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Space assistant robots can help astronauts or their assistants perform certain tasks. A ground microgravity simulation
environment is built for the space assistant robot AAR-2. The hardware requirements of the ground simulation by the 3-DOF
microgravity air flotation platform. An algorithm is designed for this simulation system. By using momentum and RMSprop
methods to improve the PID neural network, the challenging problem of strong coupling between system nonlinearity and
variables is solved. Firstly, the paper introduces the hardware system and deduces the dynamic model of the system. Then, the
algorithm is calculated and simulated. Through simulation, the effectiveness and feasibility of the algorithm are compared and
proved. Finally, the control system is simulated by MATLAB/Simulink and compared with other advanced algorithms. The
simulation results show that the designed neural network controller can quickly and accurately control the 3-DOF of freedom
motion of AAR-2.

1. Introduction

With the continuous development of aerospace, many coun-
tries have carried out the research and development of space
robots to replace astronauts to perform some specific tasks,
for example, space rendezvous and docking, space debris
avoidance [1], fuel supply, on orbit maintenance [2], on orbit
component reconstruction, etc. In the past, most of these tasks
were completed by astronauts, mainly due to the complexity of
the space environment and the arduousness of the tasks. The
characteristics of space greatly limit the astronauts’ activities
inside and outside the capsule, and the complex and cumber-
some operations greatly increase the astronauts’work and psy-
chological pressure. Therefore, in recent years, more andmore
space operation tasks gradually turn to space robots.

For the design, manufacture, and operation of space
robots, simulation experiments are required in the ground
microgravity environment for overall performance evalua-
tion, component testing, key parameter determination, and
various system verifications [3]. Therefore, it directly pro-
motes the research on building a space microgravity envi-
ronment. If you want to conduct a space robot simulation
experiment, you need to build a microgravity experiment
environment on the ground [4].

The methods of constructing space microgravity envi-
ronment mainly include tower dropping method [5, 6],
water floating method, and air floating method [7, 8]. The
falling tower method is a method to generate microgravity
experimental environment by performing free falling motion
in microgravity tower (well). It is usually carried out by
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building high towers or digging deep wells on the ground.
Because of the special experimental environment and the
limited weightlessness time, this method has great limita-
tions, so it is not commonly used as a method to build a
microgravity environment in the laboratory. The water float-
ing method refers to a state in which when the density of the
object is the same as that of the liquid. The object can be sus-
pended at any point in the liquid. However, this method
does not have real-time operability in the experimental pro-
cess and needs to constantly adjust the counterweight to
ensure balance and stability. On the other hand, it also
requires that the experimental equipment can work nor-
mally under the liquid without affecting the accuracy. There-
fore, this method will bring higher cost and experimental
operation requirements to the test. However, the air flotation
platform has the advantages of low cost, low operation diffi-
culty, and sustainable real-time operation, so most experi-
ments use the air flotation platform to simulate the
microgravity environment [9, 10]. The core component of
air flotation platform is gas bearing, which can be divided
into plane gas bearing and spherical gas bearing. The com-
pressed air flows out through the small hole or slit of the
gas bearing and forms an air film between the workbench
and the gas bearing, so as to achieve the purpose of friction-
less movement. The air flotation platform has no contact
with the worktable and produces a suspended effect, so it
overcomes the influence of gravity to a great extent. There-
fore, this paper selects the air flotation platform as the
ground microgravity simulation platform of the space assis-
tant robot and simulates the motion of the space assistant
robot through the 3-DOF of air flotation platform.

