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Inmany spacemissions, spacecraft are required to have the ability to avoid various obstacles and finally reach the target point. In this
paper, the path planning of spacecraft attitude maneuver under boundary constraints and pointing constraints is studied. The
boundary constraints and orientation constraints are constructed as finite functions of path evaluation. From the point of view of
optimal time and shortest path, the constrained attitude maneuver problem is reduced to optimal time and path solving problem.
To address this problem, a metaheuristic maneuver path planning method is proposed (cross-mutation grey wolf algorithm
(CMGWO)). In the CMGWO method, we use angular velocity and control torque coding to model attitude maneuver, which
increases the difficulty of solving the problem. In order to deal with this problem, the grey wolf algorithm is used for mutation
and evolution, so as to reduce the difficulty of solving the problem and shorten the convergence time. Finally, simulation analysis
is carried out under different conditions, and the feasibility and effectiveness of the method are verified by numerical simulation.

1. Introduction

As a low-cost spacecraft, small satellites have the character-
istics of light, agility, and large coverage. They have become
an ideal spacecraft for studying space, which has put forward
new requirements for the movement of satellites [1]. With
the development of space exploration technology and space
commercial activities, the number of satellites in space has
increased dramatically, which will pose a great threat to
the safety of existing satellites and the next generation of
space missions. There were 19,404 large objects and millions
of pieces of debris in Earth orbit, which leads to huge chal-
lenges for space resources and the environment [2]. There-
fore, owing to ensuring the safety of the spacecraft, it is
necessary to avoid the debris when the spacecraft is flying.
With the continuous development of space missions, it is
extremely urgent to require the ability of rapid and large-
angle attitude change, especially for the application of satel-
lite positioning, disaster warning, scientific exploration, and
other related tasks [1, 3].

When the spacecraft ismaneuvering, it is necessary to pre-
vent the light of bright celestial bodies (such as the sun) from
entering the field of view of some optical sensors (such as

infrared sensors or low light sensitive elements). Otherwise,
the optical sensors will be temporarily blind or damaged. In
the maneuvering, the direction vector of the solar array must
be kept within a certain required range, so as to continuously
provide electric energy. These directional constraints greatly
limit the feasible region of spacecraft attitude maneuver [4].
In addition, the limitation of angular velocity and control
torque will also affect the attitude maneuver path [5, 6]. Due
to these complex constraints, time-optimized maneuvering
path planning based on spacecraft guidance, navigation, and
control systems is very challenging.

We transform the satellite orbit planning problem into
the optimization problem of finding the best time and short-
est path and establish the spacecraft attitude maneuver
model by angular velocity-time-control torque coding.
Compared with the latest and most advanced research [7,
8], our control model also takes into account more compre-
hensive constraints. The model proposed in this paper has
better performance in solving the subsequent optimal path.
In recent years, the metaheuristic algorithm has become
more and more popular because of its simplicity advantages.
In addition, the rapid development of computing technology
makes up for the cost of computing. Many metaheuristic
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algorithms have been proposed. They can be subdivided into
two categories: bionic algorithm and physical algorithm. The
first is related to animal biology and behavior, while the sec-
ond is based on the laws of physics. Among the most com-
monly used algorithms are the genetic algorithm [9], which
is inspired by Darwin’s theory of evolution; ant colony algo-
rithm [10], which is inspired by the behavior of ants; particle
swarm optimization algorithm [11], based on human social
behavior and flock of birds; and differential evolution algo-
rithm [12], based on the concept of mutation, reorganiza-
tion, and selection applicable to swarms. Secondly,
Takahama and Sakai proposed an improved constrained
DE (differential evolution) algorithm [13] to generate the
optimal feasible path. Furthermore, an artificial bee colony
algorithm combined with evolutionary programming [14],
fuzzy quadtree framework [15], improved traveling sales-
man problem algorithm [16], and improved pulse coupled
neural network model [17] is also applicable to the path
planning of agents. There are other algorithms for solving
similar optimization problems [18–22]. Moreover,
researchers have implemented many methods to find the
optimal path in different environments. Yang et al. [23] pro-
posed a finite angle A ∗ algorithm for path planning on sat-
ellite images. The algorithm uses a modified line of sight
with a branching factor of 16 to improve the efficiency of
the finite angle A ∗ algorithm. Duchon [24] and others pro-
posed an improved A ∗ algorithm based on theta∗, phi∗,
rectangular symmetry reduction, and hop search, which
was implemented in symmetric and asymmetric environ-
ments. Lou and Tang [25] summarized the motion planning
algorithms from the perspective of UGV guidance. The algo-
rithm of path planning is discussed from the aspects of com-
plexity and mapping with existing standards. One problem
of metaheuristic algorithm is how to set some internal
parameters correctly, such as maximum iteration times,
population size, and internal coefficients. These parameters
may change according to different problems that need to
be optimized, because they will significantly affect the results
of the optimization process. Therefore, this limits the use of
such algorithms, which are only used by expert users in this
field.

