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Recently, aerodynamic performance analysis has been widely studied due to its importance in aircraft design. Most works adopted
computational fluid dynamics (CFD) simulation to compute the aerodynamic forces, which is time consuming. To reduce the
simulation time, several works proposed to use deep learning model as the surrogate model of CFD simulation. However, the
explainability of deep learning models is poor and has been widely criticized, which limits the further development of deep
learning in aerodynamic performance analysis. In this paper, a novel neural network is proposed to predict the aerodynamic
forces of airfoils. To improve the explainability, the circular padding is proposed to replace traditional zero padding in the
convolutional layers. Moreover, the saliency map of the predicted aerodynamic force on the input airfoil is shown in a more
intuitive way. In this manner, the influence of different parts of airfoil on the final aerodynamic force can be easily analyzed.
Extensive experiments on different data sets show that our work is efficient and effective. Most importantly, these results
explain the potential relationship between the airfoil and the aerodynamic force.

1. Introduction

Airfoil design and optimization have been extensively stud-
ied recently because they are crucial in aircraft design. In this
field, the explainability between airfoils and their aerody-
namic forces is very important because it can provide the
design experience and extract the potential design rules.
However, most shape design and optimization methods
[1–3] did not consider the explainability. Several methods
[4–7] tried to study the relationship from a large number
of airfoils and the corresponding aerodynamic forces
through statistical methods. Nevertheless, they can only get
the general optimization direction and cannot guide
researchers on how to adjust a specific airfoil to get better
aerodynamic performance. Moreover, these methods usually
assumed that there is a linear relationship between the input
and output, which leads to some nonlinear relationships that
cannot be expressed and further adversely affects the accu-
racy of optimization design.

With the rapid development of deep learning technol-
ogy, some researchers used deep learning technology to

improve efficiency [8–16]. These methods usually predict
the aerodynamic forces using deep learning models and then
analyze the sensitivity between the input airfoils and the
aerodynamic forces. By observation, we find some issues still
exist with these methods.

First, these approaches adopted the airfoil shape as their
input, but their shape representations were not accurate
enough. Some methods used images to represent the airfoils
[8–10]. In this manner, they translated the aerodynamic
force prediction task to a computer vision task, so they can
make full use of the convolutional neural network (CNN)
achievements in the field of computer vision. However, the
image representation of the airfoil will lead to several prob-
lems: (i) when the resolution of airfoil images is small, the
airfoil shape cannot be accurately described, which will bring
difficulties for feature extraction and further decrease the
accuracy of aerodynamic performance prediction; (ii) there
are lots of blank pixels in the airfoil images, which will lead
to a lot of useless calculations. In fact, the image representa-
tion is similar to the uniform Cartesian grid, and the coordi-
nate of airfoil is similar to the body-fitted grid. The body-
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fitted grid can obtain more accurate results than the Carte-
sian grid in computational fluid dynamics (CFD) simulation.
Therefore, we use coordinate representation for predicting
aerodynamic forces instead of image representation. There
are several works [16–21] that adopted parameterization
methods like class-shape function transformation (CST)
[22], orthogonal basis function method [23], and the
Hicks-Henne [24] to encode the airfoils. These methods
can reduce the input dimension and alleviate the curse of
dimensionality in optimization problems, but they cannot
distinguish between airfoils with small deformations due to
the information loss after dimensionality reduction. Several
works took the space coordinates as the inputs. They fixed
the X coordinate and only used Y coordinate to represent
the airfoils [9, 12]. However, for different airfoils, the parts
with sharp gradient changes may be different, so using only
Y coordinate and keeping the X coordinate unchanged is
difficult to describe these different parts accurately.

Second, the explainability of the existing methods is poor.
Most of the related works did not consider explainability at all
and only regard the deep learning method as a surrogate
model of the CFD simulation. Some works regarded the opti-
mization problem as the searching problem [18–20] and
searched the globally optimal airfoil shape from a huge design
space, which ignored the explainability between input and
output. There is not too much information about the optimi-
zation problem itself (only relying on the information of the
objective function sampling) to design the algorithm, so the
explainability is poor. There are several works that tried to
explain the mechanism of the deep learning models in com-
puter vision area [14, 15], but thesemethods cannot be directly
transferred into the CFD field.

