Moon] reference distance is rSE = 1AU ,
the dimensionless mass of the [Earth+Moon] system is μ =
m2/m1 +m2 = 3:05425 × 10−6, the O-Sun distance is rS = μ
rSE = μ, the O-[Earth+Moon] distance is rE = ð1 − μÞrSE = 1
− μ, and the dimensionless mass of the Sun can be given
as m1 = ð1 − μÞðm1 +m2Þ = 1 − μ.

The propulsive acceleration vector as of non-ideal solar
sail can be presented as:

as =
β 1 − μð Þ
rSsk k2 rSs ⋅ nð Þ b1rSs + b2 rSs ⋅ nð Þ + b3ð Þn½ �, ð3Þ

where rSs is the Sun-solar sail vector, β is referred to as the
light number, which defines the (dimensionless) ratio of
the maximum propulsive acceleration magnitude to the local
Sun’s gravitational acceleration, which is taking values
between [0,1]. n is the unit normal vector of solar sail. The
terms {b1, b2, b3} are the sail force coefficients [39] defined
as

b1 =
1
2 1 + sρð Þ,

b2 =
1
2 ρ 1 − sð ÞBf − ρ − 1ð Þ εf Bf − εbBb

εb + εf

 !
,

b3 =
1
2 1 − sρð Þ:

ð4Þ

The values of the optical parameters of a non-ideal solar
sail membrane, involved in the calculation of {b1, b2, b3},
can be obtained from the experimental data collected during
the NASA scout mission [40].

ρ = 0:91,
s = 0:89,

εf = 0:0025,
εb = 0:27,
Bf = 0:79,
Bb = 0:67:

ð5Þ

The sail normal unit vector n can be expressed as a func-
tion of two attitude angles ðθ, φÞ, written as

n = cos θ cos φ, cos θ sin φ, sin θ½ �T , ð6Þ

where θ ∈ ½−π/2, ðπ/2Þ� rad is the angle between the direction
of n and the ði, jÞ plane, while φ ∈ ½−π/2, ðπ/2Þ� rad is the
angle between the direction of i and the projection of n onto
ði, jÞ, as shown in Figure 1.

Consider wrinkled and imperfect solar sails, which move
within the Sun-[Earth+Moon] system. Combining equations
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(3) and (6), the dimensionless propulsive acceleration vector
as of the non-ideal solar sail becomes

asx =
β 1 − μð Þ
rSsk k2 cos θ cos φ b1 + b2 cos2θ cos2φ + b3 cos θ cos φ

� �

asy =
β 1 − μð Þ
rSsk k2 cos θ cos φ cos θ sin φ b2 cos θ cos φ + b3ð Þ½ �

asz =
β 1 − μð Þ
rSsk k2 cos θ cos φ −sin θ b2 cos θ cos φ + b3ð Þ½ �

8>>>>>>>>><
>>>>>>>>>:

:

ð7Þ

The equations of orbital motion of solar sail are formu-
lated based on Newton’s law of motion and law of universal
gravitation:

€r = −
Gm1
rSsk k3 rSs −

Gm2
rEsk k3 rEs + as: ð8Þ

Therefore, the non-dimensional equations of motion is

€x = 2 _y + x −
1 − μð Þ x + μð Þ

rSsk k3 −
μ x − 1 + μð Þ

rEsk k3 + asx

€y = −2 _x + y −
1 − μð Þy
rSsk k3 −

μy

rEsk k3 + asy

€z = −
1 − μð Þz
rSsk k3 −

μz

rEsk k3 + asz

8>>>>>>>>><
>>>>>>>>>:

, ð9Þ

where rEs is the Earth-solar sail vector and r = ½x y z�T is the
position vector of the solar sail. Due to the existence of solar
sail, the balance of forces on spacecraft in space has changed.
When the solar radiation pressure balances both the celestial
body gravitational pull and the centrifugal force along the
Sun-[Earth+Moon] line, a new family of collinear AEPs is
generated. Compared with classical equilibrium points, arti-
ficial equilibrium points are closer to the sun, which enables
spacecraft to perform better in missions, such as observing
the Sun and relaying deep space communications.
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Let us assume that the sail membrane is perpendicular to
the direction of solar radiation, according to the definition of
equilibrium point

€x = €y = €z = 0
_x = _y = _z = 0
y = z = 0
θ = φ = 0
x = xAEPX̂

8>>>>>>>><
>>>>>>>>:

: ð10Þ

Substituting Eq. (10) into Eq. (9), the result is a single
scalar equation

xAEP −
1 − μð Þ 1 − β b1 + b2 + b3ð Þð Þ

xAEP + μð Þ2 −
μ

xAEP + μ − 1ð Þ2 = 0:

ð11Þ

The solution of Eq. (11) gives the location of the L2-type
AEP along the X-axis. Increasing the solar sail lightness
number has the effect of shifting the position of L2 towards
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the Sun. Hence, the required non-ideal sail lightness number
β necessary to maintain an L2-type AEP is

β = xAEP + μð Þ2 1 − μð Þ/ xAEP + μð Þ2 + μ/ xAEP + μ − 1ð Þ2 − xAEP
� �

1 − μð Þ b1 + b2 + b3ð Þ :

ð12Þ

Figure 2 shows the relationship curve between the posi-
tion of the artificial equilibrium point and sail lightness
number.

As shown in Figure 2, the larger β is, the collinear artifi-
cial equilibrium point of solar sail is closer to the central
celestial body (Sun). Based on this situation, the solar sail
can achieve more accurate observation of the Sun and deep
space communication missions by being placed on a non-
Keplerian orbit around the AEP, which can hardly be real-
ized by conventional spacecraft.

For the purpose of generating quasi-halo orbits around
the artificial equilibrium points, the differential corrections
methodology is adopted in this paper, which is generally

used to calculate unstable long-periodic orbits [41], such as
displaced non-Keplerian orbits and J2 invariant relative
orbits. For detailed research on differential corrections algo-
rithm, please refer to the works of Howell [41] and Ross
[42]. The differential correction algorithm is not self-
starting and requires an initial approximate solution. Rich-
ardson expansion equation obtained according to
Lindstedt-Poincare method [43, 44] can be used as an effec-
tive initial value:

x = a21Ax
2 + a22Az

2 − Ax cos ωt
+ a23Ax

2 − a24Az
2� �

cos 2ωt
+ a31Az

3 − a32AxAz
2� �

cos 3ωt,

y = Ay + b33Ax
3 + b34 − b35ð ÞAxAz

2� �
sin ωtð Þ

+ b21Ax
2 − b22Az

2� �
sin 2ωtð Þ

+ b31Ax
3 − b32AxAz

2� �
sin 3ωtð Þ,

Reduced-order
disturbance
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+
−

Leader spacecraft
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silding mode control law
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Figure 5: Block diagram of the MFITSMC controller for the follower spacecraft.

Table 1: Controller parameters for numerical simulation.

Controller Parameter

MFITSMC
k1 = diag 4, 4, 4½ �, k2 = diag 1, 1, 1½ �, γ = 0:5, δ = 1, α = diag 0:1, 0:1, 0:1½ �, η = diag 0:01, 0:01, 0:01½ �, c1/c2 = 25/13, m/n = 19/13,

ξ1 = diag 25, 25, 25½ �, ξ2 = diag 0:5, 0:5, 0:5½ �

FTSMC
λ = diag 1, 1, 1½ � × 102,k3 = diag 40, 40, 40½ �, k4 = diag 0:01, 0:01, 0:01½ �,

β = diag 0:04, 0:04, 0:04½ �, q = 3, p = 5
PID kp = diag 0:00612, 0:00612, 0:00612½ �, ki = diag 0:15, 0:15, 0:15½ � × 10−3, kd = diag 3, 3, 3½ �

Table 2: Initial position and velocity of the followers in the rotation coordinate system.

x0 m½ � y0 m½ � z0 m½ � _x0 m/s½ � _y0 m/s½ � _z0 m/s½ �
F1 0 0 0 0:5 × 10−5m/s −3:5 × 10−5m/s 1:5 × 10−5m/s
F2 0 0 0 −0:3 × 10−5m/s 2:5 × 10−5m/s −0:8 × 10−5m/s
F3 0 0 0 0:2 × 10−5m/s −3 × 10−5m/s −1:5 × 10−5m/s
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Figure 7: The trajectories of the followers relative to leader (FTSMC).
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z = −3d21AxAz + Az cos ωtð Þ + d21AxAz cos 2ωtð Þ
+ d32AzAx

2 − d31Az
3� �

cos 3ωtð Þ, ð13Þ

where the values of the parameters a, b, d, and ω are
available from Zhu [16]. After the initial value is determined,
the equation is iterated and corrected numerically. Relevant
simulation parameter was selected as β = 0:035. As shown in
Figure 3, the differential correction results of the halo orbit
around the L2-type AEP can be presented, which is consid-
ered the nominal trajectory of the leader spacecraft.