We have noticed that various improved grey wolf algo-
rithms are being applied in various fields to solve various
problems. For example, the novel random walking grey wolf
optimizer proposed a new crossover operator-double distri-
bution crossover operator (DDX). The performance of DDX
is compared with that of the existing real-coded crossover
operator, namely, Laplace crossover operator [26]. The
random walk grey wolf optimizer for constrained engineer-
ing optimization problems proposes a simple constraint pro-
cessing technique-constrained version GWO and proposes
random walk GWO (RW-GWO) [27] by pointing out some
shortcomings of the original GWO leaders in the process of
searching prey. A new algorithm OCS-GWO is proposed by
the opposition-based chaotic grey wolf optimizer for global
optimization task. The algorithm effectively uses the search
area by introducing opposition-based learning to approach
the search candidate solution closer to the global optimum
and chaotic local search, thus improving the performance

of the original GWO algorithm [28]. The Cauchy grey wolf
optimizer for continuous optimization problems proposes an
improved classical GWO algorithm, which is named Cauchy-
GWO. In theCauchy-GWOoperator, two newwolves are gen-
erated by the Cauchy distribution random number, and then,
another new wolf is generated by convex combination of these
new wolves [29]. The grey wolf optimizer with enhanced lead-
ership inspiration for global optimization problems proposes
an improved leadership-based GWO, namely, GLF-GWO. In
GLF-GWO, the leader is updated through the Levy flight
search mechanism. The proposed GLF-GWO algorithm
improves the search efficiency of leading hunters in GWO
and provides better guidance for accelerating the search
process of GWO [30]. A hybrid grey wolf optimizer with a
mutation operator hybridizes the grey wolf optimizer with
differential evolution (DE) mutation and puts forward two
versions of DE-GWO and GDE-GWO to avoid the stagnation
of solution [31], as well as the reliability-redundancy allocation
using the random walking grey wolf optimizer [32], memory-
based grey wolf optimizer for global optimization task [33],
and over-current relay optimization using the improved
leadership-inspired grey wolf optimizer [34].

Because the traditional optimization algorithm has the
disadvantages of slow convergence, inspired by predecessors
[35, 36], we optimized the grey wolf algorithm [37] and
applied it to satellite orbit planning. The grey wolf algorithm
is a swarm intelligence optimization algorithm which simu-
lates the predation behavior of grey wolves. The grey wolf
algorithm has the characteristics of simple operation, few
adjustment parameters, and easy programming. Compared
with other swarm intelligence optimization algorithms, it
has obvious advantages in function optimization. However,
at the same time, it also has some shortcomings such as
being easy to fall into the local optimum and low solution
accuracy. Inspired by previous studies, this paper proposes
a cross-mutation grey wolf algorithm in view of the short-
comings of the current algorithm. The algorithm uses the
basic GWO algorithm to calculate the fitness value of each
grey wolf. With the update of the wolf position, the individ-
ual in the wolf group constantly changes, which makes the
population constantly update and effectively solves the prob-
lem of entering the local optimum. At the same time, the
high efficiency of the grey wolf algorithm allows the time
for the algorithm to be controlled. In order to improve the
search ability of the algorithm, the fitness values of the grey
wolf individuals are compared, and a penalty function is
imposed on the grey wolf individuals with poor fitness
values. By testing five benchmark functions, the results are
compared with the traditional GWO algorithm to verify
the superiority of the algorithm.

2. Spacecraft Constraints

In this section, how to formulate the satellite’s maneuver-
ing path into a behavior schedule optimization problem
is presented.

Let us imagine a spacecraft working on the space station,
some of those parameters are shown in Table 1.
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Only when some constraints [38, 39] are met can the
spacecraft work better in space. That is, only under these
conditions can the mission be carried out. Therefore,
constraints are a prerequisite for planning trajectories.

2.1. Boundary Constraint. In the implementation process,
in order to prevent the control torque from exceeding
the boundary and causing adverse effects on the satellite,
we define that the control torque is bounded. Further-
more, the following constraints should be satisfied: juj ≤
γu, i = 1, 2, 3:

During attitude maneuver, the angle of some sensors
should not rotate too much; otherwise, it will produce exces-
sive force. Therefore, the angular velocity needs to be limited
within a certain range and the following constraints should
be satisfied: jwj ≤ γw, i = 1, 2, 3.

Boundary constraints are the prerequisite to ensure that
it works properly, so when the model is initialized, boundary
constraints should be added, such as setting a range of angu-
lar velocity: −w to w, and keeping the angular velocity
behind in this range.

