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For the vertical landing process of reusable rockets, the landing accuracy is likely to be affected by disturbances and faults during
flight. In this paper, a fault-tolerant guidance method based on the MPC framework is put forward. First, we propose a piecewise
guidance algorithm that combines a trajectory optimization algorithm based on convex optimization with the MPC framework.
With the fast trajectory optimization algorithm and the MPC framework that recursively introduces the real-time state, this
algorithm forms a robust closed loop. Then, we design an integrated guidance, navigation, and control (GNC) system to
enhance the fault tolerance and robustness of the guidance method. Simulation experiments verify that this method is fault-
tolerant to various fault conditions including navigation system failures, control system failures, drag coefficient deviations, and
atmospheric density deviations. This guidance method is robust enough to overcome disturbances and faults, and it has great
potential for online use.

1. Introduction

Launching a rocket is a high-cost and high-risk investment,
and there is growing concern about how to make it econom-
ical. Building reusable rockets is an effective way to reduce
costs and create business value. At present, many countries
have invested plenty of research in rocket recovery technol-
ogy. Two US companies, Blue Origin and SpaceX, have suc-
cessfully conducted rocket recovery experiments, proving
the feasibility of vertical landing technology. The rocket
recovery mission is generally divided into four flight phases:
the attitude adjustment phase, the power deceleration phase,
the aerodynamic deceleration phase, and the vertical landing
phase [1], so as to ensure that the rocket lands vertically and
softly at the predetermined location. The recovery process is
confronted with difficulties including large spans of airspace
and velocity domain, large changes in the flight environ-
ment, complex flight constraints, and strong disturbances

and uncertainties, any of which may lead to errors. The
accumulated errors generated by preceding phases must be
eliminated in the vertical landing phase which is the last
phase of the recovery mission [2]. The time is short but
the precision is high. Therefore, extremely high require-
ments are placed on the guidance speed and accuracy of this
phase. Research on fast and accurate guidance method of
rocket vertical landing phase is the basis for successfully
recovering a rocket.

The study of the landing problem began with the Apollo
project. Due to the limited computing ability, researchers
could only apply analytical guidance law in that era [3].
Unlike the lunar landing mission, more complex path con-
straints and rigorous terminal conditions must be consid-
ered for rocket vertical landing problems. However, the
derivation of the analytical method is cumbersome, making
it unsuitable for most complex nonlinear problems [4].
Thanks to the research on numerical methods by
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mathematicians and the development of computers’ com-
puting ability [2], the trajectory optimization of rocket verti-
cal landing problems mainly relies on numerical algorithms
these days.

The vertical landing problem can be expressed as an
optimal control problem with the objective of minimum fuel
consumption, subject to the constraints of dynamic equa-
tions and the constraints on state and control variables. It
can be transformed into a nonlinear programming problem
(NLP) through time discretization. Early studies found that
the pseudospectral methods had high accuracy in solving
NLP. In recent years, these methods have been widely used
for trajectory optimization problems. Chen and Xia [5] used
a pseudospectral method to analyze the ascent trajectory
characteristics of a solid rocket-powered launch vehicle.
Mu et al. [6] planned the Mars landing trajectory by the
Gauss pseudospectral method. However, the real-time per-
formance and convergence of these methods cannot meet
the requirements of online guidance [2]. Subsequent studies
have shown that convex optimization is more advantageous
for online trajectory optimization. As long as the problem is
transformed into a convex optimization form, it can theoret-
ically be solved in polynomial time by the interior point
method [7]. Convex optimization was first applied to Mars
landing [8, 9]. In order to convert the landing problem into
a convex problem, Açıkmeşe et al. [10] proposed a lossless
convexification method to deal with thrust constraints and
proved that the lossless convexification problem is equiva-
lent to the original problem, which greatly promoted the
development of convex optimization methods in the field
of trajectory optimization. However, not all constraints can
be convexified by lossless convexification. A more general
approach is successive convexification, which linearizes the
original nonconvex problem into a series of convex subprob-
lems and then iteratively finds the optimal solution of the
subproblems. In 2013, Lu and Liu [11] proposed successive
convexification for convexifing dynamic equations and other
nonconvex constraints when they studied the rendezvous
problem. They later used this method to solve the hyper-
sonic vehicle reentry problem [12] and the rocket landing
problem [13]. The advantages of convex optimization
including computational efficiency and insensitivity to initial
guesses make it an efficient method for solving trajectory
optimization problems. It is widely used in the aerospace
field, such as low-thrust transfers [14], rendezvous problem
[15], re-entry problem [12], and the vertical landing prob-
lem studied in this paper.

