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Distributed self-organization and self-management is an ideal way to achieve an autonomous and efficient operation of large-scale
remote sensing satellite swarm. A distributed task allocation method based on the improved contract network algorithm is
designed, orienting typical mission-level tasks. And the satellite swarm task allocation and planning model of potential target
searching, moving target tracking, and sensitive target feature confirmation is given. The model is composed of observation
requirement generation, observing area decomposition, and task allocation between different satellites. Simulation results
confirm that the improved contract network algorithm can optimally solve the problem of mission-level task allocation
autonomously in distributed swarm. This paper verifies that the self-organization method has the potential for engineering
applications with simple realization theory and high calculation efficiency.

1. Introduction

Space-based earth observing system is developing from a
small number of high-cost satellites to a large scale of
swarm-satellites [1], with continuous cost reduction of
satellite manufacture and launching. A satellite swarm refers
to a decentralized control system of satellites that consists of
multiple satellites with different orbit types, payloads,
onboard resources, and platform capabilities [2]. The swarm
members have to exchange information in accordance with
standard communication protocols. The observing tasks
are collected onboard or on the ground, exchanged through
intersatellites and satellite-ground communication link, and
finally executed by a group of satellites in the swarm.

The increasing number of satellites on orbit can enhance
the overall application capabilities of the swarm system [3],
while it also brings new obstacles in the operation of the
system, such as

(i) ground system’s operating difficulties caused by the
large number of satellites

(ii) satellites’ cooperation difficulties caused by the
complexity of information exchanging in a dynamic
environment

(iii) task allocation and planning difficulties caused by
the complexity of diverse mission-level tasks

Hence, mission-level task allocation of large-scale satel-
lite swarm remains to be researched. There are many
researches on multisatellite task planning and management
and on satellite data processing, and great progress has also
been made in engineering. Aiming at the issues of swarm
task allocation, the early research mainly focused on the cen-
tralized planning method on the ground. Considering multi-
satellite cooperation planning under emergency conditions,
Chuan et al. proposed a multisatellite cooperative planning
algorithm based on particle swarm optimization (PSO) algo-
rithm combined with a heuristic algorithm [4]. Yingwu et al.
proposed an evolutionary learning ant colony algorithm for
multisatellite task planning [5]. Chao et al. established a
multisatellite and multiobjective mission planning model
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for agile satellites and proposed a hybrid parallel algorithm
of generic and simulated annealing algorithm based on sim-
ilarity and aggregation [6, 7]. Xiaolu et al. proposed an adap-
tive large neighborhood search algorithm for coordinated
planning of multiple agile satellites [8]. Chuanqi et al. pro-
posed an algorithm based on the improved genetic algo-
rithm with elitist retention strategy that is used for mission
planning of small satellite constellation [9]. These methods
solved the task assignment issues of a constellation with
small number of satellites and improved the response ability
of satellite to unexpected observation tasks. But these studies
are still difficult to apply to large-scale, heterogeneous satel-
lite swarm.

To meet the requirements of heterogeneous satellite
swarm task planning, distributed allocation methods were
proposed. Huicheng et al. proposed a dynamic task allocation
method for agile satellite constellation based on multiagent
theory and introduced the contract network mechanism into
the algorithm process [10]. Yitao et al. further developed an
autonomous task planning method based on the bidding
mechanism [11]. Longjiang et al. established a distributed col-
laborative task allocation model for agile satellite constellation
[12]. The studies mentioned above improve the contract net-
work algorithm; proposed task interaction strategies such as
buying, selling, exchanging, and replacement; and improved
the efficiency of constellation task allocation. However, most
of the existing research does not model and simulate typical
task scenarios; hence, there is still a gap between practical engi-
neering applications.

Compared to a single-satellite task, swarm-oriented tasks
are more abstract, macroscopic, and complex, which can be
seen from potential target searching task, moving target
tracking task, and sensitive target feature confirmation task
[13–16]. The planning process of these mission-level tasks
is mainly manifested as the autonomous mission transfer-
ring, negotiation, and assignment process among satellites,
which can be defined as “self-organizing assignment of
swarm missions.” We further improve the distributed task
allocation method of swarm based on the contract network
algorithm, apply it to the complex task planning, and
explore the method in the task allocation efficiency and task
execution effect. The task allocation and planning are mainly
discussed, and there remains further works to be done for
engineering practice of remote sensing. For instance, image
processing in diverse weather conditions [17, 18].