2.2. Pose Kinematic and Dynamic Constraints. When it
comes to the attitude of rigid spacecraft, if the four-
dimensional space is considered, the unit quaternion is
needed to represent the maneuver value of the parameters,
and the purpose of avoiding singular value can be achieved.
According to the relationship between moment of inertia,
angular velocity, and torque, the constraint is

J = diag J1, J2, J3ð Þ, ð1Þ

w = w1,w2,w3½ �T , ð2Þ

w× =
0 −w3 w2

w3 0 −w1

−w2 w1 0

2
664

3
775, ð3Þ

u = u1, u2, u3½ �T , ð4Þ

where J is the moment of inertia, defined as the diag-
onal matrix of ðJ1, J2, J3Þ; w is the angular velocity, w×

prime is defined as the cross-product matrix of w, and u
is the control torque.

After the calculation, the spacecraft should satisfy

J w
: = u −w× Jw: ð5Þ

And q = 1/2Lw and _q = 1/2Mq.

L =

−q1 −q2 −q3
q0 −q3 q2

q3 q0 −q1
−q2 q1 q0

2
666664

3
777775: ð6Þ

M =

0 −w1 −w2 −w3

w1 0 w3 −w2

w2 −w3 0 w1

w3 w2 −w1 0

2
666664

3
777775: ð7Þ

In conclusion, the attitude constraint is

J w
: = u −w× Jw,

_q = 1
2Mq:

8<
: ð8Þ

2.3. Pointing to the Constraint. The attitude orientation con-
straint is the constraint that the angle relation of a certain
angle relative to a certain attitude must satisfy. It depends
not only on the angle of its own devices but also on the
external environment, such as the position of the sun. If
the limit is exceeded, the spacecraft will be affected. It is
generally classified into two types: forbidden constraint and
mandatory constraint.

2.3.1. Forbidden Constraint. Some of the instruments in the
spacecraft during the mission must avoid bright light; other-
wise, it will damage the device. In mathematical terms, the
instrument and the sun should be greater than the angle of
view of the instrument itself. That is the forbidden
constraint. m represents the direction vector of an optical
sensitive element in the body coordinate system, and n =
½n1, n2, n3�T represents the direction vector of a bright celes-
tial body in the inertial system. α is the field of view of the
sensitive instrument. Constraints should satisfy mTðCBnÞ ≤
cos α, among them:

m = m1,m2,m3½ �T : ð9Þ

R is the cosine matrix from the spacecraft inertial coordi-
nate system to the object attitude. CB is the attitude cosine
matrix of spacecraft from its own system to the inertial
system. After simplification, the above inequality can be
expressed as qTHq ≤ 0. After calculation,

Table 1: Spacecraft operating parameters.

The angular velocity w

Control torque u

Attitude (quaternion) q

The moment of inertia J

Spacecraft to the object attitude cosine matrix R

The angle between some instruments and the sun α

The orientation angle of the instrument itself β
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H =
mTn − cos α m×nT

� �T
m×nT nmT +mnT − nTm + cos α

� �
I3

2
4

3
5:
ð10Þ

Among them, m× is the cross-product of m. Therefore,
the forbidden constraint is qTHq ≤ 0.

2.3.2. Mandatory Constraint. On the other hand, some
instruments may need to point at a directional angle when
operating. For example, taking the solar panel of spacecraft
as an example, vB represents the direction vector of the solar
panel in the body coordinate system, and the angle between
n and vB should be less than β. Namely, vTB ðCBnÞ ≥ cos β.

This is called a mandatory constraint. The constraints
are as follows: qTKq ≥ 0:

K =
nTvB − cos β v×Bn

T� �T
v×Bn

TnvTB + vBn
T − nTvB + cos β

� �
I3

2
4

3
5: ð11Þ

All in all, the spacecraft needs to satisfy motion con-
straints, boundary constraints, forbidden constraints, and
mandatory constraints during the mission. This is also a
prerequisite for the spacecraft to complete its mission.

To sum up, the constraint to be satisfied is

J w
: = u −w× Jw,

_q = 1
2Mq,

uij j ≤ γu, i = 1, 2, 3,
wij j ≤ γw, i = 1, 2, 3,
qTHq ≤ 0,
qTKq ≥ 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð12Þ

3. Problem Statement

After studying the mathematical expression of the con-
straint, the improved grey wolf optimizer can be applied to
solve the optimal control problem, and the optimal path
can be screened through the improved crossover mutation.
The evaluation function is set to the minimum value type,
and the optimal path is obtained by searching for the
minimum value of the evaluation function. The evaluation
function is mainly divided into four parts: maneuver time,
path direction constraint, energy bounded constraint, and
terminal constraint.

Y1 = t, ð13Þ

Y2 = exp −q nð ÞTHf q nð Þ
� �

− 1 in case q nð ÞTHf q nð Þ < 0, otherwise it is 0
n o

,

ð14Þ

Y = 〠
nmax

n=1
Y1 + Y2ð Þ: ð15Þ

The total function is simplified to y = Y + Y1, a function
to be minimized.

Therefore, we transformed the time-constrained attitude
maneuver problem into the optimization problem of finding
the minimum value vector m to minimize the total evalua-
tion function and then adopted the improved GWO
algorithm for optimization iteration in order to find the
optimal solution.