Many scholars have different views and studies on the
position and attitude control of spacecraft in microgravity
environment. Terui et al. proposed a sliding mode control
and state-dependent Riccati equation method to achieve 6-
DOF position and attitude maneuverability without uncer-
tainty and disturbance [11, 12]. In the follow-up, high-pass
filter and output feedback control law are used to solve the
problem of translational and attitude coupling, but the sta-
bility and convergence time are unconstrained [13]. In order
to solve the problem of model uncertainty and environmen-
tal disturbance, Wu et al. proposed a finite time controller
based on nonsingular terminal sliding mode control tech-
nology, which can control the translation and attitude
change of spacecraft [14]. Liu et al. realized the 3-DOF free
attitude control of AAR-1. In order to meet the characteris-
tics of multivariable, strong coupling, and nonlinear systems,
the traditional PIDnn controller is used to quickly achieve
stability and control effect [15]. Gao et al. upgraded the
functions of AAR-1, designed AAR-2, and realized high-
precision control of AAR-2 by combining synovial control
and fuzzy control [16]. Malladi et al. adopted the nonlinear
model predictive control (NMPC) method to solve the
highly coupled and nonlinear problem of position and atti-
tude [17]. Aiming at the fast attitude dynamics and slow
position dynamics caused by time scale separation, a nonlin-
ear hierarchical control law was proposed [18].

The attitude and translational motion of spacecraft are
coupled and highly nonlinear, so the model parameters of

spacecraft cannot be accurately obtained, and the spacecraft
is always affected by environmental disturbances. All these
problems make it difficult for the spacecraft control system
to achieve the desired control performance. Due to the high
coupling and nonlinearity of the dynamic model, this paper
uses the double closed-loop structure to solve the influence
of strong coupling on the system and uses the improved
PID neural network to solve the problem of nonlinear sys-
tem. Because the uncertain environmental disturbance
always exists in the spacecraft movement, the neural net-
work in machine learning can better cater to the uncertainty
to a certain extent and match the changing environment
through continuous learning.

The main innovations and contributions of this paper
are as follows: (a) we use a double closed-loop system to
solve the problem of the strong coupling and environmental
disturbance in the model. This control structure can better
overcome the impact of uncertainty on the system by match-
ing with the neural network. (b) We optimized the PID neu-
ral network algorithm to solve the variable coupling problem
and nonlinear problem when the spacecraft position and
attitude change, so that the microgravity air flotation system
can converge faster and reach the equilibrium position, bet-
ter simulate the spacecraft motion and meet the experimen-
tal needs. (c) A complete control system and algorithm are
built on the microgravity air flotation platform, which makes
the flight simulation experiment of ground simulation
spacecraft more efficient and convenient, and promote the
development of ground microgravity environment simula-
tion equipment.

The rest of this paper is organized as follows: in Section
2, the control system of the actual microgravity air flotation
platform is designed and the motion principle is analyzed. In
Section 3, the dynamic model of the microgravity air flota-
tion platform is built and its motion characteristics are ana-
lyzed. In addition, the model is optimized to a certain extent
according to the ideal environment of the actual space sta-
tion. In Section 4, the control algorithm of the microgravity
air flotation platform is improved on the basis of PIDnn.
Meanwhile, the stability of the system is proved and the fea-
sibility of the algorithm is simulated. In Section 5, the whole
improved microgravity air flotation system is simulated. The
feasibility of the scheme is verified by comparing other
advanced algorithms and combining the theoretical simula-
tion with the actual platform.

2. Design of the Control System Based on Air
Flotation Platform

2.1. Control System Hardware Design. The microgravity sim-
ulation air flotation platform involved in this paper is shown
in Figure 1(a). It can realize two-dimensional microgravity
simulation motion on the marble plane through three air flo-
tation pads, gas cylinders, and air pressure transmission sys-
tem. Four ducted fans are mounted on it to control the
movement of the air flotation platform. The installation
position is shown in Figure 1(b). Four ducted fans at 45°

angles to the side of the air flotation platform are installed
at the four corners of the platform. Microspacecraft, such
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as astronaut assistance robots AAR-1, AAR-2 [19, 20], etc.,
can be installed on the air flotation platform, as shown in
Figure 2(a). By controlling the changes of the thrust of the
four ducted fans, the two-dimensional plane motion of the
spacecraft can be simulated in a microgravity environment.