Third, most methods did not consider the physical char-
acteristics [8–10]. Some methods directly converted the
input coordinates as images, which discarded the topology
information of the original data. Other methods used real
coordinates to represent the input shape, but they ignored
the boundary conditions. In the CFD simulation, the points
near the boundary of the shape need to be specially proc-
essed, so the intelligent methods also need to consider the
boundary conditions carefully.

To address the above issues, we design a convolutional
neural network to predict the aerodynamic forces and pro-
vide a novel way to optimize the airfoil shape. In our work,
we take the XY coordinates of the airfoils as the inputs,
which can keep the topology of the airfoils and capture the
gradient change of the shape. To keep the boundary condi-
tions and improve the explainability of the model, we use
the circular padding to replace the zero padding in convolu-
tional layers. Finally, we design the input-output explainable
module based on class activation mapping (CAM), which
explains the influence between the airfoil shape and the
aerodynamic forces. In this manner, we can present the sig-
nificance of aerodynamic influence on airfoil coordinates
more intuitively. Moreover, the explainable module can help
us to optimize the airfoil at the point level, which means we
can change the points of an airfoil and observe how this
change influences the aerodynamic performance of the air-
foil immediately.

Experimental results show that this work can predict
aerodynamic forces efficiently, visualize the saliency more
directly, and optimize the shape at the coordinate level with
different inflow conditions.

The contributions of this paper are summarized as
follows:

(i) A convolutional neural network is designed, which
can be easily visualized and obtain aerodynamic
forces efficiently and accurately

(ii) A more reasonable explanation for why circular
padding mode is better than zero padding mode
by using kinetic analysis is given

(iii) The input-output explainability module based on
class activation mapping is designed, which can
explain the local mapping relationships more
directly from only integral quantities and may help
researchers to further optimize the airfoil shape

2. Related Work

Deep learning technology has been widely applied to solve
CFD problems due to its powerful learning ability, through
solving the Navier-Stokes (N-S) equations [25], predicting
flow field [26], inverse designing [27], identifying flow field
[28], modifying turbulence models [29], improving flow
field resolution [30], generating mesh [31], shape optimiza-
tion [32], and so on [33–35]. In this section, we will intro-
duce the related works that applied deep learning in the
prediction of aerodynamic performance and aircraft design
optimization. These related works can be roughly grouped
into three parts.

The first part is the prediction of aerodynamic parame-
ters by deep learning methods. Zhang et al. directly used
convolutional neural network (CNN) to predict the aerody-
namic parameters of airfoil and output the aerodynamic
parameters by taking the image of airfoil as input [8]. Sekar
et al. proposed a convolutional neural network method to
encode the airfoil image. Then, the encoded airfoil, working
condition, and position coordinates are input into the multi-
layer perceptron to predict the flow results at current coordi-
nates [26]. However, as mentioned before, when the
resolution of airfoil images is too small, the airfoil shape can-
not be accurately described, as shown in Figure 1. Wu et al.
adopted the generative adversarial networks (GANs) to pre-
dict the flow field [17, 36]. Some works tried to add the
boundary conditions into their models. Thuerey et al. pro-
posed the method of using U-net to predict the flow field.
The working conditions, boundary conditions, and airfoil
are regarded as different channels of the input image [37].
To adapt different kinds of grids, Kashefi et al. proposed a
deep learning framework based on point cloud to predict
the flow field [13].

The second part is the inverse design. When researchers
have a clear requirement on the aerodynamic force distribu-
tion, they can design models to deduce the shape inversely
by specifying the aerodynamic force distribution. Sekar
et al. considered images of the pressure distribution on
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airfoil as the inputs of their proposed CNN models and pre-
dicted the coordinates of the airfoils. Wang et al. used the
conditional autoencoder as the generator of the GANs and
took the pressure and surface Mach number distributions
on airfoil as the input to generate the corresponding airfoil
shape [12].

