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Capturing and stabilizing tumbling targets using dual-arm space robots are very crucial to on-orbit servicing task. However, it is
still very challenging due to the complex dynamics coupling and closed-chain constraints between the manipulators, the base, and
the target. In this paper, a kinodynamic trajectory optimization method is proposed to generate the motion of a dual-arm space
robot for stabilizing the captured tumbling target, which is formulated and solved as a nonlinear programming problem using
direct collocation. Instead of optimizing the trajectory of each joint with the dynamics model of space robot, this method
optimizes the trajectory of the tumbling target while considering the kinematics and dynamics constraints between the two
arms and the target simultaneously. The objective function of the optimization is defined as weighted detumbling time, base
disturbance, and manipulability, in order to avoid singularity and save the energy of space robot for further manipulation.
Several physical simulations are carried out to validate the proposed method.

1. Introduction

With growing scientific research and commercial applica-
tions in space, more and more malfunctioning satellites
and space debris are occupying precious orbital resources
which will bring a great threat to the safety of on-orbit
spacecrafts [1, 2]. In order to utilize or remove them, space
robots have been studied and developed for many years
[3]. For capturing a space target, the space robotic system
mainly adopts the following two capturing methods, i.e.,
stiff-connection capturing and flexible-connection capturing
[4]. The flexible-connection capturing method using teth-
ered flying net [5] or flying gripper [6] can deal with a vari-
ety of targets even without any requirement on rendezvous
and docking. This method also allows a long capture dis-
tance between the target and the servicing spacecraft and a
broad range of size and shape of the target object. However,
it has limitations on dexterous manipulation of the captured
target, such as on-orbit maintenance and space assembly.
Therefore, the stiff-connection capturing method using

robotic arms [7] will still be a promising method for on-
orbit servicing of noncooperative space target.

Moosavian and Papadopoulos summarize the modeling,
planning, and control methods for free-floating space robots
[8]. In order to solve the dynamics coupling between the
base and the manipulator, the generalized Jacobian matrix
is proposed for single-arm space robots [9]. Zhang et al.
design an efficient decoupling controller based on the time-
delay estimation (TDE) and the supertwisting control
(STC), which can linearize the nonlinear dynamics of space
robot and drive the state variables to converge to the equilib-
rium point robustly [10]. Compared with single-arm space
robot, multiarm robotic system can perform more dexter-
ous, flexible, and complex tasks [11, 12]. Yoshida et al.
designs a resolved motion-rate coordinated control method
for dual-arm space robot in which one of the manipulators
tracks the desired trajectory while the other maintains the
orientation of the satellite base. However, these methods
can not be used for multiarm coordinated planning of space
robots. Similar to relative Jacobian matrix [13] for terrestrial
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dual-arm robots, a generalized relative Jacobian matrix is pro-
posed for multiarm space robots which can easily plan and con-
trol the relative motion between the arms while considering the
dynamics coupling between the arms and the base [14]. For
multiarm space robots, the base can be kept to be inertially sta-
ble during multiarm coordinated manipulation by reactionless
motion planning [15]. However, most of these methods with
Jacobian projection can be only used for nonconstrained quasi-
static planning and control problem.

One of the most challenging on-orbit servicing tasks for
space robots is to capture a space target with nonzero
momentum. During the capture phase, several components
need to be considered, including path planning to capture
the tumbling target, hybrid control of the motion and the
contact force for the end-effectors, coordinated control of
the base attitude, and parameter identification of the tum-
bling target [16]. Considering the grasping force limitation,
parameter uncertainty of the target and arbitrary detumbling
motion, a time-optimal control method [17] is proposed for
free-floating space robots stabilizing a tumbling target. How-
ever, the limitation of this method is the parameterized end-
effector velocity. For capturing and stabilizing a tumbling
space target with uncertain dynamics, Aghili [18] proposes
an optimal motion planning scheme which will generate
the end-effector trajectories for both pre- and postcapture
phases. Further, a two-layer optimization is proposed to
yield both end-effector forces and contact locations for
cooperative manipulation of an on-orbit passive objects
[19]. For the postcontact phase of capturing a tumbling tar-
get in space, Zhang et al. [20] present a control scheme and
parameter identification technique for postcapture stabiliza-
tion of unknown tumbling target, in which the manipula-
tor’s motion is used to compensate torque limitation. A
detumbling strategy is also proposed to minimize the
detumbling time and control torques, in which the target’s
trajectory is represented by quartic Bézier curves and the
optimal solution is found by adaptive particle swarm optimi-
zation algorithm [21]. Joint-velocity limits are further con-
sidered in the detumbling and stabilization manipulation
[22]. In order to limit the target attitude motion as well as
interaction torque at the grasping point, a time-optimal con-
trol problem (OCP) is formulated and solved using the cal-
culus of variations method with a highly accurate solution
[23]. Taking advantage of the coupling between dynamics
of translational and rotational systems, Aghili proposes an
optimal controller which can damp out both translational
and rotational motions collaboratively and simulta-
neously [24].