In this paper, an improved GWO algorithm is proposed.
Fitness function based on motion constraints and bound-
ary constraints is established, and the optimal path is
screened through cross-variation, which is conducive to
solving the problem of the local optimum in the previous
trajectory planning. Last but not least, cross-variation can
provide a possibility for the spacecraft to jump out of
the local optimum.

4. Cross-Mutation Grey Wolf Optimizer
(CMGWO) Method

Since the grey wolf algorithm was proposed in 2014, it has
been widely used in various engineering fields due to its
advantages of simple parameter setting and strong optimiza-
tion ability. As a young intelligent optimization algorithm,
the grey wolf algorithm inevitably has similar defects.
However, as far as the current research status is con-
cerned, there is still room for further improvement in both
the convergence accuracy and the convergence speed of
the grey wolf algorithm. Therefore, it is necessary to
improve the grey wolf algorithm in order to make it
obtain more ideal optimization results.

There is a common problem in swarm intelligence opti-
mization algorithms: the adjustment of local search perfor-
mance and global search performance. An excellent swarm
intelligence algorithm must have an excellent mechanism
to adjust the global search performance and the local search
performance. As a new member of the swarm intelligence
algorithm, the grey wolf algorithm also has similar problems.
Therefore, a good balance between global search perfor-
mance and local search performance is indispensable for
the grey wolf algorithm. Inspired by the differential evolu-
tion optimization algorithm, we merge the cross-mutation
part of the algorithm into the iterative update process of
the grey wolf algorithm. With the update of the position of
the wolves, the individuals in the wolves are constantly
mutating, so that the population is constantly updated,
which can effectively solve the problem of adjusting the local
search performance and global search performance of the
original algorithm.

4.1. Improved Cross-Mutation Grey Wolf Algorithm. After
comparing the optimization results of different algorithms,
how to avoid falling into the local optimization and get the
optimization results faster is only the main problem con-
cerned. In this paper, a new grey wolf algorithm called the
grey wolf genetic algorithm is proposed. This strategy is
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enlightened from two aspects of genetic mutation and grey
wolf algorithm. With the updating of the wolf position, the
individuals in the wolf group continue to mutate, so that
the population keeps updating and the problem of getting
into the local optimum can be solved effectively. Meanwhile,
the high efficiency of the grey wolf algorithm makes the time
of algorithm implementation controlled, and the improved
grey wolf algorithm flow is shown in Figure 1.

4.1.1. Grey Wolf Algorithm. According to the previous idea,
the common grey wolf is described as follows: at the top of
the grey wolf hierarchy is the supreme leader of the grey wolf
tribe, known as alpha ðαÞ wolf, who is responsible for overall
planning and decisions on hunting. The second layer of the
grey wolf’s social hierarchy is the second leader of the wolf
pack, which is called beta ðβÞ wolf. It mainly plays an assist-
ing role in the overall planning and decision-making of
alpha ðαÞ wolf and is second only to alpha ðαÞ wolf in the
domination of the wolf population. At the third level of the
grey wolf social hierarchy is delta ðδÞ wolf, also known as
scouts, who are responsible for reconnaissance, watchkeep-
ing, and guarding. The fourth level of the grey wolf social
rank is the lowest in the grey wolf tribe, known as the omega
(ω) wolf, which is essential for balancing the internal rela-
tions of the grey wolf tribe. The most suitable solution is
considered to be the alpha (α) wolf. Therefore, the second

and third best solutions were named beta ðβÞ and omega
ðωÞ wolves. The remaining candidate solutions were
assumed to be omega wolves. And the three groups
instructed the other wolves (omega) to search for the target.
During the optimization process, the wolves update the posi-
tions of alpha, beta, delta, and omega; the grey wolf social
hierarchy in the grey wolf algorithm is shown in Figure 2.

When the grey wolf population surrounds its prey, its
predation behavior is defined as follows:

D
* = C

*
· X
*

p tð Þ − X
*

tð Þ
��� ���, ð16Þ

X
* t + 1ð Þ = X

*

p tð Þ − A
*
·D
*
: ð17Þ

Among them, D
*

represents the distance between the
individual wolf and the prey. The second formula is the

updated formula of the individual wolf’s position. X
*

pðtÞ is

the position vector of the prey in generation t. X
*ðtÞ is the

position vector of the individuals in the t generation wolf

tribe. A
*
, C
*

are coefficient vectors, and their calculation
formula is as follows:

A
* = 2a* · r*1 − a*: ð18Þ

Randomly initialize the
grey wolf population

Using fitness function
to calculate individual

fitness

Compare individual
fitness and determine
the indivadual fitness

Choose a leader wolf of 
new generation by cross

and mutation

Reach the max of
iterations or meet the

given accuracy

Start

Inpt data

End Yes No

Output optimal
parameters

Obtain simulation
curve

Cross and mutation
was performed on

the head wolf

Figure 1: Algorithm flow diagram.
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C
* = 2 · r*2: ð19Þ

Among them, a* is the convergence factor. With the
number of iterations decreasing linearly from 2 to 0, r*1,
r*2 express the random number between 0 and 1.