There are two commonly used coordinate systems for
modeling rocket vertical landing problems, the velocity
coordinate system [16–20] and the landing point coordinate
system [21–25]. In this paper, the three-degree-of-freedom
dynamics of the rocket are derived based on the landing
point coordinate system. Since Szmuk et al. [21] applied suc-
cessive convex optimization to solve the rocket vertical land-
ing problem in 2016, research on trajectory optimization of
landing problems has become more and more abundant
and mature. The current research focus is to improve the
convergence performance and solution efficiency of succes-
sive convex optimization, so that the approach can meet

the needs of online guidance. In Ref. [24], a convex feasible
set (CFS) method is proposed to convexify the angle of
attack constraint which is a nonconvex-nonconcave inequal-
ity. Ref. [25] presents a two-stage successive convexification
method. Simulation experiments show that the performance
of the two-stage method is more stable and efficient than the
single-stage method. Ref. [26] compares the computational
performance and solution accuracy of six discretization
methods. In Ref. [18], an online update strategy for trust
regions is proposed to speed up the convergence of succes-
sive convex optimization.

However, the rocket will be affected by wind interference
and environmental uncertainties after entering the atmo-
sphere, and modules such as the navigation system and the
control system may malfunction during the landing process.
Trajectory optimization alone cannot overcome these distur-
bances and faults. Therefore, it is necessary to design an
online fault-tolerant guidance method to ensure landing
accuracy. A fault-tolerant control method has been proposed
to deal with parametric uncertainties and unknown actuator
failures [27]. But there is a lack of research on guidance
methods for vertical landing problems at present. In Ref.
[22], a receding horizon guidance method based on convex
optimization is proposed. Ref. [28] and Ref. [29] both pro-
pose to construct a guidance, navigation, and control
(GNC) system for closed-loop guidance, but they do not give
a specific algorithm.

In recent years, some researchers put forward a guidance
method based on trajectory optimization and model predic-
tive control (MPC) framework. MPC is a control strategy
that recursively solves an optimal control problem with
updated system states at each sampling time. Ref. [30] pre-
sents the MPC algorithm for the optimal guidance and
reconfiguration of swarms of spacecraft. In Ref. [31], MPC
is used for asteroid landing. Ref. [32] reviews applications
of MPC in the aerospace guidance field. For the online guid-
ance problem of the rocket vertical landing phase, a succes-
sive convexification + MPC guidance algorithm is proposed
by Ref. [33]. Ref. [19] embeds a pseudospectral-improved
successive convexification (PISC) algorithm in the MPC
framework to construct a parallel feasibility-guaranteed
guidance algorithm. Ref. [34] designs an antidelay model
predictive control (AD-MPC) scheme for carrier landing.
Ref. [35] implements a successive convexification MPC-
based guidance algorithm to solve the six-degree-of-freedom
powered descent guidance problem.

In this paper, we propose a piecewise guidance algorithm
that embeds a convex optimization-based trajectory optimi-
zation algorithm in the MPC framework. An integrated
GNC system is then designed to further improve the fault
tolerance and robustness of the entire system. The rest of
this paper is organized as follows. In Section 2, a mathemat-
ical description of the rocket vertical landing problem is
given. Section 3 elaborates the online trajectory optimization
algorithm based on convex optimization, including convex-
ification and discretization methods for transforming the
original problem into a second-order cone programming
(SOCP) problem. In Section 4, the trajectory optimization
algorithm is embedded in the MPC framework, and a
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piecewise guidance method is proposed to cope with the
bang-bang characteristic of the control. Section 5 designs
an integrated GNC system. In Section 6, simulation experi-
ments are carried out to verify the reliability, accuracy,
robustness, and fault tolerance of the guidance method. Sec-
tion 7 concludes the whole work.

2. Problem Formulation

In this section, we use the inertial reference frame to formu-
late the fuel-optimal rocket vertical landing problem as a
standard optimal control problem.

2.1. Dynamics and Constraints. The rocket’s flight time dur-
ing the vertical landing phase is so short that the Earth’s sur-
face can be assumed to be a horizontal plane. Based on this
assumption, we build an inertial reference frame with the
origin O located at the predetermined landing point as
shown in Figure 1. The OX axis is perpendicular to the
plane, and the upward direction is positive. The OY axis is
parallel to the plane, and the direction pointing to the
rocket’s launch point is positive. The OZ axis and the other
two axes form a right-handed Cartesian coordinate system.