2.2. Spacecraft Relative Motion Dynamic Model. Having ana-
lyzed the generation of the AEP and the nominal trajectory
of the leader spacecraft, we are now in a position to investi-
gate the relative motion of spacecraft formation system. We
purpose a relative motion scheme where charged spacecrafts
(followers) move about a leader that produces an electric
field. In addition, both spacecrafts are equipped with several

solar sails, which can be controlled to produce solar radia-
tion pressure. Moreover, the leader and followers all have
the ability to modulate its electrostatic charge. Therefore,
the spacecrafts are subject to the gravitational force of the
two primary bodies (Sun and Earth), solar radiation pressure
and the Coulomb force induced by each other. A relative
dynamic model is established below, which considers the
influences of the Coulomb force and solar radiation
pressure.

The leader-follower spacecraft formation is shown in
Figure 4. The position vectors of the leader with respect to
the coordinate origin O and the two central bodies are rL
= ðxL, yL, zLÞT , r1L = ðx1L, y1L, z1LÞT , and r2L =
ðx2L, y2L, z2LÞT , respectively. The position vectors of the fol-
lower i from the coordinate origin O and the two primaries
are rFi

= ðxFi , yFi
, zFi

ÞT , r1Fi
= ðx1Fi

, y1Fi
, z1Fi

ÞT , and r2Fi =
ðx2Fi , y2Fi , z2Fi

ÞT , respectively. To describe the relative
motion of spacecraft in formation, the motion of leader
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Figure 8: The trajectories of the followers relative to leader (MFITSMC).
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and followers is firstly required to be expressed in the syn-
odic reference frame. The dynamic equations for leader
and follower in the hybrid propulsion formation are pre-
sented by

€rL = −
Gm1
r1Lk k3 r1L −

Gm2
r2Lk k3 r2L + asL + acL +wL, ð14Þ

€rFi = −
Gm1

r1Fi

�� ��3 r1Fi − Gm2

r2Fi

�� ��3 r2Fi + asFi + acFi +wFi
:

ð15Þ
Here acL and acFi

are the acceleration of the leader and
follower due to Coulomb force, respectively; see Eq. (16).
asL and asFi are the acceleration of the leader and follower
generated by solar sail, respectively, which can be calculated
by (7), while wL and wFi

represent external disturbances;
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Figure 9: Components of the position error (Follower 1) ((a) PID; (b) FTSMC; and (c) MFITSMC).

acL = 〠
i=1,2,3

− kc ⋅
QLFi

mL rLFi
�� ��3 1 +

rLFi

�� ��
λd

 !
exp −

rLFi
�� ��
λd

 !
⋅ rLFi

�� ��

acFi
= 〠

3

i≠j;j=1
kc ⋅

QFiF j

mFi rFi F j

��� ���3 1 +
rFi F j

��� ���
λd

0
@

1
A exp −

rFi F j

��� ���
λd

0
@

1
A ⋅ rFi F j

��� ��� + kc ⋅
QLF j

mFi rLFi

�� ��3 1 +
rLFi

�� ��
λd

 !
exp −

rLFi

�� ��
λd

 !
⋅ rLFi

�� ��

8>>>>>>><
>>>>>>>:

,

ð16Þ
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where mL and mFi
are the mass of leader and follower, QLFi

and QFiF j
represent charge product between the spacecrafts,

kc = 8:988 × 109N ⋅m2/C2 represents the electrostatic con-
stant, krLFi

k is the distance between leader and follower,
and krFi F j

k is the distance between follower i and follower

j. The Debye length is λd = 24m in this paper.

The relative position vector of the ith spacecraft can be
denoted as

ρi = rFi
− rL = xi, yi, zið ÞT : ð17Þ

The dimensionless relative equation of motion of the fol-
lower i can be written as

× 10– 7
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Figure 10: Components of the velocity error (Follower 1) ((a) PID; (b) FTSMC; and (c) MFITSMC).

€xi = 2 _yi + xi + 1 − μð Þ xL + μ

r1Lk k3 −
xL + xi + μ

r1L + rLFi

�� ��3
 !

+ μ
xL − 1 + μ

r2Lk k3 −
xL + xi − 1 + μ

r2L + rLFi

�� ��3
 !