The location update of grey wolf is shown in Figure 3.
When grey wolf catches prey, alpha (α) wolf at the

first level leads other wolves to surround the prey. In the
grey wolf population, alpha (α) wolf, beta (β) wolf, and
delta (δ) wolf are the closest and most perceptive individ-
uals. The location update of other grey wolf individuals is
determined by the location of these three wolves. The
schematic diagram and mathematical model of individual
grey wolf searching for prey are as follows.

D
*

i,α
tð Þ = D

*

1 · X
*

α tð Þ − X
*

i tð Þ
��� ���, ð20Þ

D
*

i,β
tð Þ = D

*

2 · X
*

β tð Þ − X
*

i tð Þ
��� ���, ð21Þ

D
*

i,δ
tð Þ = D

*

3 · X
*

δ tð Þ − X
*

i tð Þ
��� ���, ð22Þ

X
*

i,α
tð Þ = X

*

α − A
*
·D
*

i,α tð Þ, ð23Þ

X
*

i,β
tð Þ = X

*

β − A
*
·D
*

i,β tð Þ, ð24Þ

X
*

i,δ
tð Þ = X

*

δ − A
*
·D
*

i,δ tð Þ, ð25Þ

X
*

i
t + 1ð Þ =

X
*

i,α tð Þ + X
*

i:β tð Þ + X
*

i,δ tð Þ
� �

3 : ð26Þ

Among them, D
*

i,αðtÞ represents the distance between

the first generation of wolves and alpha (α) wolves, D
*

i,βðtÞ
represents the distance between the second generation of

grey wolves and beta (β) wolves, D
*

i,δðtÞ represents the dis-

tance between the second generation of wolves and delta
(δ) wolves, the last three formulas define the step size
and direction of omega (ω) wolves moving to the optimal
solution alpha (α) wolves, beta (β) wolves, and delta (δ)
wolves, and the last expression represents the new genera-
tion of grey wolf individuals after the location update.

4.2. Cross-Mutation Grey Wolf Algorithm. Two different grey
wolf individual vectors are randomly selected to subtract and
generate the difference vector. After the difference vector is
given the weight, it is added to the third randomly selected
grey wolf individual vector to generate the variation vector.
This operation is called variation. The variation vector and
the target vector are mixed to generate the test vector, which
is called crossover. With the renewal of wolves, new individ-
uals of grey wolves are produced, which make up for the
problem of population limit in the optimization process.

4.2.1. Mutation Operation. The most basic variation compo-
nent is the difference vector of the parent generation. Each
vector pair includes two different individualsðxtr1 , xtr2Þ in
the parent generation (generation t). And the difference
vector is defined as

Dr1,2
= xtr1 − xtr2 , ð27Þ

where r1 and r2 represent index numbers of two different
individuals in the population. The variation vector is gener-
ated by adding the difference vector to another randomly
selected individual vector. For each target vector xti , the
mutation operation is that

vt+1i = xtr3 + F ∗ xtr1 − xtr2

� �
: ð28Þ

r1, r2, r3 ∈ f2,⋯NPg are different integers, and r1, r2, r3
are different from the current target vector index i, so the

Alpha
wolf

Beta wolf

Delta wolf

Wolves

Prey

Figure 3: Schematic diagram of grey wolf location update.

Alpha
wolf

Beta wolf

Delta wolf

Omega wolf

Figure 2: Grey wolf social hierarchy.
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population size NP ≥ 4. F is the scale factor, and the value
range of F is ½0, 2� to control differential vector scaling.

4.2.2. Cross-Operation. For the target vector individuals xti in
the population, cross-operation vt+1i will be carried out with
the variation vector to generate the experimental individuals
ut+1i . In order to ensure the evolution of an individual xti , first
by random selection, at least one contributor vt+1i can be
selected randomly in ut+1i . For others, a cross-probability fac-
tor CR can be used to determine which bit is contributed by.
The equation of cross-operation is

ut+1i =
vt+1i , rand jð Þ ≤ CR or j = rand n ið Þ,
xti , rand n jð Þ > CR or j ≠ rand n ið Þ,

(
ð29Þ

where rand nðjÞ ∈ ½0, 1� is the random number with uni-
form distribution. j represents the j-th variable (gene).CR is
the cross-probability constant, and its value range is ½0, 1�.
The size is determined in advance. rand nðiÞ ∈ ½1, 2,⋯,D�
is the index of randomly selected dimension variables to
ensure that the test vector has at least dimension variables
contributed by the variation vector. Otherwise, the test vec-
tor may be the same as the target vector and cannot generate
new individuals. It can be seen from the formula that the
larger the contribution CR, the more contribution vt+1i to
ut+1i . When CR = 1, ut+1i = vt+1i . This is conducive to local
search and accelerating convergence rate. The smaller the
CR, the more contribution xti to ut+1i . When CR = 0, ut+1i =
xti , which is conducive to maintaining the diversity of the
population and global search.