In this paper, the actual platform is shown in Figure 2(b).
The STM series chip STM32f1 is selected as the main chip,
equipped with two ultrasonic ranging modules HC-SR04,
a six-axis gyroscope sensor MPU6050 (built-in DMP atti-
tude calculation), and four ducted fans (brush less motor
HL3508).

Figure 3 shows the top view of the air flotation platform,
O − XnYnZn is the inertial coordinate system, O − XbYbZb is
the geometric coordinate system, the arrow direction is the
wind direction output by the culvert fan, and the four culvert
fans are combined in pairs to control the forward and rota-
tional degrees of freedom of the air flotation platform. The
system forms a closed-loop structure through sensors, so as
to achieve more efficient control effect.

2.2. Principles of Movement. To correctly describe the
motion of the microgravity simulated air flotation platform,
the two coordinate systems involved in the system are ana-
lyzed and processed. The motion pose of the air flotation
platform is determined by the angle between the base point
o and the axes Xb and Xn (the initial state is that the x-axis
and the y-axis are parallel to each other), the coordinate of
the base point is ðx0, y0Þ, the rigid body gestures are deter-
mined by x0, y0, and θ. The basic motion unit is composed
of translation and rotation in the directions of Xn and Yn
(3-DOF), and the rotation is the rotation around the center
of mass. F1, F2, F3, and F4 are the thrust (wind force) of
the four ducted fans.

FXb
=m €Xb =

ffiffiffi
2

p

2
F1 + F4 − F2 − F3ð Þ, ð1Þ

FYb
=m €Yb =

ffiffiffi
2

p

2
F1 + F2 − F3 − F4ð Þ, ð2Þ

mb
z = Jc€θ =

ffiffiffi
2

p

2
F1 + F4 − F2 − F3ð Þ r + rsð Þ: ð3Þ

It is known that the aerial view of the actual air flotation
platform is a square, r is the side length, and rs is the radius
of the ducted fan. Let clockwise to be the positive direction,
and mb

z is the torque rotating around Zb with the center of
mass of the air flotation platform.

3. System Dynamics Model

3.1. Coordinate and Attitude Transformation. The pose of
the air flotation platform is expressed as

ηnb,n =
pnb,n

θnb

" #
: ð4Þ

The instantaneous speed is expressed as

Vn
b,n =

vnb,n

wn
b,n

" #
: ð5Þ

Then, we can get

ήnb,n =
ṕnb,n

θ́
n
nb

" #
=

Rn
b θnbð Þ 03∗3
03∗3 Tθ θnbð Þ

" #
vnb,n

wn
b,n

" #
, ð6Þ

where ηnb,n represents the attitude of b relative to the iner-
tial system n under the inertial system n, Rn

bðθnbÞ represents
the rotation matrix, and θnb = ½ϕ θ ψ�T is the geometric
position b Euler angles to inertial position n.

Rn
bðθnbÞ and TθðθnbÞ are the results of the transformation

from the inertial coordinate system to the geometric coordi-
nate system, and there are many ways to obtain them, which
are explained in the order of Z-Y-X [21].

(a) Air flotation platform model (b) Top view of model

Figure 1: Structural model of air flotation platform.
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Rn
b θnbð Þ = RϕRθRϕ =

1 0 0
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cθcψ sθ −cθsψ

sϕsψ − cϕsθcψ cϕcθ sϕcψ − cϕsθsψ

cϕsψ + cϕsθsψ −sϕcθ cϕcψ − sϕsθsψ

2
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3
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ð7Þ

Tθ θnbð Þ =
1 0 −sθ

0 cϕ sϕcθ

0 −sϕ cϕcθ

2
664

3
775
−1

=

1 sϕtθ cϕtθ
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2
6664

3
7775:

ð8Þ

Space station

AAR-2

Air floating
platform

Marble table

Ground simulation platform

(a)

(b)