This paper is divided into five sections. A description of
the remote sensing satellite swarm missions is given in Sec-
tion 2. The distributed self-organizing method based on
the improved contract network and the task allocation
models orienting three typical mission-level tasks are pre-
sented in Section 3. The numerical simulations that demon-
strate the feasibility of the designed method in three
scenarios are performed in Section 4. And Section 5 gives a
conclusion of the work.

2. Typical Mission-Level Task Description

For large-scale remote sensing satellite swarm, its structural
characteristics are heterogeneous, distributed, and self-

organized. The swarm (including its subgroups) can com-
plete tasks that a single satellite cannot, especially some
complex tasks.

Compared to a single satellite, the observation tasks
faced by the remote sensing satellite swarm are more macro-
scopic, requiring multiple types of satellites to execute in
time sequence, which can be defined as “mission-level” tasks.
The swarm can decompose and allocate mission-level tasks
as a whole, adjust tasks dynamically as the swarm status
evolves, and finally form a task sequence executed by multi-
ple satellites in an orderly manner in time. Three typical
mission-level tasks are discussed as follows:

(1) Potential target searching task

Potential target searching task is proposed to search for
certain targets in a specific area and find qualified targets
as quickly as possible or find as many targets as possible
within the specified time, as shown in Figure 1. The specific
imaging tasks are planned and executed according to the
strategy which based on the terrain, target characteristics,
and other information of the area.

(2) Moving target tracking task

The moving target tracking task is proposed to continu-
ously track the whole process of the movement of target
from the start point to the end point, to ensure that the tar-
get position is always within the observable range and to
prevent the target from being lost and restarting the target
searching task, as shown in Figure 2. Predict next position
range of the target from certain start position and then plan
and execute the follow-up observations. The satellite needs
to constantly adjust the parameters in the tracking process
according to the actual target position and the predicted
target position to ensure that the target is always in the
detectable area.

(3) Sensitive target task

A sensitive target task is proposed to obtain multidimen-
sional feature information of the target within a specific time
window to improve the accuracy of target recognition. The
constellation enables the target to be observed multiple times
by multiple types of payloads within a period of time,
through task planning and allocating, until observation ele-
ments of the target are all obtained, and its characteristic
attributes are confirmed with a high degree of certainty, as
shown in Figure 3. The task completion time is usually an
important constraint to ensure the effectiveness of the infor-
mation obtained. Moreover, the closer the imaging time of
multiple types of payloads is, the higher the time correlation
and the higher the value of the fusion image can get.

3. Distributed Task Self-Organizing Method of
Remote Sensing Swarm

3.1. Swarm Distributed Task Allocation Scheme Architecture.
From a principle point of view, the essence of swarm task
allocation is the process of gradual decomposition and
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mapping of observation requirements among requirement
space, task space, and execution space, as shown in Figure 4.
The swarm task planning system receives multisource and
multicategory observation requirements, forming a require-
ment space. The mission-level tasks can be classified into dif-
ferent types according to different kinds of targets, observation
purposes, and so on, mentioned in Section 2. The ground or
single satellite decomposes the requirements according to spe-
cific rules (target location, target acquisition period, observa-
tion elements, etc.) to generate tasks to be planned with
more specific requirements to form a task space. By perform-
ing the arrangement of tasks to be planned to the satellites in
space (that is, allocation and planning algorithms), the reason-

able allocation of multitasks to multisatellites is completed,
and the metatask sequence of each satellite is generated.

The distributed task negotiation mechanism is a core
mechanism for realizing the mapping of swarm tasks from
task space to execution space, and its foundation is the
theory of the multiagent system. The remote sensing satellite
in the swarm is a typical type of agent, which has the charac-
teristics of high autonomy, strong dynamic, and concurrent
behavior. Considering a centralized planner on the ground is
used to perform global planning, the search space will be
greatly expanded and difficult to solve. The distributed struc-
ture is a more ideal structure for agent organizations.