4.3. Grey Wolf Genetic Algorithm Flow

(1) Initialization

Gm is the maximum number of iterations. nn is the
number of nodes, N = 5 ∗ nn + 1 is the dimension of the
problem, NP is the population size, G = 1 is the initial alge-

bra, CR is hybrid parameters, u is the control moment, w
is the angular velocity, and j is the moment of inertia.

(2) Initialize the three leaders

Calculate the fitness function of each grey wolf, screen
out the smallest three fitness values, and use their corre-
sponding individuals as the corresponding alpha wolf, beta
wolf, and delta wolf.

(3) Reinitialize particles

Update the lead wolf position:

D
*

i,α
tð Þ = D

*

1 · X
*

α tð Þ − X
*

i tð Þ
��� ���, ð30Þ

D
*

i,β
tð Þ = D

*

2 · X
*

β tð Þ − X
*

i tð Þ
��� ���, ð31Þ

D
*

i,δ
tð Þ = D

*

3 · X
*

δ tð Þ − X
*

i tð Þ
��� ���, ð32Þ

X
*

i,α
tð Þ = X

*

α − A
*
·D
*

i,α tð Þ, ð33Þ

X
*

i,β
tð Þ = X

*

β − A
*
·D
*

i,β tð Þ, ð34Þ

X
*

i,δ
tð Þ = X

*

δ − A
*
·D
*

i,δ tð Þ, ð35Þ

X
*

i
t + 1ð Þ =

X
*

i,α tð Þ + X
*

i:β tð Þ + X
*

i,δ tð Þ
� �

3 : ð36Þ

(4) Cross

Initialize the grey wolf population Xiði = 1, 2,⋯, nÞ
Initialize a, A and C
Calculate the fitness of each search agent
Xα=the best search agent
Xβ=the second-best search agent
Xδ=the third best search agent
while (t < Max number of iterations)

for each search agent
Update the position of the current search agent by equation

end for
Update a, A, and C
Calculate the fitness of all search agents
Update Xα,Xβ,and Xδ

t=t+1
end while
return Xα

Pseudocode 1: Pseudocode of the grey wolf algorithm.
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ut+1i =
vt+1i , rand jð Þ ≤ CR or j = rand n ið Þ,
xti , rand n jð Þ > CR or j ≠ rand n ið Þ:

(
ð37Þ

(5) Mutation

Dr1,2
= xtr1 − xtr2 : ð38Þ

vt+1i = xtr3 + F ∗ xtr1 − xtr2

� �
: ð39Þ

(6) Competition

The particles are brought into the constraint function to
calculate their fitness function values, and the minimum
three are filtered out, which is the minimum value of this
generation.

The constraints to be satisfied are

J w
: = u −w× Jw,

q = 1
2Mq,

ui ≤ u ≤ uj,
wi ≤w ≤wj,

qTHq ≤ 0,
qTKq ≥ 0:

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð40Þ

Iteratively update and calculate the minimum value of
each generation. Then, bring the minimum value of each
generation into the fitness function to calculate the mini-
mum value, which is the required value.

(7) End

5. Simulation and Analysis

Basing on the research of previous scientists, we found some
questions. In the first segment of this chapter, we will intro-
duce the cross-mutation grey wolf optimizer algorithm and
conduct simulation analysis. Later in this section, we will
show the simulation results to get the advantages of this
algorithm. Finally, we will compare the cross-mutation grey
wolf Optimizer with the traditional GWO to verify the valid-
ity of the cross-mutation grey wolf optimizer.

5.1. Parameter Initialization. In the process of spacecraft, the
vector components of four strong light celestial bodies in the
inertial system are rA, rB, rC , and rD and position vectors are
r1 and r2. The initial time of spacecraft is at position r. The
minimum angle between r and r1 is required to be α1, and
the minimum angle between r and r2 is required to be α2.
The included angle of self-instrument is β. The initial atti-
tude and angular velocity of the spacecraft are, respectively,
q and ω, as shown in Table 2.

Besides, after data deduction, the condition of forbidden
constraint is that the range of ω is from -0.512 to 0.512 and
the range of u is from -0.114 to 0.114.

Initialize the grey wolf population Xiði = 1, 2,⋯, nÞ
Initialize a, A and C
Calculate the fitness of each search agent
population[t] = initialize Population (population Size)
evaluate Population(population[t]
Xα=the best search agent
Xβ=the second-best search agent
Xδ=the third best search agent
while (t < Max number of iterations)

for each search agent
Update the position of the current search agent by equation

end for
population[t+1] = crossover(population[t])
population[t+1] = mutate(population[t+1])
evaluate Population(population[t])
Update a, A, and C
Calculate the fitness of all search agents
Update Xα,Xβ,and Xδ

t=t+1
end while
return Xα

Pseudocode 2: Pseudocode of the cross-mutation grey wolf algorithm.
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5.2. Drawing Results and Result Analysis. The following is
the simulation results of the cross-mutation grey wolf
optimizer:

Using the cross-mutation grey wolf optimizer algorithm
to solve, when △T is 1 s, the total time of the maneuvering
process is 210 s. The number of path node is 210. Figure 4
shows the attitude maneuver path of spacecraft in the spher-
ical coordinate system of spacecraft, in which two red stars
are the starting point and the ending point. We can see that
in the process of movement, spacecraft is out of strong light
and avoid being directly at the beam of strong light celestial
bodies. So, the optimization result is wonderful; the trajec-
tory of the infrared telescope vector in the celestial coordi-
nate system of the cross-mutation grey wolf optimizer is
shown in Figure 4, where blue dots indicate obstacles.