During postcapture manipulation, the optimal detum-
bling motion of space robot should be generated to reduce
the momentum of the tumbling target with minimal base
disturbance, while satisfying equality and inequality con-
straints simultaneously. A purely kinematic trajectory opti-
mization method is proposed to manipulate the in-grasp
object with relaxed-rigidity constraints [25]. However, it
can not be used for heavy object manipulation with nonne-
gligible dynamics. Recently, a nonlinear trajectory optimiza-
tion method is proposed to generate the trajectory for
approaching the tumbling target during precontact phase

[26] and solved by direct collocation method [27]. Similarly,
neither the object dynamics nor interaction between the
object and the space robot is considered for this precon-
tact trajectory optimization. However, the closed-chain
constraints and coupling dynamics between the object
and space robot make the postcapture manipulation much
more challenging. In this paper, we will formulate the
postcapture manipulation as a trajectory optimization
problem in which the base disturbance will be minimized.
Betts et al. [28] reviewed the numerical methods for trajec-
tory optimization and discussed the direct and indirect
methods. In this paper, we will adopt the direct collocation
method to solve the trajectory optimization problem of
postcapture manipulation.

Kinodynamic motion planning [29] is first proposed to
solve motion planning problem subject to simultaneous
kinematics and dynamics constraints. In this paper, a kino-
dynamic trajectory optimization framework is proposed for
generating dual-arm detumbling motion while satisfying
the closed-chain kinodynamic constraints between the
object and dual-arm space robot. The main contributions
of this paper are as follows: (1) a kinodynamic trajectory
optimization framework is proposed to minimize the base
disturbance of dual-arm space robot for postcapture manip-
ulation of tumbling target; (2) the base disturbance of dual-
arm space robot during detumbling manipulation is derived
as a function of the position vector of the tumbling target
and the total detumbling force exerted on the tumbling tar-
get, without calculating dual-arm operational forces, respec-
tively; (3) instead of optimizing the trajectory for each single
joint of space robot, the optimal detumbling motion of dual-
arm space robot is generated from the optimal trajectory of
the tumbling target according to closed-chain kinodynamic
constraints.

The remainder of this paper is organized as follows. In
Section 2, the dynamics modelling of dual-arm space robot
and the tumbling target is presented. In Section 3, the
kinodynamic trajectory optimization framework for post-
capture manipulation is introduced, and the detailed for-
mulation is presented. In Section 4, the proposed method
is verified and compared through physical simulations
with different objective functions and initial conditions.
Finally, the conclusion and future work are presented in
Section 5.

2. Modelling of Dual-Arm Space Robots and
Tumbling Target

2.1. Modelling of Dual-Arm Space Robots. As shown in
Figure 1(a), the dual-arm space robotic system consists of a
satellite base and two central-symmetrically mounted
manipulators. The initial and final states of dual-arm space
robot and tumbling target during detumbling manipulation
are shown in Figure 1(b). The degrees of freedom (DOF)
of manipulator Arm-k is denoted by nk. In this paper, each
arm is an S-R-S (spherical-revolute-spherical) 7 DOF redun-
dant manipulator. Moreover, any two adjacent joints are
perpendicular without offset. All the variables in Figure 1
are defined in Table 1. The reference coordinate system of

2 International Journal of Aerospace Engineering



Arm-k is the same as the coordinate system of the base of
Arm-k. The center of mass (CoM) coordinate system of each

body BðkÞ
i has the same orientation with the coordinate sys-

tem of each joint JðkÞi . The reference coordinate system of

each variable and its corresponding derivative is denoted
by the left superscript in the rest of this paper. Unless spec-
ified, all the variables are expressed in the inertial coordinate
system “∑I” which is omitted for simplification.
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Figure 1: Schematic diagram of dual-arm space robot and the detumbling manipulation.

Table 1: Nomenclature.

Variable Description

J kð Þ
i The ith joints of Arm-k (i = 1,⋯, nk; k = l, r)

θ
kð Þ
i The joint angle of the ith joint of Arm-k

k kð Þ
i The unit vector representing the rotation direction of J kð Þ

i

C kð Þ
i The CoM of rigid body B kð Þ

i

a kð Þ
i , b kð Þ

i The position vectors from J kð Þ
i to C kð Þ

i and C kð Þ
i to J kð Þ

i+1, respectively

b kð Þ
0 The position vector from the CoM of B0 to joint J kð Þ

1

r kð Þ
i , r0, rg The position vector of C kð Þ

i , base’s CoM, and space robot’s CoM, respectively

p kð Þ
i , p kð Þ

e The position vector of J kð Þ
i and the end-effector of Arm-k, respectively

Θ kð Þ The joint angle vector of Arm-k; Θ kð Þ = θ
kð Þ
1 θ

kð Þ
2 ⋯ θ

kð Þ
7

h i
T

v0, ω0 The linear and angular velocities of B0

v kð Þ
i , ω kð Þ

i The linear and angular velocities of B kð Þ
i

v kð Þ
e , ω kð Þ

e The linear and angular velocities of the end-effector of Arm-k

vt , ωt The linear and angular velocities of the target

m0,m
kð Þ
i ,M The masses of B0, B

kð Þ
i , and the whole system, respectively

I0, I
kð Þ
i The inertia matrices of B0 and B kð Þ

i in terms of the body CoM frame

En, On The n × n identity and zero matrices
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As shown in Figure 1, the end-effector velocity of each
manipulator can be derived as follows:

_x kð Þ
e =

v kð Þ
e

ω kð Þ
e

" #
= J kð Þ

b

v0
ω0

" #
+ J kð Þ

m
_Θ kð Þ, ð1Þ

where JðkÞb and JðkÞm are the Jacobian matrices related to the
base and the manipulator, respectively, which can be calcu-
lated by the following equations:

J kð Þ
b =

E3 −p×0e
kð Þ

O3 E3

 !
,

J kð Þ
m =

k kð Þ
1 × p kð Þ

e − p kð Þ
1

� �
⋯ k kð Þ

nk
× p kð Þ

e − p kð Þ
nk

� �
k kð Þ
1 ⋯ k kð Þ

nk

2
64

3
75,

ð2Þ

where pðkÞ0e is the vector from the CoM of the base to the end-

effector of Arm-k, pðkÞ0e = pðkÞe − r0; r× is the skew symmetric
matrix of r, i.e.,

if r =

rx

ry

rz

2
664

3
775, then r× =

0 −rz ry

rz 0 −rx
−ry rx 0

2
664

3
775: ð3Þ

The linear and angular momentums of dual-arm space
robots can be expressed as follows:

P = ME3 Mr×0g
T

h i v0
ω0

" #
+ JlTw _Θl + JrTw _Θr ,

L = Iwω0 +Mr×gv0 + Ilϕ _Θ
l + Irϕ _Θ

r = Mr×g Iw
h i v0

ω0

" #
+ Ilϕ _Θ

l + Irϕ _Θ
r ,

ð4Þ

where

J kð Þ
Tw = 〠

nk

i=1
m kð Þ

i J kð Þ
Ti

� �
,

J kð Þ
Ti = k kð Þ

1 × r kð Þ
i − p kð Þ

1

� �
,⋯, k kð Þ

i × r kð Þ
i − p kð Þ

i

� �
, 0,⋯, 0

h i
,

J kð Þ
Ri = k kð Þ

1 ,⋯, k kð Þ
i , 0,⋯, 0

h i
,

Iw = I0 + 〠
k=l,r

〠
nk

i=1
I kð Þ
i +m kð Þ

i r× kð Þ
i r×0i

kð Þ� �T� �( )
,

I kð Þ
ϕ = 〠

nk

i=1
I kð Þ
i J kð Þ

Ri +m kð Þ
i r×i

kð ÞJ kð Þ
Ti

� �
,

r0g = rg − r0:

ð5Þ

For the free-floating space robots, the linear and angular

momentums are conserved as the environmental force
caused by solar pressure, air drag, and microgravity is negli-
gible. The whole system satisfies the following holonomic
and nonholonomic constraints:

P

L

" #
=

ME3 Mr×0g
T

Mr×g Iw

0
@

1
A v0

ω0

" #
+

JlTw

Ilϕ

2
4

3
5 _Θl +

JrTw

Irϕ

2
4

3
5 _Θr

=HB

v0

ω0

" #
+Hl

bm
_Θl +Hr

bm
_Θr
:

ð6Þ

From (6), the following relationship between the base’s
motion and arms’ motion can be obtained:

v0
ω0

" #
= Jlbm _Θl + Jrbm _Θr = Jlbm Jrbm

h i _Θl

_Θr

" #
= Jbm

_Θl

_Θr

" #
,

ð7Þ

where

J kð Þ
bm =

−r×0gI
‐1
s I

kð Þ
Θ −

J kð Þ
Tw

M

−I‐1s I
kð Þ
Θ

2
64

3
75,

Is = Mr×gr
×
0g + Iw

� �
,

I kð Þ
Θ = I kð Þ

ϕ − r×g J
kð Þ
Tw

� �
:

ð8Þ

Substituting (7) into (1) yields the end-effector velocity
of each manipulator:

_xle = Jlb
v0
ω0

" #
+ Jlm _Θl = JlbJ

l
bm + Jlm

� �
_Θl + JlbJ

r
bm

_Θr = Jll _Θ
l + Jlr _Θ

r ,

_xre = Jrb
v0
ω0

" #
+ Jrm _Θr = JrbJ

l
bm

_Θl + JrbJ
r
bm + Jrmð Þ _Θr = Jrl _Θ

l + Jrr _Θ
r
:

ð9Þ

Therefore, the generalized Jacobian matrix of dual-arm
space robots can be derived as

_xle
_xre

" #
=

Jll Jlr
Jrl Jrr

" #
_Θl

_Θr

" #
= Jg _Θ, ð10Þ

where Jll = JlbJlbm + Jlm, Jlr = JlbJrbm, Jrl = JrbJlbm, Jrr = JrbJrbm +
Jrm, and JðkÞbm is the coupling Jacobian matrix between the base
and the manipulator. The derivation details can be found
in [14].

2.2. Motion Equation of Tumbling Target. Assuming that the
target is tumbling with an initial velocity, its inertia param-
eters mt and

0It are known or can be estimated during the

4 International Journal of Aerospace Engineering



precontact phase and contact phase [30, 31]. Therefore, the
motion equation of the target which is captured by the two
arms of space robot can be expressed in the base frame as

0Mt
0€xt +

0Ct =
0Ft , ð11Þ

0Ft =
0Gl

0Fl +
0Gr

0Fr +
0Gext

0Fext, ð12Þ

where 0Mt is the inertia matrix, 0Ct is the Coriolis and cen-
trifugal force, and 0Ft is the total force exerted on the target;
it also refers to the detumbling force of the target in this

paper; 0Fk = 0fTk 0τTk
h iT

is the operational force of Arm-

k; 0Fext, 0Gext are the external force exerted on the target
and the corresponding grasp matrix, respectively. The exter-
nal force 0Fext caused by solar pressure, air drag, and micro-
gravity is order of magnitude less than the operational forces
exerted by the manipulator’s end-effector, and hence, is neg-
ligible. The inertia matrix and the Coriolis and centrifugal
force can be obtained as follows:

0Mt =
mtE3 O3

O3
0It

" #
, 0Ct =

O3
0ωt ×

0It
0ωt

� �
" #

: ð13Þ

On the other hand, when the end-effectors of dual-arm
space robot and the grasping points of the target are con-
nected, the dual-arm space robot and the target form a
closed-chain constraint. Considering the postcapture
manipulation, the end-effectors of the two arms will be fixed
with the grasping points. Therefore, we can have the follow-
ing position-level constraint:

0Tt =
0T lð Þ

1
1T lð Þ

e
eT lð Þ

t = 0T rð Þ
1

1T rð Þ
e

eT rð Þ
t , ð14Þ

where 0Tt represents the homogeneous transformation

matrix (HTM) of the target with respect to the base, 0TðkÞ
1

represents the HTM of the reference coordinate system of

Arm-k with respect to the base, 1TðkÞ
e represents the HTM

of the end-effector with respect to the reference coordinate

system of Arm-k, and eTðkÞ
t represents the HTM of the target

with respect to the grasp coordinate system of Arm-k.
Therefore, given the desired velocity of the target 0 _xt

with respect to the base frame of dual-arm space robot, the

corresponding velocity of the end-effector of Arm-k 0 _xðkÞe
can be obtained as

0 _x kð Þ
e =

E3 − 0rtek
� �×

O3 E3

2
4

3
50 _xt =

0GT
k
0 _xt , ð15Þ

where 0rtek is the position vector from the CoM of target to
the grasping point; 0Gkðk = l, rÞ is the grasp matrix [32] of
Arm-k.

Furthermore, by differentiating (15), the acceleration
constraint can be obtained as

0€x kð Þ
e = 0GT

k
0€xt +

0 _GT
k
0 _xt: ð16Þ

The kinematics of each manipulator of dual-arm space
robot can be written as

1 _x kð Þ
e = 1R kð Þ

0
0 _x kð Þ

e = J kð Þ
m

_Θ kð Þ
d ,

1€x kð Þ
e = 1R kð Þ

0
0€x kð Þ

e = J kð Þ
m

€Θ kð Þ
d + _J kð Þ

m
_Θ kð Þ
d ,

ð17Þ

where 1RðkÞ
0 is the rotation matrix from the base frame to the

reference (base) frame of Arm-k, which is a constant matrix
as the base of Arm-k is fixed with the satellite base.

Given the desired velocity and acceleration of the end-
effector, the desired joint velocity and acceleration can be
obtained directly by the inverse kinematics of the manipula-
tor:

_Θ kð Þ
d = J kð Þ

m

� �†1 _x kð Þ
e ,

€Θ kð Þ
d = J kð Þ

m

� �† 1€x kð Þ
e − _J kð Þ

m
_Θ kð Þ
d

� �
,

ð18Þ

where ðJðkÞm Þ† is the Moore-Penrose pseudoinverse of JðkÞm ; for
each 7 DOF redundant manipulator of dual-arm space
robot, the Moore-Penrose pseudoinverse is used to obtain
the least-square solution of differential kinematics with min-
imum norm.

2.3. Base Disturbance Caused by Detumbling Manipulation.
During the detumbling manipulation of dual-arm space
robot, the base disturbance resulted from the operational
forces of two arms to detumble the tumbling target is ana-
lyzed in this section. The dynamic constraints between the
two arms and the target are shown in (12), where 0Fext is
equal to zero. Therefore, given the desired motion of the
target, the operational forces of the two arms can be
obtained. However, there is no unique solution for (12).
Many existed algorithms can be used to solve this prob-
lem, for example, the master-slave or shared force control
proposed in [33] and the optimal distribution method
which minimized the squared operational forces proposed
in [32].

As the main purpose in this paper is to minimize the
detumbling time and base disturbance caused by the detum-
bling maneuver during the postcapture phase, we only con-
sider the total disturbance force exerted on the base.
Therefore, the total disturbance force exerted on the base
which is caused by the operational forces of two arms is cal-
culated as follows:
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0F
f
dis = −

E3 O3

0r
×
el E3

" #
0Fl −

E3 O3

0r
×
er E3

" #
0Fr

= −
E3 O3

0rt +
0r

t
el

� �×
E3

2
4

3
50Fl −

E3 O3

0rt +
0r

t
er

� �×
E3

2
4

3
50Fr

= −
E3 O3

0r
×
t E3

" # E3 O3

0rt×el E3

2
4

3
50Fl −

E3 O3

0r
×
t E3

" # E3 O3

0r
t×
er E3

2
4

3
50Fr

= −
E3 O3

0r
×
t E3

" # E3 O3

0rt×el E3

2
4

3
50Fl +

E3 O3

0r
t×
er E3

2
4

3
50Fr

8<
:

9=
;,

ð19Þ

where 0rek is the position vector from the CoM of base to the
end-effector of Arm-k and 0rt is the position vector from the
CoM of base to the CoM of target.

Combining equations (12) and (19) and the external
force 0Fext on the target is equal to zero, then we can have:

0Ffdis = −
E3 O3
0r×t E3

" #
0Gl

0Fl +
0Gr

0Fr
� �

= −
E3 O3
0r×t E3

" #
0Ft :

ð20Þ

It can be seen from (20) that the disturbance force 0Ffdis
exerted on the base is related to both the position vector
0rt and the detumbling force 0Ft of the target. The distur-
bance force should be minimized in order to decrease the
base disturbance. Therefore, in the kinodynamic trajectory
optimization method presented in the Section 3, the base

disturbance force 0Ffdis will be minimized as an objective
function.