Figure 2: (a) Schematic diagram of space station and ground simulation platform. The AAR-2 is a free flying robot used in the space station
cabin to assist astronauts in some space missions. This robot can use the microgravity simulation air flotation platform to simulate the 3-
DOF plane motion on the marble table. (b) Actual experimental platform.
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Figure 3: Top view of air flotation platform.
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The above sine, cosine, and tangent functions are
replaced by s, c, and t. When the motion mode of the air
flotation platform is fixed as translation and rotation, then

vnb,n = _Xb, _Yb, 0
� �T , ð9Þ

θnb = 0 0 ψ½ �T , ð10Þ

Rn
b θnbð Þ =

cψ 0 −sψ

0 1 0

sψ 0 cψ

2
664

3
775, ð11Þ

Tθ θnbð Þ =
1 0 0

0 1 0

0 0 1

2
664

3
775: ð12Þ

3.2. Dynamics Model. To further accurately analyze the
motion state of the microgravity simulated air flotation
platform, the dynamic model of the air flotation platform
is deduced and simulated in this paper. The dynamic model
of the air flotation platform can be deduced as follows
[22–24]:

m _vbg,n +wb
g,n × vbg,n

� �
= Fg + f g, ð13Þ

I _wb
g,n +wb

g,n × Ivbg,n
� �

=Mg +mg: ð14Þ

Among them, g represents the center of gravity and

Fg = ½Fg
x , Fg

y , Fg
z �T is used to represent gravity, buoyancy,

and other external forces acting on an air flotation platform.
f g = ½ f gx , f gy , f gz �T is used to represent the thrust generated by

the rotation of the ducted fan.Mg = ½Mg
x ,Mg

y ,Mg
z �T is used to

represent all external moments acting on the air flotation
platform except the moment generated by the ducted fan.

mg = ½mg
x ,mg

y ,mg
z �T indicates the moment acting on the air

flotation platform generated by the rotation of the ducted
fan.

Since the air flotation platform is a rigid body and the
additional mass is the same in all directions, the total inertia
matrix about the center of gravity is

I =

Ix 0 0

0 Iy 0

0 0 Iz

2
664

3
775: ð15Þ

Since the air flotation platform needs to move freely on
the marble tabletop, its motion mode is 3-DOF motion,
and the yaw motion can be freely performed while translat-
ing on the two-dimensional marble tabletop:

vbg,n = vbxg,n , v
b
yg,n

, 0
h iT

, ð16Þ

wb
g,n = 0, 0,wb

zg,n

h iT
: ð17Þ

When the air flotation platform rotates and flies forward
at the same time, a lateral force is generated, which is repre-
sented by wb

g,n × vbg,n. This term is offset by the air resistance
created when the microgravity simulated air flotation plat-
form moves. This force can also be ignored under the
assumption that the spin speed is almost zero in forward
flight and almost zero in spinning motion.

In the inertia matrix, we can get Ix = Iy, if the roll and
pitch velocities are zero, no rotational moment will be gener-
ated. When the rolling and pitching moments are not zero,
wb

g,n × ðIvbg,nÞ has little effect on the roll and pitch moments,
so they are easily offset by the resistance of gravity, so they
are also ignored.

The model can thus be simplified to

m _vbxg,n = f gx + Fg
x = f gx − kx _x, ð18Þ

m _vbyg,n = f gy + Fg
y = f gy − ky _y, ð19Þ

Iz _w
b
zg,n

=mg
z +Mg

z =mg
z +Mg

zcor
+Mg

zd
− kzwz r + rsð Þ:

ð20Þ
Among them, Mg

zcor refers to the Coriolis torque in the
direction of rotation around the z-axis, Mg

zd refers to the
average disturbance torque on the z-axis, and kz represents
the average torque coefficient in the air resistance on the
z-axis.