The last part is the intelligent optimization methods.
These works include traditional intelligent optimization
algorithms and data-driven optimization algorithms. In the
traditional algorithms, the best shape usually is searched
from a big shape space whose aerodynamic forces meet the
requirement. To reduce the search space, some dimension
reduction methods are often adopted to reduce the input size
[16]. The multiobjective optimization method for high-lift
airfoils is proposed [18]. On account of this idea, a surrogate
model based on radial basis function is used to determine
the location of new online test data [19, 20]. Tao and Sun
proposed to use a multilayer perceptron (MLP) as surrogate
model to carry out the robust optimization of aerodynamic
shape [21]. Data-driven optimization algorithms consist of
two categories: statistical methods and machine-learning
methods. Liem et al. used probability density diagram of
aerodynamic parameters to reduce the drag of airfoil [4].
Achour et al. divided the distribution of lift coefficient (Cl)
and drag coefficient (Cd) of airfoil into four parts and used
conditional autoencoder to predict the airfoil which meets
the requirements of aerodynamic parameters [38]. Proper
orthogonal decomposition (POD) can reduce data dimen-
sion and improve computational efficiency [5–7]. Li et al.
proposed a method to express the constraints of data-
driven optimization of airfoil. By using Gaussian mixture
model for analysis, the constraints of optimization are well
expressed [39]. They also parameterized the airfoil by using
the geometric filtering method based on deep learning [32].
Jin et al. proposed a data-driven evolutionary algorithm,
which used data to initialize the surrogate model and then
optimize airfoil online [40]. Li and Zhang take advantage
of the strong nonlinear fitting ability of neural network to

initialize surrogate model [41]. Wen et al. proposed a new
initialization method, which used genetic algorithm to ini-
tialize the neural network as surrogate model and optimize
the turbine airfoil [42].

Airfoil with small deformation Image representation CST reconstruction representation

Figure 1: Airfoil with small deformation, its image representation, and CST reconstruction representation.
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Figure 2: Basic skeleton of convolutional neural network.

Table 1: The architectures of the proposed neural network.

CNN

Input 160 × 2

3 × 1 conv. 32 swish
3 × 1 conv. 32 swish
3 × 1 conv. 32 swish

2 × 1 conv. 32 stride (2)

3 × 1 conv. 64 swish
3 × 1 conv. 64 swish
3 × 1 conv. 64 swish

2 × 1 conv. 32 stride (2)

Full connected 64 swish

Linear 3

Airfoil output 3 (Cl, Cd, Cl/Cd)
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Figure 3: The airfoil curve and the input coordinate vector.
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Overall, deep learning has been widely applied in aero-
dynamic parameter prediction and shape optimization.
Although these methods can achieve good results, they still
have some problems, for example, the shape representation,
the explainability, and the physical characteristics.

3. Our Approach

3.1. Network Structure. In our work, we design a convolu-
tional neural network to replace the equation solver in the
CFD method and to predict the aerodynamic coefficients
directly. The basic network structure is depicted in
Figure 2, and the detail of each layer is given in Table 1.
The input of this neural network is XY coordinates of the
airfoil while the output is Cl and Cd. The first dimension
of the kernel size of our network is set to 3 according to
experience, and the second dimension is set to 1 because
we try to maintain the spatial relationship of XY coordinates.
In our network, swish activation function [43] is used, con-
vergence criteria commonly used in CFD, and mean relative
error is used as loss function. For explainability, bias will not

be used for the final linear layer. Adam optimizer was
selected with a learning rate of 3e − 4, and tenfold cross-
validation was used.

Physical domain grid Computational domain grid 

0P

1P

1P

0P

0 'P

Figure 4: The physical grid (a) and computational grid (b). The corresponding boundary edges of two domains are indicated by the same
color.
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Figure 5: (a) Zero padding and its receptive field. (b) Circular padding and their convolutional results.
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Loss = prediction‐ground truth
ground truth

����
����: ð1Þ

In our network, zero padding is replaced by the circular
padding in each convolutional layer. The circular padding
will be introduced in the following.

3.2. Circular Padding. The airfoil shape is a closure curve in
physical space. To capture the features of the curve, we con-
sider the original coordinates as the inputs. However, this
will lead to a problem: two neighbor points in the airfoil
curve may not neighbor in the computational domain. For
example, in Figure 3, P0, P1, and PN are neighbors at the tail
of an airfoil, but when we use coordinate vector to represent
the airfoil, P0 becomes the first point of the input vector and
PN becomes the last point of the input vector. In this man-

ner, neighbors in physical space are no longer neighbors in
the input vector. Zero padding is the most common used
padding mode. It will pad 0 around the boundary points,
which is different from the physical properties of the flow
field. To keep the neighbor constraint, we use the circular
padding instead of the zero padding in the first convolu-
tional layer.
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Figure 7: Feature maps of several convolutional layers with different padding modes.