Figures 5 and 6 are the change of w, q, and u of
the satellite in the application of the cross-mutation
GWO algorithm.

According to the boundary constraint, when the space-
craft is working, w should be within a constraint. The atti-
tude model can predict the change of w. Experimental data
confirm this, and we find that the range of change is small
and is in the boundary constraint, as shown in Figure 5.

Control torque is also within the constraint range and
finally tends to be stable, which is a good thing for the
spacecraft and is conducive to stable execution, as shown
in Figure 6.

We found that both angular velocity and control torque
are within their range; that is to say, boundary constraints
are satisfied. It is a good proof of feasibility. Secondly, the
curves of angular velocity and moment are also very good,
which conform to the normal working parameters of space-
craft and will not cause failure to spacecraft.

By boundary constraint and attitude constraint, the
above two results are obtained, which strongly supports the

key assumption that the cross-mutation grey wolf optimizer
can optimize the flight stability of spacecraft.

The change of quaternion is very smooth, and the range
is large, so it is easy to face all kinds of situations. And it is
helpful to avoid singular value, as shown in Figure 7.

The calculation time curve of the cross-mutation grey
wolf optimizer is shown in Figure 8.

Table 2: Numerical simulation of spacecraft operating parameters.

Variable Simulation value

w [0, 0, 0] rad/s

q [-0.383, 0, 0.926, 0]

J diag(1500,1500,1500)kg·m2

r1 0:56, 0:31,−0:18½ �T

r2 0:65,−0:19, 0:54½ �T
α1 15°

α2 30°

β 15°

rA 0,0:2,0:5½ �
rB 0:8,0:3,−0:4½ �
rC 0:5,0:3,−0:1½ �
rD 0:8,0:6,0:2½ �
r 0, 0, 1½ �T
γw 0.512

γu 0.114
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Figure 4: Trajectory of the infrared telescope vector in the celestial
coordinate system of the cross-mutation grey wolf optimizer.
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Figure 5: Angular velocity time history based on the cross-
mutation grey wolf optimizer.
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The cross-mutation grey wolf optimizer algorithm solves
some shortcomings of the previous algorithm. For example,
the previous algorithm is unable to cope with wide range of
parameters and the influence of nonlinear factors on the sys-
tem. Besides, the cross-mutation grey wolf optimizer
improved computing and motion speed. The improved
curve is very stable, and it can obviously improve the steady
and dynamic performance of the system and has better
control effect.

The control effect of the cross-mutation grey wolf opti-
mizer algorithm is verified by numerical simulation. From

the result chart, the effect is very useful, and it can effectively
control the spacecraft to work. At the same time, the cross-
mutation operation is good for jumping out of the local opti-
mal value. In trajectory planning, the optimal route can be
planned faster and better.

It is not difficult to verify the optimization stability of the
cross-mutation grey wolf optimizer algorithm through pic-
tures. The curves are smooth and the straight-line transition
is very smooth, which proves the stability of the cross-
mutation grey wolf optimizer algorithm.

Besides, we choose to simulate spacecraft flights many
times to be samples to draw the pictures, which can predict
most situations. By doing that, we can adjust parameters to
ensure the comprehensiveness of information collection.
This will improve the stability of the spacecraft.

5.3. The Comparison of the Cross-Mutation Grey Wolf
Optimizer and Traditional GWO. In order to verify the effec-
tiveness of the cross-mutation grey wolf optimizer algo-
rithm, we choose the traditional GWO algorithm to be
applied to the model and compare it with the cross-
mutation algorithm.

Table 3: Algorithm simulation experiment data comparison.

Times maneuver time
algorithm

GWO
Cross-mutation grey wolf

optimizer

1 258.38 212.20

2 261.24 209.35

3 266.15 214.34

4 256.36 213.22

5 260.53 214.97

6 255.87 216.75

7 259.61 208.67

8 261.98 209.66

9 264.62 207.48

10 259.41 209.11

Average time 260.415 211.575

−80

−60

−40

−20

20

40

0

60

80

0 50 100 150

Figure 8: The computation time curve of the cross-mutation grey
wolf optimizer.
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Figure 6: Control torque time history based on the cross-mutation
grey wolf optimizer.
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Figure 7: Attitude quaternion time history based on the cross-
mutation grey wolf optimizer.
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Under the same simulation conditions, we also make
experiment with the traditional GWO algorithm which takes
265 s. With the increase of the number of experiments, the
traditional GWO is easy to fall to the local optimum. And
it can only avoid most celestial bodies. Trajectory cannot
avoid all objects.