In this reference frame, the rocket’s three-degree-of-free-
dom dynamics are

_r tð Þ = v tð Þ,

_v tð Þ = T tð Þ +D tð Þ
m tð Þ + g,

_m tð Þ = −
T tð Þk k
Ispg0

,

8>>>>>><
>>>>>>:

ð1Þ

where rðtÞ, vðtÞ, and mðtÞ represent the position vector,
velocity vector, and mass of the rocket, respectively. TðtÞ is
the thrust vector of the rocket engine. k·k represents the 2-
norm of the vector.

During the landing phase, the constraints on thrust mag-
nitude and direction are expressed as

Tmin ≤ T tð Þk k ≤ Tmax, ð2Þ

T tð Þk k cos ηmax ≤ exT tð Þ, ð3Þ
where Tmin and Tmax represent the minimum and maximum
thrust magnitude that the engine can provide, respectively.
ηmax is the maximum allowable value of the angle between
the thrust direction and the OX direction. DðtÞ is the aero-
dynamic drag calculated by the following formula:

D tð Þ = −
1
2 ρSDCD v tð Þk kv tð Þ, ð4Þ

where ρ is the air density, SD is the drag reference area, and
CD is the drag coefficient.

To prevent the rocket from colliding with the ground or
being interfered with by the ground protrusion during flight,
a glide-slope constraint is imposed to restrict the path of the

rocket to lie within an upward-facing cone:

r tð Þk k cos θmax ≤ exr tð Þ, ð5Þ

where ex represents the unit vector in the OX direction. θmax
is the maximum allowable half-cone angle.

We also need to consider boundary conditions. The
rocket’s initial position vector, velocity vector, and mass
are specified as fixed parameters. Its final position and veloc-
ity vectors are fixed, too. The thrust vector at the terminal
time must be in the OX direction. The fuel remaining of
the rocket must be nonnegative, which means that the land-
ing mass of the rocket must be greater than the dry mass
which is denoted as mdry. The boundary conditions are sum-
marized as

r 0ð Þ = r0, v 0ð Þ = v0,m 0ð Þ =m0, ð6Þ

r t f
� �

= 0, v t f
� �

= 0, T t f
� �

= T t f
� ��� ��ex,m tf

� �
≥mdry:

ð7Þ

2.2. Performance Index. The performance index of the fuel-
optimal rocket vertical landing problem is selected as mini-
mizing the fuel consumption, which is equivalent to maxi-
mizing the terminal mass of the rocket. Therefore, the
objective function is expressed as

J = −m tf
� �

: ð8Þ

To sum up, with thrust vector T as the control variable

and ½rT , vT ,m�T as the state variables, the rocket vertical
landing problem can be formulated as an optimal control
problem with free terminal time:

Problem0 : min
T

J = −m tf
� �

,

subject to 1ð Þ 2ð Þ 3ð Þ 5ð Þ 6ð Þ 7ð Þ:
ð9Þ

Y
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Figure 1: Inertial reference frame.
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3. Trajectory Optimization Algorithm Based on
Convex Optimization

In this section, we will elaborate on the trajectory optimiza-
tion algorithm based on convex optimization and embedded
in the subsequent guidance system. This includes the use of
convexification and discretization methods to convert Prob-
lem0 into a convex problem, as well as iteratively solving the
converted problem afterward.

3.1. Convexification. The thrust magnitude constraint in
Problem0 is nonconvex. Its nonconvex feasible region can
be relaxed through lossless convexification to form a high-
dimensional convex feasible region, transforming the non-
convex constraint into a relaxed convex constraint. Using
the above method, we introduce a slack variable Γ to trans-
form Eq. (2) into