3.2. Intersatellite Task Allocation Algorithm Based on
Improved Contract Network. The distributed task allocation
method based on the improved contract network algorithm
is adopted to realize the optimal allocation of intersatellite
tasks, that is, to realize the mapping of swarm tasks from
task space to execution space.

After a certain master satellite is determined in a certain
event, for satellites with communication conditions between
the satellites, the master satellite can initiate the process of
intersatellite task negotiation and allocation and iteratively
complete task allocation according to the process of bidding,
bid evaluation, bid winning, and confirmation [19, 20]. For
different observation events, each satellite can act as themaster
satellite of a certain event, thereby initiating the negotiation
and allocation process. Therefore, a single satellite can serve
as both the master and slave at a specific moment.

The traditional contract network algorithm adopts the
method of “sales contract,” which has the limitation that the
distribution result is easy to fall into the local optimum, and
a single sales contract has insufficient processing capacity for
the complex dynamic environment. In order to reinforce the
solution processing capabilities of the contract network
algorithm, three contract interaction methods, namely, sales
contracts, exchange contracts, and replacement contracts, are
used for task allocation to achieve better application effects.
The negotiation of contract among swarm members is shown
in Figure 5, and the contract is proceeded by members is
shown in Figure 6.

(1) Contract sale

It is assumed that all tasks to be planned in the initial
state are executed by the master satellite Si in the process
of allocating tasks. Contract sale means that the master sat-
ellite Si assigns a task to be planned Ti

k to a slave satellite
Sj through negotiation, so as to achieve a higher overall effi-
ciency after allocation. The detailed steps are as follows:

(i) Step 1: the master satellite (auctioneer) Si announces
a task Ti

k from its task sequences to the market, using
intersatellite communication to broadcast a tender
invitation of the task

(ii) Step 2: after Sj received the auction information of

the task Ti
k, self-efficiency variance produced in task

execution can be calculated by

Sat 1
Sat 3

Sat 2

Target

Figure 1: Potential target searching task mode scheme.

Sat 1

Sat 3
Sat 2

Target

Target Target

Figure 2: Moving target tracking task mode scheme.

Sensitive Target

Figure 3: Sensitive target feature confirmation task mode scheme.
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ΔI+j Ti
k

� �
= I j Sj ∪ Ti

k

� �� �
− I j Sj

� � ð1Þ

(i) Step 3: a bidding intention is sent to the auctioneer Si
from Sj when ΔI+j ðTi

kÞ > 0

(ii) Step 4: after receiving the tender information, Si
starts calculating the change in overall efficiency Δ

Isalei,j ðTi
kÞ of the system after accepting the biding,

which can be obtained by

ΔIsalei,j Ti
k

� �
= ΔI+j Ti

k

� � ð2Þ

(i) Step 5: the contract is signed and the task is transmitted
to Sj for execution, if Sj can maximize the overall effi-

ciency (has the greatest variation value ΔIsalei,j ðTi
kÞmax)

(2) Contract exchange

Contract exchange means that after the slave satellite Sj
gets a task to be planned Ti

k; it replaces its original task T j
l

to be executed and gives T j
l to the master satellite Si for exe-

cution, so as to obtain a higher overall efficiency. The
detailed steps are as follows:

Requirement space

Task Space
Req i Req 2 Req 1……

t1ps t 1pe
t2ps t2pe

lt1

…… ……

S1

S2

Si

Execution Space

Figure 4: Swarm task allocation process model diagram.
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(i) Step 1: contract exchange starts when Sj cannot pro-
pose a valid bidding intention, after receiving the
bidding announcement of task Ti

k from Si

(ii) Step 2: Si proposes to exchange its task T j
l with task

Ti
k, meanwhile, calculates the self-efficiency variance

produced in task exchange by

ΔIswapj Ti
k, T

j
l

� �
= I j Sj ∪ Ti

k

� �� �
\ T j

l

n o
− I j Sj

� � ð3Þ

(i) Step 3: obtain the variance of self-efficiency and over-
all efficiency by the following equations after the
exchange is realized, if Si accepts the tender:
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Figure 5: Task negotiation and allocation process based on contract net algorithm.
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Figure 6: Swarm collaborative task allocation and planning process.
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ΔIswapi Ti
k, T