3. Kinodynamic Trajectory Optimization for
Detumbling Manipulation

Generally speaking, the process of capturing a tumbling tar-
get in space can be decomposed into three phases: the pre-
contact, contact, and postcontact phases. However, the
precontact and contact phases are not in the scope of this
paper. In order to study the kinodynamic trajectory optimi-
zation problem for the postcontact phase, the following
assumptions are presented:

(1) In the precontact phase, the two arms can reach the
grasping point by generalized relative Jacobian [14]
or reactionless motion planning method [11]

(2) In the contact phase, the two arms and the target can
form a stable connection for further manipulation
[30, 34]

(3) For a tumbling target, the initial velocity and inertia
parameters can be estimated during the precontact
phase [30] and the postcontact phase [31]

In this section, the kinodynamic trajectory optimization
problem for stabilizing a tumbling target in the postcapture

phase will be formulated, in which only the trajectory of
the target is optimized while the detumbling motion of two
arms is generated from the optimal trajectory of the target
by considering the kinematic and dynamic constraints
between the target and the two arms. This trajectory optimi-
zation problem is transformed into a nonlinear program-
ming problem (NLP) by the direct collocation method
[27]. Then, the solution of NLP can be found by the NLP
solver fmincon in the Optimization Toolbox of MATLAB.
The kinodynamic trajectory optimization algorithm is devel-
oped based on open-source trajectory optimization library
OptimTraj [35]. The detailed formulation of the kinody-
namic trajectory optimization method is shown in the fol-
lowing sections.

3.1. Kinodynamic Trajectory Optimization Framework. For
postcontact/capture phase, the space robot servicer and tar-
get will form a closed-chain constraint. In order to stabilize
the tumbling target in the postcapture phase, the kinody-
namic trajectory optimization framework is proposed for
generating detumbling motion of dual-arm space robot.
Given the initial conditions of the target and the dual-arm
space robot, the deceleration trajectory of the tumbling tar-
get should be optimized to minimize the detumbling time
and base disturbance and avoid singularity of dual-arm
space robot, while the detumbling motions of dual-arm
space robot can be generated according to the closed-chain
kinodynamic constraints between the two arms and the tar-
get. The framework of kinodynamic trajectory optimization
is shown in Figure 2.

3.2. System Dynamics and Decision Variables. To solve the
trajectory optimization problem of the tumbling target, we
use direct collocation to discrete the continuous trajectory.
For each collocation point, we define the following state var-
iable s and control variable F as follows:

s = 0xTt
0 _xTt

h i
,

_s = 0 _xTt
0€xTt

h i
,

F= 0FTl
0FTr

h i
,

ð21Þ

where 0xt ,
0 _xt , and

0€xt are the pose, velocity, and accelera-
tion of the target object; the states of two adjacent colloca-
tion points are constrained by the following dynamics
equation of the object:

mtE3 O3

O3
0It

" # 0
_vt

0 _ωt

" #
+

O3
0ωt ×

0It
0ωt

� �
" #

= 0Gl
0Fl +

0Gr
0Fr ,

ð22Þ

where 0xt = 0pTt
0ψT

t

h iT
= ½px, py, pz , α, β, γ�T and 0 _xt =

0vTt 0 _ψT
t

h iT
. The attitude 0ψt in

0xt is represented by the
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z-y-x Euler angles; the angular velocity in the dynamic equa-

tion is represented by 0ωt =
0ωtx

0ωty
0ωtz

h iT
.

In order to deal with the nonholonomic property of the
angular velocity, the transformation between the Euler angle
rate and the angular velocity is derived as follows:

0ωt =

0 −sα cαcβ

0 cα sαcβ

1 0 −sβ

2
664

3
775

_α

_β

_γ

2
664

3
775 =Nω

zyx α, β, γð Þ0 _ψt , ð23Þ

where Nω
zyx is the matrix which projects the Euler angle rate

0 _ψt to the angular velocity 0ωt ; sα, cα, sβ, cβ are the abbrevia-
tions of sin(α), cos(α), sin(β), and cos(β).

Therefore, we can obtain the following equation:

0 _ψt =Nω
zyx

−1 α, β, γð Þ0ωt: ð24Þ

Furthermore, we can have the following equation by dif-

ferentiating (23):

0 _ωt =Nω
zyx α, β, γð Þ0€ψt + _Nω

zyx α, β, γð Þ0 _ψt ,

0€ψt =Nω
zyx

−1 α, β, γð Þ 0 _ωt − _Nω
zyx α, β, γð Þ0 _ψt

n o
:

ð25Þ

3.3. Constraints of the Trajectory Optimization. For deaccele-
rate the tumbling target, we can specify the initial and final
states of the tumbling target as follows:

0xt t0ð Þ = 0xini,
0xt t f
� �

= 0xfin,
0 _xt t0ð Þ = 0 _xini,
0 _xt t f
� �

= 0 _xfin,

ð26Þ

where 0xini, 0 _xini and 0xfin, 0 _xfin are the initial and final
(desired) states of the target, respectively.