T tð Þk k ≤ Γ tð Þ, ð10Þ

Tmin ≤ Γ tð Þ ≤ Tmax: ð11Þ
By replacing the nonconvex constraint (Eq. (2)) in Prob-

lem0 with the convex constraints (Eqs. (10) and (11)), the
nonconvex problem is converted into a relaxed problem.
Studies have shown that the optimal solution to the relaxed
problem is also the optimal solution to Problem0 [8–10].
Taking T and Γ as control variables, that is, the control var-

iables are redefined as u = ½Γ, TT �T . The dynamics are trans-
formed into

f x, uð Þ =

_r tð Þ = v tð Þ

_v tð Þ = T tð Þ +D tð Þ
m tð Þ + g

_m tð Þ = −Γ
Ispg0
� �

2
6666664

3
7777775
: ð12Þ

The nonlinearity of Eq. (12) is caused by the free termi-
nal time, aerodynamic drag DðtÞ, and the denominatormðtÞ.
It can be linearized through successive convexification. In
this paper, the terminal time is added to the optimization
variables, which will be optimized together with the state
and control variables in the subsequent optimization pro-
cess. t f in Eq. (12) is a hidden variable. Define τ ≜ t/t f . Apply
the chain rule to make t f explicit:

dx
dt

= dx
dτ

dτ
dt

: ð13Þ

Eq. (12) is transformed into

dx
dτ

= f x, uð Þt f : ð14Þ

We adopt successive convexification to iteratively solve
Eq. (14). The first-order Taylor expansion is performed at

the kth iteration to transform Eq. (14) into

dx
dτ

= f xk, uk
� �

tkf + A xk, uk
� �

x − xk
� �

tkf

+ B xk, uk
� �

u − uk
� �

tkf + f xk, uk
� �

t f − tkf
� �

,
ð15Þ

where Aðxk, ukÞ and Bðxk, ukÞ are the gradients of fðx, uÞ
with respect to the state variables x = ½rT , vT ,m�T and con-

trol variables u = ½Γ, TT �T , respectively.
3.2. Discretization. The problem is still infinite-dimensional
after convexification and needs to be discretized into a
finite-dimensional problem. We adopt the trapezoidal dis-
cretization to discretize the problem. This requires the time
of flight to be evenly divided into N discrete intervals, i.e.,
N + 1 discrete points (the value of N in each guidance cycle
will be discussed later). The subscript iði = 1,⋯,N + 1Þ rep-
resents the ith discrete point of the state or control variable,
then, Eq. (15) is discretized as

xi+1 = xi +
1
2N Ak

i xi − xki
� �

tkf
�

+Bk
i ui − uki
� �

tkf + fki t f
�

+ 1
2N Ak

i+1 xi+1 − xki+1
� �

tkf
�

+ Bk
i+1 ui+1 − uki+1
� �

tkf +fki+1t f
�
,

ð16Þ

where Ak
i =Aðxki , uki Þ, Bk

i = Bðxki , uki Þ, and fki = fðxki , uki Þ.
After discretization, constraints (3), (5), (6), (7), (10),

and (11) are transformed into

T ik k cos ηmax ≤ exT i, ð17Þ

rik k cos θmax ≤ exri, ð18Þ
r1 = r0, v1 = v0,m1 =m0, ð19Þ

rN+1 = 0, vN+1 = 0, TN+1 = TN+1k kex,mN+1 ≥mdry, ð20Þ
T ik k ≤ Γi, ð21Þ

Tmin ≤ Γi ≤ Tmax: ð22Þ
3.3. Trajectory Optimization Algorithm. Define Hi = I + tkf /ð
2NÞAk

i , Hi+1 = −I + tkf /ð2NÞAk
i+1, Gi = tkf /ð2NÞBk

i , Gi+1 = tkf /ð
2NÞBk

i+1, Fi = ðfki + fki+1Þ/ð2NÞ, Ci =Ak
i x

k
i t

k
f + Bk

i u
k
i t

k
f . Equa-

tion (16) can be expressed as

Hixi +Hi+1xi+1 + Giui +Gi+1ui+1 + Fi =
1
2N Ci + Ci+1ð Þ:

ð23Þ

The terminal time t f is added to the control variables for
optimization. Combine the discretized forms of state vari-

ables x = ½rT , vT ,m�T , control variables u = ½Γ, TT �T and t f
into a joint optimization variable Z, that is, define Z =
½xT1 ,⋯, xTN+1, uT1 ,⋯, uTN+1, t f �T , then, Eq. (23) can be
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transformed into the following matrix form:

MZ = C, ð24Þ

where

M =

I 0 ⋯ 0
H1 H2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ HN

0
0
⋮

HN+1

0 0 ⋯ 0
G1 G2 ⋯ 0
⋮ ⋮ ⋱ ⋮

0 0 ⋯ GN

0
0
⋮

GN+1

0
F1

⋮

FN

2
666664

3
777775,

C = 1/ð2NÞ

2Nx1

C1 + C2

⋮

CN + CN+1

2
666664

3
777775:

Problem0 is transformed into

Problem1 : min
Γ,T ,t f

J = −mN+1,

subject to 24ð Þ 17ð Þ 18ð Þ 19ð Þ 20ð Þ 21ð Þ 22ð Þ:
ð25Þ

Problem1 is an SOCP problem that can be solved itera-
tively using the interior-point algorithm. The solution steps
are shown in Figure 2.