+ asxi + acxi +wxi

€yi = −2 _xi + yi + 1 − μð Þ yL
r1Lk k3 −

yL + yi
r1L + rLFi

�� ��3
 !

+ μ
yL
r2Lk k3 −

yL + yi
r2L + rLFi
�� ��3

 !
+ asyi + acyi +wyi

€zi = 1 − μð Þ zL
r1Lk k3 −

zL + zi
r1L + rLFi
�� ��3

 !
+ μ

zL
r2Lk k3 −

zL + zi
r2L + rLFi
�� ��3

 !
+ aszi + aczi +wzi

8>>>>>>>>>>>><
>>>>>>>>>>>>:

, ð18Þ
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where asi = asFi
− asL = ðasxi , asyi , asziÞ

T represents the differ-
ence of solar radiation pressure between the follower i and
leader, aci = acFi

− acL = ðacxi , acyi , acziÞ
T denote the relative

acceleration is produced by the Coulomb force, while wi =
wFi

−wL = ðwxi
,wyi

,wzi
ÞT represent external disturbances;

and the external disturbance models are introduced below.

2.3. External Disturbances. When the formation performs its
mission in deep space environment, it will suffer from vari-
ous perturbations, such as the effects arise from the eccentric
nature of the Earth’s orbit, the perturbations of the moon
and other planets. The most significant disturbances are
the effects due to the eccentricity of Earth’s orbit and Lunar
gravitation, denoted as we and wm, respectively. Note that
the effects that arise from the moon have been included in
the CR3BP.

Let us assume that the effects that arise from the eccen-
tric nature of Earth’s orbit are mainly in the x direction.
The non-dimensional expression of disturbances can be pre-
sented by

we = μ
1
rc2

−
1
re2

, 0, 0
� �T

, ð19Þ

where rc is the distance between the center of the earth’s cir-
cular orbit and the L2-Type equilibrium point. re is distance
between the equilibrium point and Earth at the pericenter of
its elliptical orbit.

Meanwhile, the unknown uncertain interference items
on the spacecraft system during the exploration mission
mainly include the unknown effects of plasma in solar wind
particles on hybrid propulsion system and the vibration of
spacecrafts during acceleration, which vary with the state
of the formation system. And the magnitude of these distur-
bances is small, which can be known as system uncertainties.

All these disturbances are collectively referred to as
external disturbances. It must be emphasized that external
disturbances are only used to demonstrate the robustness
of the controller, which is unnecessary to model all the dis-
turbances precisely in this note. To better control formation
flight while overcoming external disturbances, the effective
control algorithms are designed below.

3. Orbital Maneuver Control Strategy

In this section, first, we design a modified fast integral termi-
nal sliding mode control law with a new double power com-
bination function reaching law for formation tracking of the
desired relative trajectories. This control law combines the
advantages of both the reduced-order disturbance observer
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Figure 11: Time histories of the control input (Follower 1) ((a) PID; (b) FTSMC; and (c) MFITSMC).
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and sliding mode control: the reduced-order disturbance
observer is able to estimate the unknown disturbances, and
the novel FITSMC with a new double power combination
function reaching law can guarantee the tracking errors of
the spacecraft formation system convergence rapidly and
improving the robustness and disturbance rejection capabil-
ity. Then, the basic PID control law and fast terminal sliding
mode control law are proposed to compare with the
MFITSMC method. Finally, based on the control input cal-
culated, a novel optimal allocation strategy to determine
the control commands is investigated.

3.1. The MFITSMC with Reduced-Order Disturbance
Observer. Define x1 = ρi, x2 = _ρi as the state vector. xr = ρr
is being the desired trajectory of relative position, then the
state-space equation can be obtained as follows:

_x1 = x2

_x2 = f x1, x2ð Þ + ui +wi

(
, ð20Þ

where

The aim was to drive the output x1 to track its desired
trajectory xr , and the tracking error can be written as e =
x1 − xr . From Eq. (20) the following can be obtained:

€e = f x1, x2ð Þ +wi + ui − €xr: ð23Þ

The fast integral terminal sliding mode surface is written
as:

s = _e + αs1 + ec1/c2

_s1 = _e + η_em/n

s = sx , sy , sz
� �T

8>><
>>: : ð24Þ

Where α > 0, η > 0 are positive constants. c1, c2, m, and n
are odd integers and meet 1 < c1/c2 < 2 and c1/c2 >m/n.