j
l

� �
= Ii Si ∪ T j

l

n o� �
− Ii Sið Þ,

ΔIswapi,j Ti
k, T

j
l

� �
= ΔIswapi Ti

k, T
j
l

� �
+ ΔIswapj Ti

k, T
j
l

� �

ð4Þ

(i) Step 4: the contract exchange is established if ΔIswapi,j

ðTi
k, T

j
l Þ > 0, and the overall efficiency can be maxi-

mized among all bids in this round

(3) Contract replacement

Contract replacement means that after the slave satellite
Sj gets a task to be planned Ti

k, it replaces its original task to

be executed T j
l and directly obtains a higher overall effi-

ciency; the slave satellite Sj can initiate a negotiated alloca-
tion mechanism and allocate this task to other slave
satellites such as Sk for execution, thereby further increasing
the overall revenue. The detailed steps are as follows:

(i) Step 1: contract replacement is only selected when Sj
cannot propose a contract of sale, and the proposed
contract of exchange is not accepted

(ii) Step 2: the variance of self-efficiency and overall effi-
ciency after replacement is calculated by

ΔIreplacej Ti
k, T

j
l

� �
= I j Sj ∪ Ti

k

� �� ��
\ T j

l

n o
− I j Sj

� �
,

ΔIreplacei,j Ti
k, T

j
l

� �
= ΔIreplacej Ti

k, T
j
l

� � ð5Þ

(i) Step 3: the contract replacement is established if

ΔIreplacei,j ðTi
k, T

j
l Þ > 0, and the overall efficiency can

be maximized among all bids in this round

Using this algorithm framework, a mission-level task
collaborative allocation and planning process is designed,
including potential target searching, moving target tracking,
and sensitive target feature confirmation. The contract net-
work allocation part of the three types of algorithm pro-
cesses is exactly the same. The difference lies in the
observation requirement generation and the observation
task decomposition part, that is, the task-level observation
requirement is generated according to specific rules for the
task to be planned.

3.3. Fundamental Algorithms in Task Allocation Model

3.3.1. Constraint Model. There are various constraints in
multisatellite task allocation, and setting constraints reason-
ably can reduce the solution complexity with high model

practicability. The variable notations are divided into satel-
lite space and task space which are integrated in Table 1.

Assume tasks is Ti ∈ T , 0 < i <NT (NT is the number of
tasks to be planned in the collection), satellite Sj ∈ S, 0 < i <
NS (NS is the number of satellites in allocation system), the
constrains in two aspect is as follows:

(1) Satellite part

(i) Resource constraint: the real-time Sj energy needs to
be higher than the minimum allowable energy ES−min
during complete task collection TSj process, and
lower than nominal energy ES−max; the amount of
data should not exceed storage

ES−min < ESj < ES−max,

GSj < GS−max
ð6Þ

(ii) Attitude range constraint: satellite attitude in anytime
Ati must be within the possible attitude of the satellite
and meet the requirement of incidence angle:

Atij j ≤ Atj j ð7Þ

(iii) Attitude maneuvering time constraint: Figure 7 is the
schematic diagram of attitude maneuver between
neighbor tasks. The attitude maneuver must not
exceed the maneuverable limit between tasks, during
Sj complete task collection TSj process:

tAcð Þii−1 ≥ tAc−minð Þii−1, i − 1 > 0,

tAcð Þi+1i ≥ tAc−minð Þi+1i ,
ð8Þ

where ðtAcÞii−1 is the maneuvering time from task Ti−1
Sj to

Ti
SjandtAc−minis the maneuvering time correspond to maxi-

mum maneuvering power between neighbor tasks

(iv) Camera working time constraint: the time for Sj to
complete task collection TSj must not exceed the
limit imaging time

〠
NT

i=1
Δti ≤ tw−max ⋅ no, ð9Þ

where Δti is the imaging time for task Ti and no denotes
the number of orbits which the task collection TSj distribute
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(2) Task part