First convolutional layer Third convolutional layer Fourth convolutional layer Fifth convolutional layer

Figure 8: Feature maps of different convolutional layers. All these layers use circular padding.

Table 2: Comparison of prediction performance.

Method Case 1 MRE Case 2 MRE

CNN (point Z-padding) 1.78% 1.78%

CNN (point C-padding) 1.43% 1.64%

CNN (image 32 × 32) 2.95% 2.41%

CNN (image 24 × 24) 2.96% 2.51%

CST-RBF 1.56% 2.81%

5International Journal of Aerospace Engineering



In other convolutional layers, we also need to keep this
property. The flow field in the physical space is usually
described as physical grids with different variables like veloc-
ity, pressure, and temperature. The physical grid is usually a
nonuniform grid, and there is a physical distance value
between two grid points. When researchers try to solve the
physical equations, they must transform the nonuniform
physical grid into the uniform grid in the computational
space, as depicted in Figure 4. In Figure 4, the P0 and P1
are neighbors in the physical grid but not neighbors in the
computational grid. In the CFD simulation, to keep the
neighbor relationship, they copy the boundary points to
the bottom of the computational grid. In our network, we
can use circular padding to solve the problem.

The zero padding, circular padding, and their corre-
sponding receptive fields are shown in Figure 5. The circular
padding uses the left points to pad the right side and the
right points to pad the left side. As a contrary, the zero pad-
ding only pad zeros at both sides. It can be seen that the cir-
cular padding mode can keep the neighbor relationship in
the physical space.

Moreover, we find the circular padding contains a more
important physical restriction. The forward propagation of
neural network is similar to explicit scheme to solve differen-
tial equation [44]. Weinan proposed that each layer passed
forward by the neural network can be regarded as a push
forward of the numerical discretization of a dynamic system
in time, and the training neural network can be regarded as
finding the corresponding parameter to solve this control
problem [45]. Lu et al. regard the forward process of neural
network as the explicit scheme time advances of numerical
solution of differential equations and used the relevant theo-
ries of numerical analysis to design the structure of neural
network [46]. Zhang and Schaeffer analyzed the stability of
neural network by using the relevant theory of numerical
analysis [47]. Based on the above point of view, we use the
relevant theories of numerical analysis to adjust the structure

of neural network. In the CFD simulation, to make sure the
convergence of explicit difference scheme of hyperbolic
equation, we must guarantee that the Courant number is a
finite number. The Courant number is used to evaluate the
time-step requirements of a transient simulation for a given
grid size and flow velocity. It indicates how much the infor-
mation travels across a computational grid cell in a unit of
time. The CFL number (Courant number) can be computed
using

CFL = cj j Δt
Δx

, ð2Þ

where c indicates the flow velocity, Δt is a representative
time step of the simulation, and Δx is the characteristic size
of the grid. In a CFD simulation, we usually use the Courant
number to get the stability and convergency. The stability
requirements of time-integration schemes can be defined
using the Courant–Friedrichs–Lewy (CFL) condition [48],
and it is expressed in terms of the Courant number as

CFL = cj j Δt
Δx

< Cmax, ð3Þ

where Cmax varies depending on the type of time integration
scheme, but it is generally less than or equal to 1.0.

To guarantee the Courant number is less than Cmax, Δt
and Δx need to be carefully selected in the CFD simulation.
The proposed network is a surrogate model of the CFD sim-
ulation, so we also need to constrain these properties in our
network. In the proposed network, the left and right side
points can be regarded as the boundary points in the CFD
simulation. When the zero padding is adopted in the net-
work, the input will pad 0 on its boundary side. It is equiva-
lent to set the xi−1 to be zero in the CFD simulation, which is
shown in Figure 6. When xi−1 is equal to 0, the Δx = 0; then,
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the area size enclosed by the dotted line cannot contains the
blue area, which indicates that the domain of zero padding
cannot contain the domain of difference equation. The cir-
cular padding can meet the CFL restriction in all convolu-
tion layers.