A novel double power combination function reaching
law with the capability of disturbance rejection and rapid
convergence is given by

_s = −k1 f al s, a, δð Þ − k2 sj jb sgn sð Þ: ð25Þ

Here a = 1 + γ, b = 1 − γ, δ = 1, 0 < γ < 1, and the nonlin-
ear exponential composite function falð⋅Þ can be given by

fal s, a, δð Þ =
sj ja sgn sð Þ,
s

δ1−a
,

sj j > δ

sj j ≤ δ

8<
: : ð26Þ

Consider the spacecraft formation flying system given in
Eq. (20) and the proposed fast integral terminal sliding
mode surface, the control law is designed as

Table 3: The control performance of control algorithms (take follower 1 as an example).

Controller
Terminal relative position errors

max (x,y,z) [m]
Terminal relative velocity errors

max (x,y,z)[m/s]
Average variation of

angle [deg]
Average variation of charge

product [C2]

MFITSMC (0.012,0.018,0.022)
0:21, 1:46, 1:24ð Þ

× 10−7
(0.0285,0.0101)

5:7548854
80953 × 10‐12

FTSMC (0.15,0.118,0.038)
4:32, 1:81, 2:44ð Þ

× 10−6
(0.0244,0.0078)

5:15695814
77773 × 10‐12

PID (0.95,0.78,0.42)
1:42, 1:15, 0:39ð Þ

× 10‐5
(0.0084,0.0042)

1:3662015
55087 × 10‐12

ui = aci + asi , ð21Þ

f x1, x2,wið Þ =

2 _yi + xi + 1 − μð Þ xL + μ

r1Lk k3 −
xL + xi + μ

r1L + rLFi

�� ��3
 !

+ μ
xL − 1 + μ

r2Lk k3 −
xL + xi − 1 + μ

r2L + rLFi

�� ��3
 !

−2 _xi + yi + 1 − μð Þ yL
r1Lk k3 −

yL + yi
r1L + rLFi
�� ��3

 !
+ μ

yL
r2Lk k3 −

yL + yi
r2L + rLFi

�� ��3
 !

1 − μð Þ zL
r1Lk k3 −

zL + zi
r1L + rLFi

�� ��3
 !

+ μ
zL
r2Lk k3 −

zL + zi
r2L + rLFi

�� ��3
 !

2
6666666666664

3
7777777777775
: ð22Þ
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ui = −k1fal s, a, δð Þ − k2 sj jb sgn sð Þ − α_e − αη_em/n

−
c1
c2
ec1/c2−1 ⋅ _e − f x1, x2ð Þ − ŵi + €xr:

ð27Þ

In view of the external perturbations in spacecraft for-
mation system, the reduced-order disturbance observer can
be designed below,

ŵi = v + ξ1

ðt
0
€edτ − ξ2

ðt
0
sign Θð Þdτ ξ1 > 0, ξ2 > ςð Þ, ð28Þ

_v = −ξ1ŵi + ξ1 −f − a + €xrð Þ, ð29Þ
where

Θ = ŵi − €e − f − a + €xrð Þ: ð30Þ

The disturbance vector wi can be rewritten wi =€e − f −
a + €xr . Taking the time derivative of equation (28) yields

ŵi = −ξ1ŵ + ξ1 −f x1, x2ð Þ − a + €xr +€eð Þ − ξ2 sign Θð Þ: ð31Þ

The disturbance estimation error can be denoted as ~wi
= ŵi −wi, and we can obtain

_̂wi = −ξ1 ~wi − ξ2 sign Θð Þ: ð32Þ

In fact, Θ = ~wi, combining with Eq. (31), the derivative
of the disturbance estimation error ~wi can be obtained as

_~wi = _̂wi − _wi = −ξ1 ~wi − ξ2 sign ~wið Þ − _wi: ð33Þ

Select a Lyapunov function for stability analysis, as
shown below

Vw = 1
2 ~wi

T ~wi

� �
: ð34Þ

Taking the time derivative of equation (34) yields:

_Vw = ~wT _~w = −ξ1 ~wk k2 − ξ2 wk k − ~wT _w ≤ −ξ1 ~wk k2 − ξ2 − ςð Þ ~wk k,
ð35Þ

where ξ = ξ2 − ς, select appropriate variable ξ > 0, then
Eq.(35) can be concluded as follows,

_Vw + 2ξ1Vw +
ffiffiffi
2

p
ξVw

1/2 ≤ 0: ð36Þ

In conclusion, the disturbance estimation error ~w of the
formation system can tend towards zero in finite time tw.

tw ≤
1
ξ1

ln 2ξ1Vw
1/2 0ð Þ + ffiffiffi

2
p

ξffiffiffi
2

p
ξ

, ð37Þ

where Vwð0Þ is the initial value of Vw.