Objective function
(detumbling time, base disturbance)

Dynamics equation of the target

Constraints and limits
(state, control, boundary)

Nonlinear programming solver
(fmincon/snopt/ipopt)

Kinematic and dynamic constraints
between the two arms and target

State and control variables of the
target at collocation points

Optimal state of space robot
(desired detumbling motion)

Start

End

Initialize the state of the target and
dual-arm space robot

Set the initial values of the
collocation points

Optimal solution

Iteration number
is maximum

Y

N

Y

Figure 2: Kinodynamic trajectory optimization framework for detumbling a tumbling target with dual-arm space robot.
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Additionally, in order to ensure that the target is within
the workspace of the dual-arm space robot, we use box
bounds to approximate them in this paper. The state limits
of the target object in the trajectory optimization are intro-
duced as follows:

0xmin ≤
0xt tð Þ ≤ 0xmax,

0 _xmin ≤
0 _xt tð Þ ≤ 0 _xmax,

ð27Þ

where 0xmin, 0xmax are the minimum and maximum poses of
the target and 0 _xmin, 0 _xmax are the minimum and maximum
velocities of the target.

During the detumbling manipulation, the force magni-
tude of each manipulator applied to the target is constrained
as follows:

−0Fk,max ≤
0Fk tð Þ ≤ 0Fk,max, ð28Þ

where 0Fk,max is the maximum force of Arm-k. Through
equation (28), the optimal trajectory generation of the target
is decoupled from the dynamics of space robot [21]. Addi-
tionally, as the proposed kinodynamic trajectory optimiza-
tion method can not handle the time-variant constraints,
the corresponding joint torque can be guaranteed to be
below its limit by setting strict end-effector force/torque
limit. Therefore, the prescribed maximum end-effector force
(28) of each manipulator is designed to guarantee joint tor-
que limits of space robot during manipulation.

In addition to the above explicit constraints, the implicit
constraints are also included in the kinodynamic trajectory
optimization. As shown in Section 2.3, the base disturbance
is calculated according to the kinematic and dynamic closed-
chain constraints between two arms and the target.

3.4. Objective Function of the Trajectory Optimization. For
space robot, the attitude of the base is generally required to
keep fixed with respect to the sun and the earth for commu-
nication and observation purposes. However, the fuel of
thrusters for attitude control is very limited and mainly
reserved for orbital maneuvers. Therefore, the trajectory
optimization problem of postcapture phase is formulated
to minimize the detumbling time and base disturbance force,
i.e., minimize the energy consumption during the whole
detumbling manipulation. For the dual-arm space robot,
the base disturbance mainly comes from the operational
forces of two arms for detumbling the tumbling target as
shown in Section 2.3.

Furthermore, the inverse kinematic equation of dual-
arm space robot can be obtained from (10):

_Θ = J†g _xe: ð29Þ

The singularity of dual-arm space robot occurs if the
generalized Jacobian matrix Jg is not full ranked. In order
to avoid the singularity, we added another weighted function
into the objective function of trajectory optimization. This
function is the negative manipulability of dual-arm space

robot based on the generalized Jacobian matrix, which is
defined as follows:

MJg
= −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det JgJTg
� �r

: ð30Þ

By minimizing MJg
(maximizing the manipulability),

dual-arm space robot can keep away from the singular con-
figuration. Therefore, the objective function of this trajectory
optimization for stabilizing the tumbling target can be writ-
ten as the following (equality constraints (22) and (26) and
inequality constraints (27) and (28)):

min
s tð Þ,F tð Þ

w1T +w2

ðt f
t0

0FfΤdis
0Ffdisdt +w3

ðt f
t0

MJg
dt

s:t: equality constriants

inequality constriants,

ð31Þ

where T = t f − t0 is the detumbling time and 0Ffdis is the distur-
bance force of the base during the detumbling manipulation.
Among the three items in the objective function, the base dis-
turbance force and manipulability are much more important
than the detumbling time; w1, w2, and w3 are the weights to
trade off the detumbling time, base disturbance, and manipula-
bility. Unless specified,w1,w2, andw3 are set to 1 in this paper.

4. Simulation Study

In order to verify the kinodynamic trajectory optimization
method proposed in this paper, simulation studies with differ-
ent objective functions and initial conditions are carried out.
In Section 4.1, the proposed kinodynamic trajectory optimiza-
tion framework is used to minimize the detumbling time and
the base disturbance of dual-arm space robot during detum-
bling manipulation. In Section 4.2, the proposed method is

Target

Base

7 DOF
manipulator

7 DOF
manipulator

Chaser satellite

Figure 3: The initial configuration of dual arm space robot and the
target.
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used to deal with a general case of stabilizing the tumbling tar-
get while considering the singularity avoidance.

For detumbling manipulation in postcapture phase, the
two arms have formed a stable connection with the target.
Without loss of generality, the initial configuration of the
dual-arm space robot and the target in the simulation study
are shown in Figure 3. The initial state of Arm-l and Arm-r
are set to ½0, 45, 0, 90, 0, 45, 0�T ∗ π/180 and
½0,−45, 0,−90, 0,−45, 0�T ∗ π/180, respectively. The mass
and inertia parameters of the base, each manipulator, and
the tumbling target are shown in Table 2. Unless specified,
the length and angle units are m and rad, respectively. In
order to evaluate the results generated from trajectory opti-
mization, the base disturbance metric is defined as follows:

Md =wp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δp2x + δp2y + δp2z

q
+wo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δo2x + δo2y + δo2z

q
, ð32Þ

where δp and δo are the position and orientation disturbance
of the base and wp and wo are the corresponding weights for
position disturbance and orientation disturbance.