The airfoil shape curve is continuous and closed. The
circular padding can keep these properties, while the zero
padding cannot. Some feature maps of convolutional layers
using circular padding and zero padding are shown in
Figure 7. It can be seen from Figure 7 that the circular pad-
ding can make sure the output of each layer is closed and

continuous because the discrete convolution of continuous
function is continuous.

From Figure 7, we can conclude that circular padding
can make the output of each layer a closed curve and
smoother. From Figure 8, we can conclude that low layers
extract basic features while high layers can extract more
abstract features.

3.3. Gradient-Weighted Features. The features extracted by
fully-connected layers will lose some spatial information,
while the features extracted by convolutional layers contain
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sufficient spatial and semantic information. Features from
lower layers to higher layers become more discriminative
and abstract. Therefore, we use the features of the last con-
volutional layer to analyze the relationship between inputs
and outputs. The partial derivative of output to feature maps
of X coordinate of the last layer can be computed using

∂Ot

∂Ax
j
i

, ð4Þ

∂Ot

∂Ay
j
i

: ð5Þ

In Equations (4) and (5), O is the output of the neural
network, t means the index of output, Ax is the feature
map of X coordinate of the last pooling layer, Ay is the fea-
ture map of Y coordinate of the last pooling layer, and i, j
represent the i-th point of the j-th channel. After obtaining
the partial derivative, we compute an average value for each
feature map after the same convolution kernel using Equa-
tion (6) and get αt j which represent the importance of differ-
ent channels of feature map.

αt j =
1
2N〠

i

∂Ot

∂Ax
j
i

+ ∂Ot

∂Ay
j
i

 !
, ð6Þ

Ht =〠
j

αt jA
j, ð7Þ

To study both positive and negative effects of output on
input, we sum the product of αtj and Aj and get one saliency

map, as described in Equation (7). In this manner, the rela-
tionship between the output and the last convolution layer is
obtained. As mentioned above, the last convolution layer
keeps the spatial information of the input, so we can get
the relationship between the input and output by resizing
the Ht to the input size. Especially when Hx

t and Hy
t are

needed to be summed when representing the saliency map
because the X and Y coordinates together represent one
position.

4. Experimental Results

4.1. Experimental Environment and Data Sets. The platform
used in this work is an artificial intelligent server, which
includes two Intel Xeon CPUs with a main frequency of
2.2GHz and NVIDIA® Tesla® V100 GPU.

The proposed method is evaluated using two cases. The
first one is a 2D airfoil data set at low Mach number. It con-
tains 2190 NACA 4-digit airfoils generated from XFOIL; the
first digit is from 0 to 9, the second digit is from 0 to 9, and
last two digits is from 03 to 27. The working conditions are

Table 3: Comparison of prediction performance under a small
amount of data.

Method Case 1 MRE Case 2 MRE

CNN (point C-padding) 4.65% 4.57%

CNN (image 64 × 64) 10.0% 5.85%

CNN (image 32 × 32) 9.03% 5.57%

CNN (image 24 × 24) 7.75% 6.72%

CST-RBF 5.75% 5.12%
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Re = 1E6, Ma = 0:2, and angle of attack ðAOAÞ = 1 ° . The
aerodynamic forces are computed by XFOIL. 2190 airfoils
are randomly divided into two parts: 1978 airfoils for train-
ing and 212 for testing. The second case is a high Mach
number 2D airfoil data set. It contains 1504 airfoils down-
loaded from the UIUC airfoil data site. The working condi-
tions are viscosity = 1:983E − 5 kg/ms, Ma = 1:2, and
AOA = 3 ° . The results are calculated by Fluent with SST k
-omega model; some classical airfoils are used to validate
their results for the CFD simulation in Fluent such as
NACA0012 and Rae2822. The results show that our CFD
simulation is acceptable within the error range limit of error.
These airfoils are randomly divided into two parts: 1354 air-
foils for training and 150 airfoils for testing.

All airfoils are represented by 160 2D-coordinate points.
To show the explainable visualization, the labels consist only
of Cl, CD, Cl/Cd, excluding the flow field.

4.2. Prediction Precision of Aerodynamic Forces. In this part,
we evaluate the precision of the proposed method and check
the effect of the circular padding. In addition, we compare
the precision of the proposed network with CNN using
images. Experiments on a small number of samples will be
given in Appendix A.