(i) Time constraint: the image task for Sj to Ti must be
scheduled during the expected imaging time period
and in the visible time collection Wij. Playback activ-
ities should occur in the available playback part and
does not precede the imaging action

elth i = est, let½ �,
seti ⊂Wij, seti ⊂ elti,

sehti ⊂Wij′ , shti ≤ sti

ð10Þ

(ii) Imaging request constraint: the satellite payload type
needs to match the image type and the resolution
requirements of the task

H = h, F ≥ f ð11Þ

(iii) Task revisit constraint: except multiple revisits
request, the execution of tasks is unique

TSj ∩ TSl =∅ ð12Þ

(iv) Solar altitude angle constraint: a typical optical task
specifies the sun elevation angle γ range of the imag-
ing to guarantee image quality

γ > γmin ð13Þ

3.3.2. Task Allocation Purpose. The multisatellite Earth
observation mission planning process should meet the
imaging constraints mentioned in Section 3.3.1; meanwhile,
different planning schemes may be generated from different

Table 1: Variable names and representation notations.

Satellite part Task part

Variable name
Representation

notation
Variable name

Representation
notation

The collection of satellites S = S1, S2,⋯, SNS

� �
The collection of tasks to be planned T = T1, T2,⋯, TNT

� �
The collection of sorted tasks TS = T1

S , T
2
S ,⋯, Tn

S

� �
Geographic information llah i

Image type of payload H Priority level ω

Image spatial resolution F The collection of visible time periods W = sw, ew½ �f g

Energy E The earliest start and the latest end of imaging
moment

est, let

The amount of stored data G Scheduled imaging periods seth i = st, et½ �
Attitude maneuverability Ac Scheduled playback period sehth i = sht, eht½ �
Attitude range At Image type requirements h

Maximum imaging duration for one
orbit

tw−max Image resolution requirements f

Replay period collection W ′ = Ws′,We′
h in o

Minimum solar altitude angle γmin

Ti–1 Ti Ti+1S1

eti–1 etisti sti+1

t

Aeti Asti+1Aeti–1 Asti

sti–1 eti+1

Figure 7: Attitude adjust between neighbor tasks.
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optimization angles, and the optimization target is usually
given by the ground station. In order to simplify the solution
complexity and highlight the task benefits in the dynamic
environment, this work take the overall task efficiency
of the system as the optimization goal of the algorithm
as follows:

max 〠
NS

j=1
〠
nj
′

i=1

1
ωi

, ð14Þ

where ωi is the priority of task Ti in I, which reflects the
task importance, and n′ is the number of payload task after
planning the dynamic task T. The state of dynamic tasks
changes rapidly over time, and the earlier the imaging, the
greater the probability of high yield, so the yield probability
function PðrtiÞ is introduced.

rti = eti − est,

P rtið Þ = 1 −
rti

let − est
=

let − eti
let − est

,
ð15Þ

where rti is the task respond time, which reflects the
response system speed to the task. The online earnings indica-
tor after the introduction of PðrtiÞ is as follows:

I : max 〠
NS

j=1
〠
nj
′

i=1

1
ωi

⋅
let − eti
let − est

� 	
: ð16Þ

3.3.3. Optimization Model in Moving Target Allocation
Method. Moving target online task planning problems can
be seen as a type of online decision-making problem with
real-time rolling updates of tasks, which need to be considered
from the stage and the whole. The optimization is as follows:

(1) Overall purpose: in a fixed period of time, the higher
the observation frequency of a moving target, the
smaller the probability of tracking lost, and the
higher the theoretical observation efficiency. There-
fore, for the whole process of observation, the overall
optimization goal is best time resolution RT

I : minRT⟶min ~ p,

RT =
1

n − 1
〠
n−1

i=1
eti+1 − etið Þ, 0 < i ≤ n,

ð17Þ

where n is the subtask executing times and ~ p is the dis-
appearance probability

(2) Single subtask stage objective: since the moving tar-
get has the highest priority, the observational benefit
of the moving target subtask Ti is expressed as the
best system’s response speed rt to the subtask

I ′ : min rt⟶minAi ⟶maxpi,

rt = eti − esti, 0 < i ≤ n,
ð18Þ

where I ′ is the response of the overall goal in the subtask
stage; the earlier the subtask time corresponds to the smaller
the target potential area Ai, the greater the target discovering

Table 3: Remote sensor simulation parameters.