4.1. Minimal Detumbling Time and Base Disturbance. In this
section, the objective function of the trajectory optimization
is set to minimize the detumbling time and the base distur-
bance caused by the detumbling force of two arms. The
kinodynamic trajectory optimization is carried out with the
dynamic equation of the tumbling target while the corre-
sponding motions and forces of the two arms are generated
by the kinematic and dynamic constraints between the two

arms and the target. The constraints for the trajectory opti-
mization are listed in Table 3. The initial guesses for control
variable are set to zero.

For space robots, the attitude stabilization is much more
important than position as the specific attitude is required to
guarantee communication and solar energy utilization.
Without loss of generality, the weight coefficients for base
disturbance force and base disturbance torque in the objec-
tive function are set to 0 and 1 correspondingly. The gener-
ated trajectory for stabilizing a moving target is performed in
the gravity-free simulation environment as shown in
Figure 4.

The position and linear velocity trajectories of the tar-
get are shown in Figure 5. The corresponding position and
attitude disturbances of the base of dual-arm space robot
during the manipulation are shown in Figure 6. This result
is compared with the optimization result of minimizing
the detumbling time and the detumbling force at the
end-effector of each manipulator [21]. As shown in
Figure 6, the attitude disturbances of the base resulted
from these two different objective functions are [-0.09,
-0.34, -0.79] and [-0.12, -0.38, -0.85], respectively. It
should be noted that minimizing detumbling force is not
equivalent to minimizing the base disturbance. The trajec-
tories of the tumbling target and corresponding distur-
bance metrics in the above-mentioned two different cases
are shown in Figure 7. It can be seen that the trajectory
which minimizes the base disturbance is different from
the one minimizing detumbling force and consequently
has smaller base disturbance.

Table 2: Mass properties of space robotic system and target.

Base
Redundant manipulator (as shown in Figure 3)

Target
B1 B2 B3 B4 B5 B6 B7

Mass (kg) 500 4 2 6 2 6 2 2 100

iIi (kg.m
2)

iIxx 50 0.012 0.003 0.052 0.003 0.052 0.003 0.003 20
iIyy 50 0.012 0.003 0.052 0.003 0.052 0.003 0.003 20
iIzz 50 0.002 0.0008 0.006 0.0008 0.006 0.0008 0.0008 20
iIxy 0 0 0 0 0 0 0 0 0
iIxz 0 0 0 0 0 0 0 0 0
iIyz 0 0 0 0 0 0 0 0 0

Table 3: The constraints for trajectory optimization.

Description Variables Values

Bound constraint
sini m, radð Þ {0, 0, 0.4, 0, 0, 0; 0.1, 0.05, 0, 0, 0, 0}

sfin m, radð Þ {0, 0, 0.3, 0, 0, 0; 0, 0, 0, 0, 0, 0}

State limit
smin m, radð Þ {-0.6, -0.6, 0.2, -π, -π, -π; -∞, -∞, -∞, -∞, -∞, -∞}

smax m, radð Þ {-0.6, 0.6, 0.6, π, π, π; ∞, ∞, ∞, ∞, ∞, ∞}

Control limit
Fmin N ,N∗mð Þ {-30, -30, -30, -10, -10, -10, -30, -30, -30, -10, -10, -10}

Fmax N ,N∗mð Þ {30, 30, 30, 10, 10, 10, 30, 30, 30, 10, 10, 10}
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In order to show the capability and robustness of the
proposed kinodynamic trajectory optimization method, we
carry out several simulations in which the mass and inertia
ratio between the target and the base of dual-arm space
robot is set to 1 while the uncertainties in mass and inertia
parameters of the target are also considered as shown in
Table 4. The optimal trajectories corresponding to different

mass and inertia of the target are shown in Figure 8, which
can be generated from the proposed kinodynamic trajectory
optimization. However, in order to show the robustness of
this method, dual-arm space robot only adopted the optimal
trajectory (solid line in Figure 8) where the mass and inertia
of the target and base are both set to 100 kg and [20, 20,
20] kg.m2. Considering 0 (solid line), 10% (dashed line),

0 s 7 s 14 s 21 s

Figure 4: Simulation result with trajectory optimization. Four sequentially selected snapshots.
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Figure 5: The velocity and position trajectories of the target during the detumbling manipulation.
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and 20% (dash-dotted line) mass and inertia uncertainties of
the target, the corresponding base disturbance force is
shown in Figure 9. It can be seen that for the same optimal
trajectory of the tumbling target, the smaller mass and iner-
tia parameters will result in a smaller base disturbance.
Therefore, considering the detumbling manipulation of
space target with initial mass and inertia uncertainty, we
can choose the maximum value for mass and inertia in the
optimization to get a conservative detumbling solution and
increase the robustness of the optimal solution.

Furthermore, we consider different initial velocities in
the trajectory optimization where the mass and inertia of
the target and base are both set to 100 kg and [20, 20,
20] kg.m2. For different initial linear velocities [0.20, 0.10.
0.0], [0.22, 0.11, 0.0], and [0.24, 0.12, 0.0], the optimal trajec-
tories generated from the trajectory optimization are shown
in Figure 10(a). The corresponding base disturbance metric
is shown in Figure 10(b). It can be seen that for the same
tumbling target, the larger initial velocity will result in a
larger base disturbance.

4.2. A General Case for Singularity Avoidance. For stabilizing
the tumbling target, a general case is considered in which the
objective function is the same as Section 4.1 and the con-
straints condition is shown in Table 3. However, in order
to verify the singularity avoidance capacity of the trajectory
optimization framework, the initial velocity of the target is
set to [0.15 0.10 0 0.05 0.04 0.03], which may cause the sin-
gularity of dual-arm space robot because of the initial linear
velocity and angular velocity.