The convergence condition in Figure 2 is

max
i

xk+1i − xki
��� ��� ≤ εx ,  max

i
uk+1i − uki
��� ��� ≤ εu, ð26Þ

which means that if the difference between the values of
the optimization variables of two consecutive iterations is
within the specified tolerance range, the iteration should be
stopped and the optimal solution is obtained.

4. Piecewise Guidance Algorithm Based on
MPC Framework

In this section, on the basis of the trajectory optimization
algorithm based on convex optimization detailed in the pre-
vious section, a piecewise guidance method combining the
trajectory optimization algorithm with the MPC framework
is proposed. At each sampling time, the real-time state of the
rocket fed back by the navigation system is employed as the
initial state to start the trajectory optimization algorithm.
Then, the optimal values of a series of control variables from
the current time to the landing point are obtained. But only
the values in the current guidance cycle are applied to con-
trol the rocket until the next sampling time. Repeat these
steps until the rocket lands at the predetermined point. Since
the trajectory optimization algorithm needs to be provided
with an initial guess, the optimization result obtained at
the previous sampling time can be used as the initial trajec-
tory at the current sampling time. The computational effi-
ciency of the trajectory optimization algorithm based on
convex optimization makes it possible for the guidance algo-

rithm to form an effective closed loop. In addition, the prac-
tice of recursively introducing the real-time state of the
rocket into the trajectory optimization ensures the stability,
robustness, and fault tolerance of the closed-loop.

The piecewise method is to cope with the thrust magni-
tude’s bang-bang characteristic. Bang-bang control means
the control amount changes dramatically in a short period
near the switching point. If the duration of each guidance
cycle is too long and a fault occurs near the switching point,
the trajectory will deviate from the optimal solution.

The piecewise guidance algorithm based on MPC frame-
work is shown in algorithm 1, where ti represents the sam-
pling time of the ith trajectory optimization, T i represents
the terminal time obtained by the ith trajectory optimiza-
tion, T represents the thrust series from the current time
to the landing point, while T i contains only the portion
within the ith guidance cycle, Δt is the duration of each
guidance cycle which is set initially, and Δti is the actual
duration of the ith guidance cycle, Δti = ti+1 − ti.

Over time, the time horizon of the optimization becomes
shorter, and the number of discrete points for trajectory
optimization within the guidance cycle should also be
reduced accordingly. The number of discrete points taken
by the ith trajectory optimization algorithm is determined by

Ni = Ni−1
T i−1 − ti
T i−1 − ti−1

� 	
, ð27Þ

where the ceiling function is defined as dxe =min fn ∈ℤjn
≥ xg. ðT i−1 − ti−1Þis the time horizon of the ði − 1Þth

Start

Initialize x0, u0

Solve
problem1

Get xk, uk

Is the convergence
condition satisfied?

Optimal solution:
x⁎ = xk, u⁎ = uk

No optimal
solution

Is the max number of
iterations reached?

N

N

YY

Figure 2: Solution steps for the trajectory optimization problem.
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optimization, and ðT i−1 − tiÞ is the estimate of the time hori-
zon of the ith optimization.

5. Integrated GNC System Design

In actual flight, a key technology to realize fault-tolerant
guidance is designing a guidance, navigation, and control
(GNC) system. The whole GNC system is closed-loop,
where the navigation system consists of a variety of sensors
for real-time measurement and evaluation of states includ-
ing the rocket’s position, velocity, and mass, the guidance
system consists of the guidance algorithm proposed in the
previous section to solve the landing trajectory, and the con-
trol system consists of the actuators to control the rocket to
track the trajectory. The guidance system needs to provide
the real-time state of the rocket to the guidance system
before the trajectory optimization. And the control com-
mands derived from the guidance algorithm need to be exe-
cuted by the control system. Thanks to the division of labor
and rapid cooperation of each system, the integrated GNC
system has strong fault tolerance and robustness against var-
ious disturbances and faults including navigation system
failures, control system failures, drag coefficient deviations,
and atmospheric density deviations.