Remote sensor parameters
Parameter
settings

SAR incidence angle 10° ~60°

γmin 20°

Optical remote sensor width/spatial resolution 100 km/15m

SAR remote sensor width/spatial resolution 130 km/20m

Hyperspectral remote sensor width/spatial
resolution

50 km/20m

Hyperspectral remote sensor spectral resolution 10 nm

A B

C D

L

S

Vt

Vs

Figure 8: Observation model of swarm potential target search
mission.

Table 2: Main initial orbital elements of the satellite in simulation.

UTC time: 2018-06-01 10:30:00
Orbital plane number 1 2 3 4

Satellite number 1~ 6 7~ 12 13~18 19~24
Semi-major axis (km) 7024.0 7124.0 7174.0 7224.0

RAAN (°) 256.5 346.5 166.5 76.5

True anomaly (°) {0.0, 60.0, 120.0, 180.0, 240.0, 300.0}
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probability pi. At the same time, the task is guaranteed to be
executed as early as possible in the allocation process of each
subtask, which will help reduce the time interval between
tasks and is beneficial for improving the time resolution of
the task, I ′ ∝ I.

3.3.4. Optimization Model in Sensitive Target Allocation
Method. Sensitive target task planning problems can be seen
as an allocation problem combined with a specified time
period and resource type. Besides the constraints given in
Section 3.1, since the sensitive target must be observed mul-
tiple types of remote sensors fhg, the absence of an image
type will let the task being unable to execute, the constraint
is expressed as follows, where n denotes the total number
of task performed for each type of satellite:

s:t: hf g = ∪
n

i=1
Hi: ð19Þ

Time correlation needs to be considered during multi-
type image fusion, and the more similar the multisatellite
imaging time, the higher the time correlation of the plan,
and the higher the fusion images yield. Thus, the total execu-
tion efficiency for sensitive targets can be defined as the time
similarity degree R of various images as follows:

R =max d Ti, T j

� �
, i, j ≤ n, i ≠ j,

d Ti, T j

� �
=

sti + eti
2

−
stj + etj

2










,

ð20Þ

where d denotes the time period of any two different
types of satellite missions, which is defined as the absolute
value of the difference between the two imaging times due
to the short execution time of the point target. R is the max-
imum of d, which represents the maximum time interval in
times of imaging. Therefore, the smaller the R, the higher the
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(a) Searching scheme with equal strips
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(b) Searching scheme with return strips

Figure 9: Different search strategies scheme.
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image correlation degree is. Thus, the goal of the sensitive
target task planning is the highest time correlation, and the
purpose of the planning is to select a satellite with a similar
imaging time for observation.

I =min R =min d Ti, T j

� �
: ð21Þ

4. Simulation of Self-Organizing and
Assignment Process of Mission-Level Tasks

4.1. Simulation Environment. The simulation experiments
are carried out on a computer with 4G RAM. The designed
satellite swarm earth observation system in this simulation
includes 24 satellites: 4 orbital planes, and each orbital plane
is distributed with 6 satellites, their orbital parameters are
included in Table 2. Satellites are numbered as 6 ×O − 5 ∼
6 ×O (1~24), O is the orbital plane number. The even-
numbered satellites carry SAR payloads, and the odd-
numbered satellites carry optical payloads, with a ratio of
1 : 1. In Section 4.4, 8 satellites (6 ×O − 2, 6 ×O − 4) are
replaced with hyperspectral payload. The initial orbital
elements and remote sensor simulation parameters are
shown in Tables 2 and 3.

4.2. Simulation of Task Allocation Process for Swarm
Potential Target Searching. For the potential target searching
task, a brief observation task model can be established, as
shown in Figure 8. Suppose the area of concern is S, the
satellite push-broom imaging direction length is L, the
push-broom speed is Vs, and the maximum possible target
moving speed is Vt . Considering that different types of
satellites have different working modes, the push-broom
direction of the satellite may be the direction shown in the
figure or its reverse. At the same time, some satellites have
agile imaging capabilities, that is, images of multiple strips
can be acquired in one orbit, depending on the agile mobility
of the satellite and the strip length L.