Next part is to demonstrate the relative position errors
can tend towards 0 in finite time, consider another Lyapu-
nov function,

V = 1
2 s

Ts: ð38Þ

Taking the derivative of Equation (38), and then it can
be given by:

_V = sT _s = sT −k1fal s, a, δð Þ − k2 sj jb sgn sð Þ + ŵi −wi


 �
≤− sk kk1fal s, 1 + γ, δð Þ − k2 sj j2−γ + sk k ŵi −wik k

≤

sj j ≤ 1
−k2 sj j2−γ − sj j k1 sj j −Dð Þ
−k1 sj j2 − sj j k2 sj j1−γ −D

� �
8<
:

sj j > 1
−k2 sj j2−γ − sj j k1 sj j1+γ −D

� �
−k1 sj j2+γ − sj j k2 sj j1−γ −D

� �
8<
:

8>>>>>>>><
>>>>>>>>:

:

ð39Þ

When 1 ≥ jsj ≥D/k1, according to Eq. (39), _V ≤ −k2
jsj2−γ = −21−γ/2k2V1−γ/2 ≤ 0.

1 ≥ jsj ≥ ðD/k2Þ1/1−γ, according to Eq. (39), _V ≤ −k1jsj2
= −2k1V ≤ 0.

jsj > ðD/k1Þ1/1+γ > 1, according to Eq. (39), _V ≤ −k1jsj2−γ
= −21−γ/2k2V1−γ/2 ≤ 0.

jsj > ðD/k2Þ1/1‐γ > 1, according to Eq. (39), _V ≤ −k1jsj2+γ
= −21+γ/2k1V1+γ/2 ≤ 0.

According to the Lyapunov stability theory, the closed-
loop system has global asymptotic stability and can tend
towards zero in finite time.

Figure 5 depicts the block diagram of the MFFTSMC
controller with the disturbance observer. In order to test
the performance of the proposed MFITSMC, two classical
control methods are designed for the purpose of compari-
son, which are PID controller and fast terminal sliding mode
controller (FTSMC). The control law of the system is defined
as follows, respectively.

FTSMC:
A classical FTSM manifold is chosen as:

s = _e + λe + βeq/p, ð40Þ

where λ and β are positive constants, and p and q are posi-
tive odd integers satisfying p > q, while eq/p = ½exq/peyq/pezq/p�.

For the sake of suppressing the chattering phenomenon
of sliding mode control, the reach law is designed as

_s = −k3s − k4 tanh sð Þ: ð41Þ
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The fast terminal sliding mode controller can be
designed as:

uFTSM = −k4 tanh sð Þ − λk3 ⋅ e − k3βe
q/p − βγeq/p−1 ⋅ _e − f x1, x2ð Þ −wi + €xr:

ð42Þ

The control law for the PID controller is given by

uPID = −kpe − ki

ðt
0
e τð Þdτ − kd ⋅ _e − f x1, x2ð Þ −wi + €xr: ð43Þ

3.2. Control Commands Allocation. Here, the control input
ui consisted of the acceleration due to Coulomb force
and the acceleration due to solar sail. However, the control
commands for the proposed propulsion system are the
charge products of spacecrafts and the attitude angles of
the solar sails. Therefore, it is needful to distribute the
control input to obtain actual control commands. Since
the mapping between control commands and control
inputs is highly nonlinear and the number of control com-
mand variables is more than that of control inputs, the
determination of control commands is a nonlinear pro-
gramming problem.

According to Eq. (16), ac is determined by leader-
follower charge products QLFi

ði = 1, 2, 3Þ and follower-
follower charge products QFiF j

ði ≠ jÞ. For mission lifetime

extension, the sail attitude angles θ and φ should be opti-
mized so that the magnitude of the acceleration required
due to the Coulomb force is minimum. To avoid possible
system instabilities and violent chattering in system, it is
rational to limit the attitude angles within certain range,
such as θ ∈ ½30, 60� deg and φ ∈ ½30, 60� deg. Since the charge
and discharge of the Coulomb spacecraft needs to consume a
fraction of energy, it is firstly distributed according to the
principle of optimal energy. A particle swarm optimization
(PSO) method is used here to solve the constrained optimi-
zation problem. Consequently, the constrained optimization
problem can be described below:

θ∗, φ∗½ � = arg min
θ,φ

aci
�� �� = arg min

θ,φ
ui − asi
�� ��, ð44Þ

where the total required acceleration ui is given by Eq. (27).
θ∗ and φ∗ represent the optimal solutions of solar sail atti-
tude angles in the actual control input, respectively.