It is easy to design the controller with negligible Coriolis
torque, disturbance torque, and air resistance. In the motion
state, we are only interested in the dynamic equations of
Euler angles in the geometric coordinate system in motion.
Therefore, the dynamic model of the air flotation platform
is further simplified as follows:

m €Xb = cψf bx , ð21Þ

m €Yb = f by , ð22Þ

Iz€ψ =mb
z : ð23Þ

4. Algorithmic Controller Design

4.1. PIDnn Controller Design. PIDnn is a kind of PID-type
controller that relies on the self-adaptation and learning
ability of the neural network algorithm [25]. There are
various neural network structures that can be designed.
This paper adopts a single-layer forward propagation net-
work, in which the input layer, hidden layer, and output
layer contain two, three, and one neurons (perceptrons),
respectively [26].

The input of the PID neural network system has two
parts, which are the expected input and the real-time output
of the system. After each iteration, the neural network out-
puts new values of P, I, and D as three parameters of the
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PID neural network controller [27, 28]. After processing by
the dynamic model, as the new input of the system continues
to iterate, the system tends to stabilize after the number of
sampling N approaches a larger value [29]. The structure
of the PIDnn control algorithm is shown in Figure 4.

4.1.1. Forward Algorithm. When iterating to the nth time,
the input and output of neurons in each layer are expressed
as follows:

Input layer:

v1 nð Þ = z nð Þ, ð24Þ

v2 nð Þ = y nð Þ, ð25Þ
xi nð Þ = NET vi nð Þ½ �, i = 1, 2, ð26Þ

where NETðnÞ is an activation function. To reduce the
actual hardware system code calculation amount, it can be
set as an identity activation function here, namely,

NET vi nð Þ½ � = vi nð Þ: ð27Þ

Hidden layer:

vh′ nð Þ = 〠
2

i=1
wihxi nð Þ, h = 1, 2, 3: ð28Þ

The activation function of the hidden layer is special.
Considering that the neural network serves the PID system,
the three neurons here perform their proportional, integral,
and differential functions, respectively. After discretizing
the continuous system, we get the following:

Proportion:

x1′ nð Þ = v1′ nð Þ: ð29Þ

Integral:

x2′ nð Þ = x2′ n − 1ð Þ + v2′ nð Þ: ð30Þ

Derivative:

x3′ nð Þ = v3′ nð Þ − v3′ n − 1ð Þ: ð31Þ

Output layer:

v1′′ nð Þ = 〠
3

h=1
Whoxh′ nð Þ, o = 1, ð32Þ

xo′′ nð Þ = vo′′ nð Þ: ð33Þ

4.1.2. Back-Propagation Algorithm. The back-propagation
algorithm can achieve the effect of learning and memory
by modifying the weight value ðωih andWhoÞ of the neural
network. First, calculate the systematic error (the ideal value
minus the actual value) and then update the weight of each
layer of the neural network according to the conventional
gradient descent method. When taking the ðn + 1Þth sam-
pling, the error E = zðnÞ − yðnÞ. Let learning step size be η,
after the nth learning, the weight value between the hidden
layer and the output layer is changed to

Who n + 1ð Þ =Who nð Þ − η
dE

dWho
, ð34Þ

dE
dWho

=
dE
dyo

dyo
dx1′′

dx1′′
dv1′′

dv1′′
dWho

: ð35Þ

The weight value between the input layer and the hidden
layer is changed to

ωih n + 1ð Þ =Wih nð Þ − η
dE
dωih

, ð36Þ

dE
dωih

=
dE
dyo

dyo
dx1′′

dx1′′
dv1′′

dv1′′
dxh ′

dxh ′
dvh ′

dvh ′
dωih

: ð37Þ

The weights between hidden layer neurons and output
layer neurons are real-time P, I, and D coefficients.