Since the initial position of the target in the area is
unknown and the movement is unknown, the area must be
searched in a full-coverage manner. But just covering the
entire area is not enough. Since the coverage process is com-
pleted by multi-satellites, there is discontinuity. Between two

observations, the target may move from an uncovered area
to a covered area, causing the search to fail.

In response to the above problems, after the master
satellite completes the strip segmentation and launches the
task bidding, it needs to constantly repropose the time-
constrained observation task requirements based on the
completed coverage area and the worst estimation of the tar-
get motion, and the covered area entered need to be covered
again. For example, as shown in Figure 9, assuming that the
initial task bidding starts from the leftmost strip in the fig-
ure, the worst movement of the target is to move to the left.
Therefore, the stripe range of the next bidding task should be
considered to have a certain overlap with the previous one.

This self-organizing target search process is tested by
simulation. Assuming that the target area has a length of
300 km in the east-west direction and 300 km in the north-
south direction, several agile satellites are distributed in
orbit, and there are different imaging directions. Assuming
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Figure 12: Ship’s 24-hour trajectory setting.
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Figure 11: Observation model of swarm moving target tracking task.
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that the satellite has strong agility, it can complete 3 strips in
one pass. At the same time, there are many satellites. After
one satellite completes the imaging task, the next satellite
can be immediately scheduled for imaging. Compare and
analyze the effectiveness of two strategies: stripe equiparti-
tion search and stripe return search. The stripe equipartition
search is shown in Figure 9(a), and the target area is divided
into several stripes according to the satellite imaging width;
the stripe return search is shown in Figure 9(b), and after
the imaging is completed on the previous satellite, the next
satellite is completely adjacent to the covered area at its
push-broom starting point, and a horizontal search speed
is added during the push-broom to form a certain overlap
with the covered area.

This article assumes that the push-broom speed is 6 km/s,
and the lateral search speed is 0.12km/s. A large number of
simulations are performed by randomly generating target
positions to obtain the discovery probability of targets with
different moving speeds, as shown in Figure 10.

It can be seen in Figure 10 that with the increase of target
speed, the search strategy of stripe equalization reduces the
probability of target discovery rapidly, while the stripe return
search strategy can better maintain the ability to find the target.
Combining the estimation of the target speed in orbit, by
adjusting the return speed, the target can be fully discovered.

4.3. Simulation of Task Assignment Process for Moving
Target Tracking. For moving target tracking tasks, limited
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Figure 13: Simulation result of ship’s 24-hour voyage tracking process.
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by the orbiting of satellites, it can only be achieved through
intermittent, high-frequency imaging of different satellites.
During each imaging time, what the satellite knows is only
the potential area of the moving target. The potential area
will become larger as the observation interval increases and
is also affected by geographic conditions. These factors need
to be considered when the master satellite is planning to
track and imaging missions in orbit.

After the swarm receives the task of tracking and observ-
ing the moving target, the master satellite analyzes the poten-
tial area of the moving target and completes task assignment
and planning through intersatellite negotiation. According to
the task execution result, the recursive trajectory is used to pre-
dict the potential location range of the target, and new obser-
vation tasks are planned and assigned until the tracking task
ends. The observation model of swarmmoving target tracking
task is represented in Figure 11.

Select the moving target as the ship for simulation test.
Assuming that the maximum speed of the ship is 50 km/h,
the swarm is configured with 4 orbital planes, and 6 satellites
are distributed on each orbital plane, respectively, carrying
visible optical or SAR payloads. The ship is found to be
active in the sea at (27.4N, 122.4E) at 10:30:00 in the morn-
ing. Figure 12 contains the trajectory of the target 24 hours
later.

After the tracking task is placed, the master satellite
plans and initiates the tracking task. The simulation result
of the tracking process is represented in Figure 13.

The task assignment and execution results of each satel-
lite are in Figure 14.

The simulation results in Figure 14 show that imaging
tasks are generated and auctioned 100 times; of which 97
tasks are executed with a potential area radius of 25 km;
there are no satellite bids for the 3 tasks, and the potential
area radius is expanded to 50 km. The cooperation of 24 sat-
ellites can complete a continuous day’s tracking task, and the
imaging quality is high.