In this section, an integrated GNC system is built, as
shown in Figure 3. In a guidance cycle, based on the current
state rðtiÞ, vðtiÞ,mðtiÞ fed back by the navigation system, the
guidance system adopts the trajectory optimization algo-
rithm based on convex optimization to generate an optimal
thrust series T (where J i−1 represents the initial guess which
is the optimal trajectory of the last guidance). The control
system outputs the thrust command T i of the current guid-
ance cycle and transmits it to the rocket, and the rocket sys-
tem executes the command accordingly. In the simulation
experiments, we use numerical integration to integrate the
state of the rocket after one guidance cycle, which is used
to simulate the real-time state of the rocket. Yet in actual
flight, the state is measured by the navigation system and
transmitted to the guidance system. Here comes the next
guidance cycle, repeat the above until the rocket lands. The

piecewise guidance algorithm proposed in the previous sec-
tion and the integrated GNC system designed in this section
ensure the fault tolerance of the guidance method.

6. Simulation Experiments

In this section, numerical simulations are provided to verify
the reliability, accuracy, fault tolerance, and robustness of
the proposed guidance method. All simulation experiments
are carried out on MATLAB with the use of the modeling
tool CVX [36, 37] to establish the guidance problem and
the solver MOSEK [38] to solve it. We employ the fourth-
order Runge-Kutta integration with a 0.01 s time step to
obtain updated states at each sampling time. The parameters
used in the simulations are shown in Table 1.

The number of discrete points for the first trajectory
optimization is: N = 40. Assuming r0i , v

0
i , and m0

i vary line-
arly from the initial value to the terminal value, then, the ini-
tial guesses for all optimization parameters are

r0i = r f − r0
� � i − 1ð Þ

N
+ r0,

v0i = v f − v0
� � i − 1ð Þ

N
+ v0,

m0
i = mdry −m0

� � i − 1ð Þ
N

+m0,

Γ0
i = Tmin, T0

i =
−Γ0

i v
0
i

v0i
�� �� ,

t0f = 40s:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð28Þ

The convergence condition is

εr = 10−3m, εv = 10−3m/s, εm = 10−3kg, εΓ = 10−3kN: ð29Þ

6.1. Reliability and Accuracy. In this subsection, we conduct
the simulations in the absence of any faults and deviations.
Figures 4 and 5 show the trajectories and control commands

Piecewise guidance algorithm based on MPC framework
Initialization: Save the initial trajectory to the database, set relevant parameters required by the trajectory optimization algorithm,
and set the update index i = 1.
1 whileðT i−1 − ti−1Þ > 0
2 generate guidance commands according to the guidance cycle clock;
3 sample the current state xðtiÞ(i.e. rðtiÞ, vðtiÞ,mðtiÞ) of the rocket;
4 employ the optimal trajectory J i−1 which was obtained in the previous guidance cycle as the initial guess. Start the trajectory
optimization using the current state xðtiÞ. Obtain a new optimal trajectory J i and an optimal thrust series T. Save J i to the database,
implement T i, and set i = i + 1;
5 if a fault occurs and ti approaches the switching point
6 shorten the duration of the guidance cycle: Δti = α ⋅ Δt ð0 < α < 1Þ ;
7 else
8 Δti = Δt ;
9 end if
10 end while

Algorithm 1: Piecewise guidance algorithm based on MPC framework.
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of the rocket vertical landing phase obtained by the trajec-
tory optimization algorithm and the guidance method pre-
sented in this paper, respectively. The red curves represent
the results of the trajectory optimization algorithm, and
the black is the guidance method. The differences between
the results are small, demonstrating the reliability of the
guidance method. We then perform numerical integration
using the control commands to obtain the actual terminal
states. Tables 2 and 3 show the terminal states and landing
errors, respectively. It can be seen that the landing position
and velocity errors of the guidance method are smaller than
those of the trajectory optimization algorithm, which proves
that the guidance method proposed in this paper has higher
accuracy.

6.2. Fault Tolerance and Robustness. In this subsection, we
assume three scenarios: faults occur in the navigation sys-
tem, faults occur in the control system, and estimates of
parameters (the drag coefficient and the atmospheric den-
sity) have deviations. Considering these scenarios, we apply
the trajectory optimization algorithm and the guidance
method proposed in this paper to conduct simulation exper-
iments, respectively, and compare their results.