4.2. Momentum and RMSprop Jointly Improve the
Algorithm. The iterative principle of the standard gradient
descent method is

W nð Þ =W n − 1ð Þ − ηΔW nð Þ, ð38Þ

Dynamic
model

yoyi

z

y

u
v1 x1

𝜔ih 𝜔ho

v2 x2

P

I

D

v1 x1

v2 x2

v3 x3

v1 x1′ ′

′ ′

′′′′

Input Hidden Output

′ ′

Figure 4: PIDnn control algorithm structure.
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ΔW nð Þ = ∂E W n − 1ð Þ½ �
∂W

, n = 1, 2, 3⋯ : ð39Þ

The momentum method changes the weight update law
in the standard gradient descent method and introduces an
intermediate quantity:

V nð Þ = βV n − 1ð Þ + 1 − βð ÞΔW nð Þ: ð40Þ

And replacing the original ΔWðnÞ with VðnÞ can get

W nð Þ =W n − 1ð Þ − ηV nð Þ
=W n − 1ð Þ − η βV n − 1ð Þ + 1 − βð ÞΔW nð Þ½ �, ð41Þ

W nð Þ =W n − 1ð Þ − η 1 − βð Þ ΔW nð Þ + βΔW n − 1ð Þ½
+ β2ΔW n − 2ð Þ+⋯+βn−1ΔW 1ð Þ�: ð42Þ

The value of β around 0.9 can make the algorithm
achieve better results. Doing so is equivalent to a weighted
sum of historically processed data. From the nth iteration,
the farther historical data has a relatively small impact on
the weight update, but the weight updated in the nearby iter-
ations has a greater impact.

The method of adaptive adjustment of Adagrad learning
rate is to convert η (learning rate) in Equation (43) into η/ffiffiffiffiffiffiffiffiffi

SðnÞp
+ ε.

PIDnn
controller

PIDnn
controller

PIDnn
controller

Air floating
platform
dynamics

model

Desired X(n)
position curve
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position curve

X(n)

Y(n)

x(n–1), y(n–1), 𝜓(n–1)

Desired 𝜓
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V(Ey)

W(E𝜓)

Figure 5: Air flotation platform control system.
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W nð Þ =W n − 1ð Þ − ηΔW nð Þ: ð43Þ

To prevent the denominator from being zero, set ε to a
particularly small number.

S nð Þ = S n − 1ð Þ + ΔW nð Þ · ΔW nð Þ: ð44Þ

Then, we can get

W nð Þ =W n − 1ð Þ − ηffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔW 1ð Þ½ �2+⋯+ ΔW nð Þ½ �2

q
+ ε

ΔW nð Þ:

ð45Þ
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will decrease more. Then, in the process of gradient descent
training, after a rapid change period, and then a platform
area, the change of the learning rate in the platform area will
be very slow. When it enters the fast period again after the
plateau period, the decline is still very slow and cannot be
modified, and all the historical data of the weights will be
taken into account, and then, there is a problem.

So, the RMSprop method introduces Momentum on the
learning rate, so that the formula becomes

S nð Þ = αS n − 1ð Þ + 1 − αð ÞΔW nð Þ · ΔW nð Þ: ð46Þ

It is derived from Equation (46) that the gradient descent
method in the PID neural network is finally optimized as

W nð Þ =W n − 1ð Þ − η 1 − βð Þ βn−1ΔW 1ð Þ+⋯+β0ΔW nð Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + αð Þ αn−1 ΔW 1ð Þ½ �2+⋯+α0 ΔW nð Þ½ �2� �q

+ ε
,

ð47Þ

where α and β have the same effect, so we let α = β = 0:9.

4.3. Proof of System Stability. The system control input of the
PID neural network controller is

u nð Þ = u n − 1ð Þ + η nð Þ〠
3

h=1
xh′ nð ÞWho nð Þ, ð48Þ

E nð Þ = 1
2

r nð Þ − Y nð Þð Þ2, ð49Þ

dE nð Þ
dxh′ nð Þ

=
dE nð Þ
de nð Þ

de nð Þ
dY nð Þ

dY nð Þ
dz nð Þ

dz nð Þ
dxh′ nð Þ

= −e nð Þ dy nð Þ
dz nð Þ Who nð Þη nð Þ:

ð50Þ

To analyze the stability of the system, a Lyapurov func-
tion VðnÞ = ð1/2ÞeðnÞ2 is constructed, where eðnÞ = zðnÞ − y
ðnÞ.