The simulation analyzes the swarm of different scales
and configurations and the continuous tracking ability of
the target. Taking the moving target as above, under the
same simulation conditions, adjust the number of orbital
surfaces and the number of satellites on the orbital surface,
and perform continuous tracking time simulation. The
result is shown in Figure 15.

It can be seen in Figure 15 that when the number of
orbital surfaces and the number of satellites is small, contin-
uous tracking and observation throughout the day cannot be
achieved. When the number of orbital surfaces is not less
than 4, the average orbiting satellite is not less than 6, and
at least 3 SAR satellites are included, continuous tracking
and observation can be achieved throughout the day.

4.4. Simulation of Task Assignment for Sensitive Target
Feature Confirmation. After the sensitive target is discovered
by ground or earth observing system, it is uploaded to the
swarm, and it is expected that the target characteristics can
be identified and confirmed through the arrangement of
serialized payload imaging tasks. For example, suppose that
three types of payloads of A, B, and C are required to detect

and image the target in sequence, and the constraint condi-
tion is that the time interval between the three imaging oper-
ations is as short as possible to obtain the observation
information of the target at the same time. Therefore, the
task bidding process of the sensitive target feature confirma-
tion task is multilayered and comprehensively optimized.

Multilayer, in accordance with the order of load types,
the first layer of the A load is first tendered to form multiple
bidding results. After that, in accordance with the principle
of the closest time to the first-tier results, the bidding obtains
the second-tier bidding results for the B-type load and forms
several groups of team bidding results with directions. After
analogy, the third-tier bidding result for the C-type load is
obtained. Finally, the master satellite will evaluate the
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effectiveness of all team bidding results. The evaluation
criteria are the shortest task response time and the shortest
team imaging process time. After three times of bidding,
the bid-link result is represented in Figure 16.

The arrows in Figure 16 represent the bidding direction,
and the marked numbers are time costs between the bidding
plan and the directing plan. There are 5 complete bid link
paths for this sensitive task. Using the bid evaluation
method, iterate these paths from the third-tier back to select
the optimal path 15⟶ 23⟶ 16, which represented as the
dotted line.

100-point targets are randomly generated on the map as
sensitive targets, and 100 sets of experiments are performed,
as shown in Figure 17. It is assumed that the designated bid-
ding order of the target is visible light, hyperspectral, and
SAR, and the team imaging time interval R is defined as
the time interval between the first imaging and the last imag-

ing, which represents the worst correlation of different types
of images.

It can be seen from the Figure 18 that 5 targets are
located in umbra during the planning period, and there is
no visible optical satellite bidding, and the mission is directly
abandoned. Therefore, the mission completion rate is 95%.
Three targets are approaching the umbra during the plan-
ning period, and also affected by the scheduled high-level
tasks, so that the team imaging time interval R is relatively
large. The team imaging time interval R of most targets is
below 1800s, with an average of 788.5 s. It can be concluded
that, under suitable observation conditions, different targets
can find a team of satellites within a closed imaging time
through multisatellite negotiation to perform sequence
observation tasks.

5. Conclusion

Large-scale swarm is the development trend of space-based
earth observation system in the future. For swarm,
mission-level task self-organization and collaboration tech-
niques are important research topics, including potential tar-
get searching, moving target tracking, and target feature
confirmation. This paper adopts the distributed task alloca-
tion method based on the improved contract network algo-
rithm to realize the optimal allocation of inter-satellite
tasks, that is, the mapping of swarm tasks from task space
to execution space. Based on this, a mission-level task swarm
coordination task allocation and planning process is
designed, including some algorithms for the generation of
observation requirements and the decomposition of obser-
vation tasks for different task types, as well as a common
contract network allocation algorithm. Simulations are
carried out on typical mission scenarios, focusing on the per-
formance of different methods of potential target searching
strategies, the effectiveness of tracking moving targets of dif-
ferent swarm scales, and the ability of multisatellite team
bidding to complete sensitive target feature observation
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tasks. Results verify that the improved contract network
algorithm can solve the problem of optimizing the assign-
ment of swarm mission-level observation tasks well and
has potential in engineering application.

Data Availability

The data used to support the findings of this study are
included within this paper.
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