Because of the randomness of the algorithm, we have
carried out several experiments and recorded the time, as
shown in Table 3.

In addition, we conducted 100 more experiments. We
used the GWO and cross-mutation grey wolf optimizer algo-
rithm to calculate the satellite’s maneuver time. We can
draw the conclusion that the maneuvering time of GWO
with cross-variation is about 210 s. The same GWO maneu-
ver time is between 260 s and 270 s, as shown in Table 4.

5.3.1. Interpretations

(1) According to the image of angular velocity of the
traditional GWO, we find that the maximum value
of w exceeds the boundary constraint 5.12; that is,
boundary constraints are not satisfied. Spacecraft is
prone to failure. And the cross-mutation grey wolf
optimizer solves this problem very well, as shown
in Figure 4

(2) In terms of time, no matter it is computing time or
maneuvering time, the cross-mutation grey wolf
optimizer is shorter than the traditional GWO show-
ing that the cross-mutation grey wolf optimizer algo-
rithm is more efficient. It is also very stable in
execution and not prone to errors

(3) Another possibility is that the traditional GWO
algorithm produces a local optimal value in opera-
tion. Therefore, it is not possible to quickly iterate
the head wolf and filter out the minimum value,
thus increasing the calculation time. However, the
cross-mutation grey wolf optimizer solves this
problem well

(4) For the change of ω and u, the change of the cross-
mutation grey wolf optimizer is smoother than that
of common GWO range which is also more reason-
able, so it has better application effect

In addition, we also explore the local optimization of the
two algorithms, because the cross-mutation grey wolf opti-
mizer can effectively improve the local optimum, so we did
100 experiments and recorded the times of falling into the
local optimum, as shown in Figure 9.

It can be seen from the chart that cross and mutation can
significantly reduce the number of times falling into the local
optimum, which is effective. In practical application, it also
performs well.

The following figures are the simulation diagram under
the grey wolf optimizer algorithm.

The time history analysis of angular velocity based on
the grey wolf optimization algorithm is shown in Figure 10.

Table 4: Evaluating indicator.

Algorithm
Boundary
constraints

Forbidden
constraint

Computing
time

Movement
time

The change of w and u

Traditional GWO × √ 105.2 s 265 s ×
Cross-mutation grey wolf
optimizer

√ √ 95 s 210 s √
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Figure 10: Angular velocity time history based on the grey wolf
optimizer.
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Figure 9: Discussion on the situation of the algorithm falling into
the local optimum.
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The control torque time history based on the grey wolf
optimizer is shown in Figure 11.

The attitude quaternion time history based on the grey
wolf optimizer is shown in Figure 12.

The computation time curve of the grey wolf optimizer is
shown in Figure 13.

The trajectory of the infrared telescope vector in the
celestial coordinate system of the grey wolf optimizer is
shown in Figure 14.

6. Conclusions

This paper describes and analyzes the boundary and point-
ing constraints of the spacecraft trajectory planning problem
based on time and path optimization. Firstly, a mathematical
model based on boundary constraints and pointing con-
straints is established, and then, they are constructed as a
finite function of path evaluation. In order to solve the path
planning problem under the condition of satisfying the con-
straints, we propose a new attitude maneuver path planning
method—cross-mutation grey wolf algorithm, which
improves the diversity of the wolves’ offspring through
cross-mutation and obtains the nearest optimal path based
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Figure 11: Control torque time history based on the grey wolf
optimizer.
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Figure 12: Attitude quaternion time history based on the grey wolf
optimizer.
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Figure 14: Trajectory of the infrared telescope vector in the
celestial coordinate system of the grey wolf optimizer.
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on iterative rules. Simulation results show that other forms
of the GWO algorithm have good applicability in the process
of spacecraft path planning, and the simulation results prove
the feasibility of applying grey wolf to the spacecraft control
model to solve the shortest path, although there are some
problems such as unsatisfying constraints or taking too long
to optimize. The CMGWO method performs well in simula-
tion experiments, and it fits perfectly with the control model
and not only satisfies the boundary constraints and direction
constraints but also greatly shortens the attitude maneuver
time and significantly reduces the times of falling into the
local optimum. In addition, the angular velocity and control
torque curves obtained by this method are smoother and
gentler, which has a good application prospect in the future.
In the future research, a single satellite may not be able to
complete the task accurately and quickly in some cases,
which indicates that the difficulty of solving the problem will
continue to increase, and it will take more time to plan the
attitude maneuver path. The CMGWO method also has
the potential to be applied to the trajectory planning task
of multiple satellites. Finally, the proposed numerical test is
aimed at a specific situation. For some reasons, the simula-
tion cannot be extended, but its universality is worthy of
recognition
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