ΔV nð Þ = V n + 1ð Þ −V nð Þ = 1
2

e n + 1ð Þ2 − e nð Þ2	 

: ð51Þ

According to the differential theorem,

Δe nð Þ = 〠
3

j=1

de nð Þ
dxh′ nð Þ

Δxh′ nð Þ: ð52Þ

According to Lyapurov function,

de nð Þ
dxh′ nð Þ

=
de nð Þ
dY nð Þ

dY nð Þ
du nð Þ

du nð Þ
dxh′ nð Þ

= − sgn
dy nð Þ
du nð Þ
� �

η nð ÞWho nð Þ,
ð53Þ

Δe nð Þ = −〠
3

j=1
sgn

dY nð Þ
du nð Þ
� �

η nð ÞWho nð Þ × η kð Þe kð Þ sgn

� dy nð Þ
du nð Þ
� �

Who nð Þ:

ð54Þ
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Figure 11: Error tracking of the first motion curve.
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Because of ðsgn ðdyðnÞ/duðnÞÞÞ2 = 1,

Δe nð Þ = −〠
3

j=1
η nð Þð Þ2 Who nð Þð Þ2e nð Þ, ð55Þ

e n + 1ð Þ = e nð Þ+Δe nð Þ, ð56Þ

ΔV nð Þ = 1
2

e n + 1ð Þ2 − e nð Þ2	 

= 1
2
Δe nð Þ Δe nð Þ + 2e nð Þð Þ

= e nð ÞΔe nð Þ + 1
2
Δe nð Þ2:

ð57Þ
So we can come to a conclusion. The closed loop system

is stable at ΔVðnÞ < 0.

e nð ÞΔe nð Þ < −
1
2
Δe nð Þ2, ð58Þ

−e nð Þ〠
3

h=1
η nð Þð Þ2 Who nð Þð Þ2e nð Þ

< −
1
2

−〠
3

h=1
η nð Þð Þ2 Who nð Þð Þ2e nð Þ

 !2

,

ð59Þ

2 〠
3

h=1
Who nð Þð Þ2

 !−1

> η nð Þð Þ2: ð60Þ

Because the Lyapunov function has a lower bound and
ΔVðnÞ < 0, the function monotonically decreases, then when
n⟶∞, Vðn + 1Þ =VðnÞ = 0, ΔVðnÞ = 0. Therefore, the
neural network learning rate is set to a small value to make
the system stable. Since the learning rate will affect the opti-
mization speed of the gradient descent method, we have

improved the neural network by momentum and RMSprop.
By constantly changing the learning rate, the system can be
stable and quickly reduced to the best.

5. Control System and Simulation Experiment

5.1. Control System. According to the actual experimental
requirements of fixed-point and fixed-speed, the desired air
flotation platform position ðx, yÞ, angle ðψÞ, and speed-
error curve ½VðExÞ, VðEyÞ,WðEψÞ� are designed. For three
control variables ½xðnÞ, yðnÞ, ψðnÞ� are designed three cas-
cade double-loop control models. The curve is sent to the
algorithm controller for processing and then sent to the
algorithm controller through the dynamic model for
repeated iterations. The experiment combined the sensor
to form a closed loop and combined with the cascade
double-loop control to realize the stable control of the air
flotation platform to move freely. The air flotation platform
control system and cascade control structure are illustrated
in Figures 5 and 6.