6.2.1. Faults Occur in the Navigation System. It is assumed
that the navigation system has faults. Rather, the measure-

ment of the real-time state of the rocket has the following
errors:

rmeasurek k = rtruek k ±min 10, rtruek k × ε%ð Þ × random 0, 1ð Þ,
vmeasurek k = vtruek k ±min 1, vtruek k × ε%ð Þ × random 0, 1ð Þ,

(

ð30Þ

where 10 and 1 represent the absolute errors of the rocket’s
position and velocity, ε represents the maximum range of
the relative error, randomð0, 1Þ represents a random num-
ber generated from [0,1], rtrue, vtrue represents the actual
state of the rocket, and rmeasure, vmeasure represents the state
measured by the navigation system and fed back to the guid-
ance system. We take the value of ε as 5, 10, and 15 for
experiments, and the landing errors under these fault condi-
tions are shown in Table 4.

It can be seen from Table 4 that as the relative error of
the measured state increases, the landing errors of the rocket
also increase, but they remain within a small range. This
experiment proves that the guidance method proposed in
this paper is fault-tolerant and robust to navigation system
faults.

6.2.2. Faults Occur in the Control System. It is assumed that
the control system has two fault conditions: thrust cannot
change continuously (that is, thrust is constant during each
guidance cycle), and thrust magnitude has deviations. The
trajectory optimization algorithm and the guidance method
proposed in this paper are, respectively, applied to conduct
simulations under the above two fault conditions, and their
results are compared.

(1) Thrust Cannot Change Continuously. For trajectory opti-
mization, we assume that thrust is constant per second, and
for guidance, thrust is constant during each guidance cycle.
The landing errors and landing masses are shown in Table 5.

(2) Thrust Magnitude Has Deviations. It is assumed that
there are deviations within ±5% of the thrust magnitude.
In the experiment, random deviations within ±5% are
applied to the thrust magnitude obtained by the trajectory
optimization algorithm and the guidance method. Then,
the deviated thrust is used to control the rocket. The landing
errors and landing masses are shown in Table 6.

It can be seen from Tables 5 and 6 that when the thrust
cannot be continuously changed or the thrust magnitude has
deviations, the landing position error and velocity error
obtained by trajectory optimization are significantly larger
than those obtained by guidance. The landing position
errors of the guidance method under the two fault condi-
tions remain at the same order of magnitude as that under
the no-fault condition in Subsection 6.1, which demon-
strates that the two fault conditions have little effect on the
landing position. As for the landing velocity error, the guid-
ance method can make it at the same order of magnitude as
the no-fault condition when the thrust magnitude has devi-
ations within ±5%. The error is one order of magnitude

Control
system

Guidance
system

Rocket
system

Navigation
system

Ti

T

Ji-1

Figure 3: Integrated GNC system.

Table 1: Parameter values.

Parameter Value Units

r0 3500, 700, 0½ �T m

v0 −200,−90, 0½ �T m/s

m0 27000 kg

mdry 20000 kg

Tmin 100 kN

Tmax 300 kN

θmax 80 °

ηmax 15 °

g0 9.8 m/s2

Isp 270 s

ρ 1.225 kg/m3

SD 10 m2

CD 2.2 —

Δt 1 s
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Table 2: Terminal states.

t f sð Þ rx t f
� �

mð Þ ry t f
� �

mð Þ vx t f
� �

m/sð Þ vy t f
� �

m/sð Þ m tf
� �

kgð Þ
Trajectory optimization 43.18 -2.0085 -1.1821 -0.0646 -0.0332 23137.09

Guidance 43.18 -0.0276 -0.0241 -0.0210 -0.0043 23135.79
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greater when the thrust cannot be continuously changed, but
it still does not exceed 1m/s. The simulation experiments
demonstrate that the guidance method proposed in this
paper is fault-tolerant and robust to control system faults.

6.2.3. Estimates of Parameters Have Deviations. It is assumed
that the actual drag coefficient and atmospheric density dif-
fer by ±15% from the estimated values. We apply the trajec-
tory optimization algorithm and the guidance method
proposed in this paper to conduct simulation experiments
using the estimated parameters. Then, we perform numeri-
cal integration using the actual parameters to obtain real ter-
minal states. The landing errors and landing masses of the
two algorithms under the fault condition are shown in
Tables 7 and 8, respectively, (where CD + 15% indicates that
the actual drag coefficient has a value of 1:15 × CD).