As shown in equation (16), the magnitude of the cou-
lomb acceleration input aci is determined by three different
charge products. Take follower 1 for example, the three dif-
ferent charge products are QLF1

, QF1F2
, and QF1F3

. Another
allocation mechanism was required to be designed to deter-
mine the appropriate charge product of the spacecraft as the
control command for the formation system. This control
allocation can also be regarded as an optimization problem
with nonlinear constraints. The objective is to minimize
the difference between the expected acceleration input âci

due to Coulomb force and the available acceleration acið
QLF1

,QF1F2
,QF1F3

Þ. Hence, the optimization problem can
be written below:

minimize J = âci − aci QLF1
,QF1F2

,QF1F3

� ��� ��: ð45Þ

Subject to:

Qmin ≤Qj ≤Qmax, Qj − Q̂j

�� �� ≤Qlim, j = 1, 2, 3, ð46Þ

Q0 = Q̂, ð47Þ

where Q̂ are the current charge products. Q0 are the initial
values of the charge product. Qmin and Qmax are the minimal
and maximal available charge products, respectively. Qlim
limit the variations of charge products between control
intervals.

4. Numerical Simulations

To testify the effectiveness of the proposed control algorithm,
the nonlinear relative motion equations defined by Eq. (18)
are numerically simulated along with the perturbative force
described in Eq. (19) and the control inputs defined by Eq.
(27). In this note, we consider a hybrid propulsion formation
system that consists of a leader and three followers. To better
observe the leader-follower spacecraft formation, consider
the leader and followers maintaining the required distance in
the formation to form a specific shape. In particular, the space-
crafts in the formation are assumed to have a mass mL =
mF1 =mF2 =mF3 = 100kg. A periodic Halo orbit, with a verti-
cal displacement of 300,000km around the L2-type AEP, is
considered nominal trajectory. The leader revolves on the
nominal orbit, while the follower spacecrafts trajectories fol-
low a projected circular orbit with a radius of 40m relative
to the leader, as shown in Figure 1. Parameters in the proposed
orbital controllers are given in Table 1, and the simulation
time is considered 1000 days.

It is assumpted that the three followers are in the same
position as the leader at the initial time. The initial orbit
parameters are given in Table 2. Note that the lightness
number of the sail is chosen as 0.035. In the chief rotating
reference frame Rc, the parametric solution of the i-th fol-
lower trajectory (relative to the leader) is assumed to have
the following algebraic form.

ρr = 0, 40 cos nrt + ϕið Þ, 40 sin nrt + ϕið Þ½ �Tm, ð48Þ

where nr is the angular velocity of the relative motion, and
ϕi = 2ði − 1Þπ/3 is the phase angle.

At present, the available maximal specific charge is about
0.03 C/kg [27], and the minimal and maximal charge prod-
ucts are chosen as Qmin = −9C2 and Qmax = 9C2. Qlim are set
as 1 × 10‐5C2. To prove the controllers’ disturbance rejection
capacity, an unmodeled disturbance �wi is set up during the
simulation:
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�wi = �wik k cos2 ωsub−L2 t
� �

, sin ωsub−L2 t
� �

, cos ωsub−L2 t
� �

sin ωsub−L2 t
� �� �T ,

ð49Þ

where k�wik = 1 × 10−4AU/TU2, absolutely larger than kwek,
which is introduced in Section 2.3. �wi is large enough to
cover all these uncertain disturbances. ωsub−L2 is the fre-
quency of halo orbit. In the normalized system of units,
ωsub−L2 = 1:2023.