Considering that the actual trajectory may have sharp
turns or circular motion, the following two motion models
are designed. The first is a right-angled square and the sec-
ond is a circular motion. In the first one, the motion curve
of the air flotation platform starts from point ð0, 5Þ and
returns to the origin ð0, 5Þ after moving counterclockwise
for a week, and the overall consumption time is 10 seconds.
And the initial direction of the air flotation platform is -90°,
and the angle calculation is based on the angle between the
direction of the air flotation platform and the x-axis. In the
second one, the starting point, ending point, and elapsed
time conditions of the movement curve of the air flotation
platform remains unchanged. The motion curve presents a
circular structure with a center of ð5, 5Þ and a radius of 5.
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Figure 12: Error tracking of the second motion curve.
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Figure 13: Motion trajectory comparison of advanced algorithms (square).
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5.2. Simulation. To verify the effectiveness of the control
algorithm designed for the 3-DOF air flotation platform,
MATLAB/Simulink is used for simulation in this paper,
and the overall effect is shown in Figure 7. The predicted
position curve of the trajectory was input into the system,
and then, the algorithm was controlled by the cascade dou-
ble closed-loop PIDnn system. The obtained control results
are introduced into the dynamics model and then returned
to the controller for further calculation.

Considering the various movement and work of space
robot, there will be a variety of movement curves such as
straight line, curve, or sharp angle. So, we designed two
kinds of curves, one is the motion curve of the square, and
the other is the motion curve of the circle.

As shown in Figures 8 and 9, for each curve, we give the
system’s 3-DOF input.

After effective control by the controller, the system sim-
ulation curve is obtained as shown in Figure 10.

In the simulation experiment, as shown in Figures 11
and 12, we get the error tracking of the three degrees of free-
dom curve.

We can see from the error curve that the error effect of
moving distance can reach the level of 10−3 on average in
the simulation experiment. In yaw, the maximum error in
motion is only 0.17°. It can be observed that using the
improved PIDnn based on momentum and RMSprop, the
position and attitude control of the air flotation platform
has a good control effect. It can quickly and accurately track
the input signal.

5.3. Comparison of Advanced Algorithms. In order to analyze
the optimality of space robot control system, we compared
other advanced control algorithms according to the above
two trajectory models. We can see the error comparison
curve in Figures 13 and 14. We compare it with three other
advanced control algorithms in recent years. The blue line
represents the fuzzy slider mode control algorithm [16],
the red line represents the nonlinear model predictive con-
trol algorithm (NMPC) [17], and the green line represents
the robot integral terminal sliding mode control law
(RITSMC) [30].

The improvement and variation of the control effect can
be obtained from the error curve. The average control error
of position control can reach 7:59 × 10−3 unit distance, and
the error control accuracy of yaw can reach 8:36 × 10−2°.
The improved PID neural network using momentum and
RMSprop can be proved by simulation results. It can effec-
tively control the high-precision movement of the space
robot, so that the space robot can have smaller error with
the preset curve and achieve accurate control.

6. Conclusion and Future Work

In this paper, according to the needs of the ground preexper-
iment, the control system is designed and constructed in
combination with the 3-DOF air flotation platform. The
design allows it to move freely on the marble table. The
design of the overall dynamic model and control algorithm
is introduced, and the model is simplified and deduced

according to the actual experimental environment. The con-
trol algorithm adopts the PID neural network to realize the
3-DOF motion of the air flotation platform. And the
double-loop cascade control method is adopted to achieve
better control effect. Finally, the designed control system is
simulated by MATLAB/Simulink. The overall control effect
is simulated, and it is known from the simulation effect that
the system can control the air flotation platform quickly and
effectively. In the era of rapid development of science and
technology, the development of space operation technology
and robot-assisted technology is gradually improving the hard
power of human space exploration. As a ground-assisted
experimental configuration, the air flotation platform plays
an important role, and the improvement and research of
experimental equipment will be further improved and further
advance the development and progress of automation.

In the future work, we mainly improve the following
contents: (a) optimize the overall control structure and spe-
cific hardware equipment of the microgravity air flotation
platform and (b) optimize the computing power and sensor
accuracy of the single-chip microcomputer, so that it can
perform more complex control algorithms and obtain data
with higher precision.
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