The result of CST-RBF is the best model in CST param-
eters from 4 to 20 and K-means clustering center of RBF
from 1 to number of train data.

It can be concluded from Table 2 that on both two cases,
(i) networks using the circular padding can obtain smaller
mean relative error (MRE) on testing set than networks
using zero padding. (ii) Compared with CST-RBF, CNN
(Point C-padding) is more accurate. (iii) CNN using images
as input is inferior in accuracy than CNN using coordinates
as input.

4.3. Neuron Visualization. We change the output of neurons
slightly; then, get the input airfoil corresponding to the out-
put reversely and observe the difference of the airfoil before
and after the change, so as to judge the influence of the neu-

ron output change on the input. In specific, we compute the
derivative of specific neuron output to original input (Iold),
and then, we enlarge the output and use Equation (8) to
obtain the corresponding new airfoil. In Equation (8), I is
input, α means the step size, and S is output of the specific
neuron.

Inew = Iold + α
∂S
∂Iold

: ð8Þ

As can be seen from Figures 9 and 10, it is similar to neu-
ral network for image; low-level features are easy to under-
stand while high-level features are abstract.

When zero padding is used, the adjustments will be dis-
continuous and it can be seen that the discontinuous pass
with forward layer through the receptive field in Figure 11.

4.4. Saliency Map. Saliency map is a map which indicates the
contribution of different components to the prediction
results in other words, which components are responsible
for the result. In our case, the saliency map is not equal to
the aerodynamic force at each point but a contribution of
each point to aerodynamic force in data distribution. In
order to show the relationship between input and output
more intuitively, we first calculate the contribution degree
of output to the last convolution layer through Equation
(6) and get the contribution graph. After that, we resize the
contribution graph to the input size and directly display it
on the airfoil, as shown in Figure 12. The first three columns
in Figure 12 show the contributions of different airfoil posi-
tions to Cl, Cd, and Cl/Cd, and the last column gives the true
pressure coefficient (Cp) distribution on airfoil obtained by
XFOIL or Fluent. The experiments on the saliency map of
Cp will be given in Appendix B.

From these saliency maps, we can directly observe that
which positions of the airfoil contribute more to the lift coef-
ficient, drag coefficient, and lift-drag ratio. In case 1, Cp dis-
tribution shows that the lift mainly came from the front half
of the airfoil, which shows that the saliency map is
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Figure 13: Cp prediction on NACA0012 airfoil.
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reasonable, while in case 2, the lift came from the whole air-
foil relatively homogeneous, and saliency map of Cl has little
change on x-axis. The integral quantities like Cl, Cd, and Cl/
Cd can be expressed on the shape.

5. Conclusion

In this paper, we propose a novel neural network to predict
the aerodynamic forces of airfoils, which uses the circular
padding instead of traditional zero padding in convolutional

layers. Moreover, we show the saliency map of the predicted
aerodynamic force on the input airfoils, so the influence of
different airfoil parts on the aerodynamic force can be
described in a more intuitive way. By using saliency map,
this work intuitively shows that which position of the airfoil
will have what kind of impact on the lift and drag from only
integral quantity. Extensive experiments on different data
sets show that our network is efficient and effective. Most
importantly, our method may help researchers to further
optimize the airfoil shapes. There are some limitations in
our work. Firstly, we do not research on the aerodynamic
forces of three-dimensional airfoils and only focus on the
2D airfoils, which are the cross-sections of real airfoils; sec-
ondly, in this work, we train different neural networks for
different data sets; it is worth to study how to obtain an inte-
grated model for different data sets. In the future, we will
focus on the prediction of aerodynamic forces of three-
dimensional airfoils and the integrated neural network.

Appendix

A. Experiments with a small number of samples

Performance of neural network under a small amount of
data.

In cases 1 and 2, 10% of the data is used as training data
(222 for case 1 and 150 for case 2), and the rest is used as test
data.

In Table 3, result of CST-RBF is the best model in CST
parameters from 4 to 20 and K-means clustering center of
RBF from 1 to number of train data.

B. Saliency map of Cp

Similar neural network was used to predict Cp on both two
cases. The prediction of Cp on NACA0012 in each case is
shown in Figure 13.

The Saliency map on point ABCD which represent the
front and back quarter chord length is shown in Figure 14.
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