The simulation results of trajectory optimization without
singularity avoidance (i.e., w3 = 0) are shown in Figure 11. It
can be seen that the singularity happens around 8 s. The
joint angular velocities under singularity and manipulability
of dual-arm space robot are shown in Figure 12, from which
it can be seen that the singularity happens twice at 5.6 s and
8.4 s, respectively. On the other hand, the simulation results
of trajectory optimization with singularity avoidance are
shown in Figure 13. The optimal trajectories for the velocity
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Figure 7: The trajectory and base disturbance metric corresponding to minimizing the detumbling time and detumbling force (trajectory 1)
and minimizing the detumbling time and the base disturbance (trajectory 2).

Table 4: Parameter uncertainties of target’s model.

Mass and inertia of base (kg, kg.m2) Mass and inertia of target (kg, kg.m2) Parameter uncertainty

Mass: 100; inertia: [20, 20, 20] Mass: 100; inertia: [20, 20, 20] 0

Mass: 100; inertia: [20, 20, 20] Mass: 110; inertia: [22, 22, 22] 10% (mass and inertia)

Mass: 100; inertia: [20, 20, 20] Mass: 120; inertia: [24, 24, 24] 20% (mass and inertia)
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Figure 8: Optimal trajectories corresponding to different masses
and inertias of the target.

11International Journal of Aerospace Engineering



1050 15 20
t (s)

At
tit

ud
e d

ist
ur

ba
nc

e (
°)

Po
sit

io
n 

di
stu

rb
an

ce
 (m

m
)

–30
1050 15 20

t (s)

–200

0

200

400

600

800

1000

1200

1400

–25

–20

–10

–15

–5

0

5

ax
ay
az

px
py
pz

Figure 9: Base disturbances under different mass and inertia uncertainties (solid line: no uncertainty; dashed line: 10% uncertainty; dash-
dotted line: 20% uncertainty).

1050 15 20
t (s)

M
d

0

0.5

0.4

(a) (b)

0.3
0.2

0.25

0.3

0.35

0.4

0.1
0

1

1.5

2

2.5

3

velocity: [0.20, 0.10, 0.0]
velocity: [0.22, 0.11, 0.0]
velocity: [0.24, 0.12, 0.0]

0
0.1

0.2

Y (m)X (m)

Z 
(m

)

0.3
0.4

Figure 10: Optimal trajectories and disturbance metrics corresponding to different initial velocities of the target.

0 s 3 s 6 s 8 s

Singular
configuration

Figure 11: Simulation results of trajectory optimization without singularity avoidance.

12 International Journal of Aerospace Engineering



0 5 10 15 20 25
-0.5

0

0.5

0 5 10 15 20 25
t (s)

-100

-50

0

50

Joint1
Joint2
Joint3
Joint4

Joint5
Joint6
Joint7

(a)

0 5 10 15 20 25
t (s)

0

1

2

3

4

5

6

7

8

M
an

ip
ul

ab
ili

ty

10-3

(b)

Figure 12: Joint angular velocities of each arm (a) and manipulability of dual-arm space robot (b).

0 s 3 s 6 s 8 s

Figure 13: Simulation results of trajectory optimization with singularity avoidance.

10 1550
t (s)

–0.05

0

0.05

0.1

0.15

Li
ne

ar
 v

elo
ci

ty
 (m

/s
)

vx
vy
vz

(a)

10 1550
t (s)

–0.04

–0.02

0

0.02

0.04

0.06

0.08

A
ng

ul
ar

 v
elo

ci
ty

 (r
ad

/s
)

alpha_dot
beta_dot
gamma_dot

(b)
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of the target are shown in Figure 14. The corresponding base
linear and angular velocity are shown in Figure 15. It can be
seen that the dual-arm space will move with the tumbling
target during the detumbling manipulation as the base is
not actively controlled. The corresponding joint angular
velocities and manipulability of dual-arm space robot are
shown in Figure 16. The simulation results show that dual-
arm space robot can keep away from the singular configura-
tion by maximizing the manipulability. Therefore, the singu-
larity avoidance problem of dual-arm space robot can also
be solved in the kinodynamic trajectory optimization
framework.

5. Conclusion

In order to stabilize the tumbling target to a desired pose for
further maintenance and manipulation, the kinodynamic
trajectory optimization method is proposed for postcapture
phase in this paper. Instead of minimizing the detumbling
time and detumbling force, the objective function is formu-
lated to minimize the detumbling time and base disturbance
caused by the dual-arm detumbling force of dual-arm space
robot. To verify the proposed method, several physical sim-
ulations with different initial conditions and objective func-
tions are carried out. The results show that the trajectory
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Figure 15: The linear velocity (a) and angular velocity (b) of the base of dual-arm space robot.
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Figure 16: Joint angular velocities of each arm (a) and manipulability of dual-arm space robot (b).
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generated from the proposed kinodynamic trajectory opti-
mization method which minimizes the base disturbance
force can result in smaller base disturbance than other objec-
tive functions and avoid singularities of dual-arm space
robot. Therefore, the energy of dual-arm space robot can
be saved for further manipulation. The proposed kinody-
namic trajectory optimization method can be used to plan
the trajectory of space robots for on-orbit manipulation.
For implementing the proposed method on real space robot
system, warm start is needed to decrease the computation
time. The multiple capturing phases, including precontact,
contact, and postcontact phases, will be also considered into
the whole trajectory optimization in future work.
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