It can be seen from Tables 7 and 8 that the guidance
method proposed in this paper can significantly improve
the landing position accuracy in the case of the drag coeffi-
cient or the atmospheric density having deviations. When
the actual values of the two parameters are larger than the
estimated values, the accuracy of the landing velocity is also
significantly improved. This experiment demonstrates the
fault tolerance and robustness of the guidance method to
the landing position in the presence of parameter deviations.
However, when the actual values of the two parameters are
smaller than the estimated values, the landing velocity errors
obtained by the guidance method will become larger. We
refer to the analysis of Ref. [19] and learn that when the
actual values of the two parameters are decreased, part of
the mechanical energy of the rocket cannot be dissipated
as expected; and when the thrust magnitude saturates, there
is no additional energy to compensate for the undissipated
mechanical energy, leading to the error of the optimal trajec-
tory becomes larger. Subsequent research on guidance
methods should attempt to address this issue.

6.2.4. Combination of Various Faults. Finally, we consider
navigation system failures, control system failures (thrust
magnitude has deviations), drag coefficient deviations, and
atmospheric density deviations at the same time and carry
out Monte Carlo simulations (200 cases). For the navigation
system and control system, the failures are added in the
same way as the previous experiments. Drag coefficient devi-
ations and atmospheric density deviations are considered to
be normally distributed, and their means are set to zero. The
3σ values are, respectively, taken as CD ~ 15%, ρ ~ 15%.

Table 3: Landing errors.

Landing position
error/m

Landing velocity error/
(m/s)

Trajectory
optimization

2.3305 0.0726

Guidance 0.0366 0.0214

Table 4: Landing errors and masses under the condition that the
navigation system has faults.

Landing position
error/m

Landing velocity
error/(m/s)

Landing
mass/kg

ε = 5 2.4665 5.7779 23331.19

ε = 10 3.5750 5.8301 23329.48

ε = 15 4.0624 6.5514 23355.94

Table 5: Landing errors and masses under the condition that thrust
cannot change continuously.

Landing
position error/

m

Landing velocity
error/(m/s)

Landing
mass/kg

Trajectory
optimization

407.6401 4.8062 23081.57

Guidance 0.0914 0.3145 23136.54

Table 6: Landing errors and masses under the condition that thrust
magnitude has deviations.

Landing
position error/

m

Landing velocity
error/(m/s)

Landing
mass/kg

Trajectory
optimization

359.1367 6.3939 23137.13

Guidance 0.0185 0.0209 23133.57

Table 7: Landing errors and masses of the trajectory optimization
algorithm.

Deviation
Landing position

error/m
Landing velocity

error/(m/s)
Landing
mass/kg

CD + 15% 289.5933 4.9790 23135.95

CD − 15% 356.5689 6.2598 23135.95

ρ + 15% 289.9584 4.9790 23135.95

ρ − 15% 356.5689 6.2598 23135.95

Table 8: Landing errors and masses of the guidance method.

Deviation
Landing position

error/m
Landing velocity

error/(m/s)
Landing
mass/kg

CD + 15% 0.0035 0.0239 23230.63

CD − 15% 4.1627 29.2456 23957.32

ρ + 15% 0.0035 0.0239 23230.63

ρ − 15% 4.1627 29.2456 23957.32
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Results of terminal position and terminal velocity are shown
in Figure 6. The maximum errors are (7.2551m, 31.6108m/
s). This experiment proves that the guidance method can
still keep the terminal states within acceptable limits under
the combination of various faults.

7. Conclusions

In this paper, a fault-tolerant guidance method is proposed
to realize online guidance of rocket vertical landing. The
main contribution of this paper is that we propose a piece-
wise guidance algorithm. We first embed a trajectory optimi-
zation algorithm based on convex optimization in the MPC
framework and then put forward a piecewise method to cope
with the bang-bang characteristic of the thrust magnitude.
An integrated GNC system is designed to enhance the
fault-tolerance and robustness of the guidance method,
which constitutes another contribution of this paper. Simu-
lation experiments are conducted under conditions of no
faults and deviations, navigation system failures, control sys-
tem failures, drag coefficient deviations, and atmospheric
density deviations, respectively, proving the reliability and
fault-tolerance of the guidance method. The proposed
method shows great potential for online use.
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