Some simulation parameters are as follows:
The numerical simulation results are as follows:
The phase portrait of the trajectory ρi of the followers

relative to the leader is presented in Figures 6–8. It dem-
onstrates the desired orbit tracking can be achieved with
the controllers using the hybrid propulsion system. The
solar sails are primarily used to change the orientation of
formation system, which makes the whole formation sys-
tem move around a halo orbit. Since Coulomb force
belongs to the internal force of formation, it is mainly
responsible for changing formation geometry and size.
To analyze the simulation results more conveniently, only
the results of first 1000 days are presented below. From
Figures 9(a) and 9(b), it can be seen from the simulation
that it takes nearly 50 days and 35 days for the PID and
FTSMC controllers to drive the relative position errors
gradually approach the prescribed state as time progresses.
In contrast, it takes less than 20 days for the MFITSMC
controller to reach steady state, as shown in Figure 9(c).
The order of magnitude of position errors at steady state
using the MFITSMC controller is 0.01m, which is superior
to the other two controllers. The reason is that the unmo-
deled disturbance is estimated and compensated, and the
steady-state errors remain at a low level. In the velocity
error responses of the MFITSMC with a new double
power combination function reaching law, the nonlinear
PID control law and FTSMC are presented in
Figures 10(a)–10(c), respectively. It can also be seen that
the relative velocity errors of formation system tend
towards zero and fluctuate within little range, while the
convergence rate of the proposed control algorithm is fas-
ter than the others, whose steady-state errors of the rela-
tive velocity are smaller than that of other control
algorithms. As the followers move near the leader, the
control input has a small order of magnitude, as shown
in Figures 11(a)–11(c). We can see that the thrusts of each
controller at reconfiguration and orbital maintenance stage
are at the mN level, which is achievable by the hybrid pro-
pulsion system. Figures 12 and 13 show the time histories
of the control commands for the follower, including the
charge product and attitude angle. In the early stage of
simulation, the value of charge products are positive, and
the mutually exclusive Coulomb force and solar radiation
pressure contribute to the separation of spacecrafts
together. After the reconfiguration task is completed, the
charge products keep fluctuating near the value of 0,
which is responsible for maintaining the stability of forma-
tion configuration. As shown in Figure 13, solar sails par-
ticipated in the spacecraft reconfiguration process. After

that, the angle control variables change slowly within little
range, and the variations are closely related to the inherent
periods of the halo orbit.

It can be seen that all the controllers can make all errors
converge towards 0 as time progresses, which proves the
effectiveness of the propellantless propulsion strategy. The
control performances of the PID controller, FTSMC, and
the MFITSMC are shown in Table 3. The results show that
there are some differences in the average variation of control
commands among the three controllers. Since the observer
continuously estimates the first derivative of the relative
position, the MFITSMC requires much more control cost
in terms of angle variations of the solar sails and average
charge products. Meanwhile, the MFITSMC possesses much
smaller state errors and the faster convergence rate in the
presence of external disturbances, which illustrates the supe-
riority of the MFITSMC controller.

Aforementioned simulation results verify the superiority
and efficiency of the proposed MFITSMC algorithm with a
new double power combination function reaching law,
which demonstrates enhanced performances on the conver-
gence rate, steady-state errors, percent overshoot, and the
capacity of disturbance rejection.

5. Conclusion

The present work proposed a methodology to perform
spacecraft formation orbit control around an L2-type artifi-
cial equilibrium point using the hybrid propulsion strategy
due to Coulomb force and non-ideal solar sail. Coulomb
force is produced by the modulation of the leader and fol-
lower spacecraft’s electric charge, and solar radiation pres-
sure accelerations are generated by the rotations of the
solar sail’s plates attached to the satellites. To handle the
control problem of the formation reconfiguration against
external disturbances, a sliding mode observer is introduced
to estimate and compensate for the perturbations in space
environment and system uncertainties, and an observer-
based modified fast integral terminal sliding mode controller
with a new double power combination function reaching law
is designed. The proposed optimal control allocation scheme
can determine control commands properly, which include
the charge products of spacecrafts and attitude angles of
solar sails. The asymptotic stability of closed-loop system is
proved by using Lyapunov stability theorem. Numerical
simulation results illustrated the validity and superiority of
the proposed controller in the presence of external
disturbances.

It is obvious that the non-ideal solar sail model is still
hypothetical in this note because the flexible characteristics
of the solar sail, the structural characteristics brought by
the large size structure, and the sail degradation mechanism
are not considered. In the meantime, the shielding effect of
other celestial bodies or objects on the sail surface is ignored.
As such, more work should be done to obtain more useful
data to perfect the solar sail model.

Future work will focus on a detailed discussion on the
process of using small solar arrays to charge the spacecraft
through energy conversion and using the electron gun on
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board to release the unnecessary charge. For different space-
craft, building up and modulating the electric charge are
complex processes, which needs further research.
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