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Low earth orbit (LEO) satellite network can provide services to users anywhere on the earth. However, the high-speed mobility of
satellites leads to a dynamic environment, which brings challenges for handover and network performance optimization,
especially in the scenario of multiuser using the networks meanwhile. In this paper, we exploit multiple directed graphs to
model the handover process for multiuser. The nodes in a graph represent the satellites that the corresponding user may
choose to access. The edges represent the possible handovers between adjacent timestamps. The path from the start node to
the end node in each graph is the handover strategy of the corresponding user, and the path length is the reward that the user
can get. Therefore, the handover strategy problem is transformed into a path planning problem. To minimize the average
handover times, maximize the average received power, and minimize the average number of conflicts, we propose a novel
handover strategy based on multiobjective multiagent path finding (MOMAPF). The simulated handover experiment on
Starlink successfully derives the Pareto-optimal solution set, which corroborates the effectiveness of the proposed handover
strategy. The results also show that the proposed strategy has better comprehensive performance than other strategies.

1. Introduction

In recent years, especially after SpaceX’s Starlink plan is bring-
ing into effect, the satellite-terrestrial integrated networks
(STINs) have become a major research hot spot. As an impor-
tant part of STIN, satellites can ignore the terrain and cover
the whole earth’s surface, providing communication connec-
tion for satellite communication equipment anywhere on the
ground. Many studies focus on STIN’s key technologies in
various situations, including the association strategy between
users and base stations [1, 2], gateway placement strategy [3,
4], nonorthogonal multiple access technology [5], beamform-
ing design [6, 7], and secure transmission technology [8]. In
these studies, the user terminals need to be associated with
the terrestrial base stations (BSs), and the satellites are
exploited to establish backhaul links with BSs to improve the
network capacity (i.e., the satellites act as backhaul relays).
This network structure is not suitable for user terminal com-
munication in case of lack of ground communication facilities.
In order to ensure the communication between user terminals
in places without terrestrial BSs, satellites need to be exploited

as BSs to establish communication links with terrestrial
terminals.

Compared with geostationary orbit (GEO) and medium
earth orbit (MEO), low earth orbit (LEO) has the lowest
orbit altitude (≤2000 km). Therefore, LEO satellite networks
have great advantages in propagation delay and energy con-
sumption of satellite-to-ground links. It can meet the needs
of real-time communication of ground user terminals. Now-
adays, many institutions have explored into space and put
forward plans to build their own LEO constellation. In addi-
tion to SpaceX mentioned above, Kuiper and Telesat are also
included [9]. However, the lower the orbital altitude of a sat-
ellite brings, the smaller the coverage area of a single satellite
and the faster the speed of the satellite. In order to achieve
full coverage of the ground, a LEO system often contains
thousands of satellites, forming a huge constellation. As a
result, at a certain time, a user on the ground is usually
covered by multiple satellites at the same time, which brings
the issue of access point selection. In addition, according to
3GPP document [10], the moving speed of a LEO of altitude
600 km is 7.56 km/s, which is much higher than the rotation
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speed of the earth and the moving speed of ground users.
This huge speed difference between satellite and ground
users causes the access points within the view range of the
ground users to change rapidly. The application of terrestrial
networks’ strongest signal selection strategy in LEO satellite
network inevitably results in frequent handover of satellite-
to-ground links. Therefore, the dynamic and reasonable
selection of satellite access points (i.e., handover strategy)
for ground terminals needs to be studied in depth.

Many studies have focused on the access and handover
strategy of LEO networks. Chowdhury et al. [11] summarized
the existing satellite handover schemes comprehensively and
divided them into network-layer handover and link-layer
handover. The link-layer handover is then subdivided into
intersatellite link (ISL) handover, spotbeam handover, and sat-
ellite handover. The network-layer handover is subdivided
according to connection transfer strategies. From the perspec-
tive of methods, many handover strategies that consider vari-
ous performance metrics have been proposed. Dai et al. [12]
divided the throughput factor and the load balancing factor
to get a new factor and then used PSO algorithm to maximize
this factor to get the handover strategy. Liu et al. [13] proposed
a load balanced satellite handover strategy, which also employs
a power allocation optimization algorithm to improve the sys-
tem capacity. Lei et al. [14] developed a handover strategy for
aircraft based on user dynamic preferences. Cao et al. [15] pro-
posed a UE-driven deep reinforcement learning- (DRL-) based
method for random mobile ground terminals to maximize the
average system throughput andmeanwhile minimize the num-
ber of handovers in nonterrestrial networks. He et al. [16]
exploited DRL to derive the handover strategy for multiuser
to minimize average handover under the satellite load con-
straints. Considering caching capacity, remaining idle chan-
nels, and remaining service time, Leng et al. [17] proposed a
DRL-based intelligent handover strategy to enhance the perfor-
mance of the system. Xu et al. [18] developed a DRL-based
LEO handover mechanism, which can maximize the QoE of
mobile terminals by predicting the handover factor. Wang
et al. [19] defined three metrics to represent four handover cri-
teria and exploited DRL to optimize the sum of them. In addi-
tion, several studies use graph-based methods to investigate the
solution of handover strategy. Wu et al. [20] exploited a bipar-
tite graph and potential game to derive the handover strategy
for multiuser to minimize the average satellite handover times
and balance the load of software-defined satellite network. Feng
et al. [21] also proposed a bipartite graph-based handover strat-
egy that uses Kuhn-Munkres algorithm to match ground sta-
tions and satellites to maximize communication quality and
balance the load of satellites.Wu et al. [22] modeled the satellite
handover process based on graphs and then selected the short-
est path algorithm to derive optimal handover strategy for a
user in satellite networks. Hu et al. [23] utilized the time-
expanded graph to predict handover for mobile users to avoid
the handover prediction failure. Dai et al. [24] proposed a
handover scheme based on dynamic space-time graph and
used Floyd algorithm to obtain the optimal solution.

However, most of the above handover strategies use the
weighting method to combine multiple attributes into one
and then optimize it. In practice, it is intractable for decision

makers to weigh the relative importance of various attri-
butes, especially when there are three or more attributes.
Besides, the dimensions of various attributes are not uni-
form, and the weighting method may lead to poor robust-
ness. The emergence of Pareto-based multiobjective
optimization such as NSGAII [25] and NSGAIII [26] solves
these problems. In the LEO satellite networks, they can
obtain a Pareto-optimal solution set, including multiple
handover strategies for decision makers to choose according
to the types of users. Even though there exist few handover
strategies based on Pareto-based multiobjective optimization
that avoid the difficulty of setting weights, the attributes they
consider are relatively simple. In practice, a certain attribute
of a user is often affected by other users’ strategies, and this
attribute does not appear in these handover strategies. Find-
ing a handover strategy for multiuser with Pareto-based
multiobjective optimization and considering the impact
between users in the objective functions is a challenge.

To solve this problem, in this paper, we model the hand-
over process of multiuser during a certain period as multiple
directed graphs and obtain the handover strategy of all users
through multiagent path finding (MAPF). To consider mul-
tiple attributes, we set the weight values of the edges in the
multiple directed graph model as a multivariate array. Sub-
sequently, we qualitatively analyze the impact of users
choosing the same satellite during handover and define this
situation as user conflict, which is represented as path con-
flict in the proposed multiple directed graph model. Finally,
in order to avoid setting the weights, we propose a multiob-
jective multiagent path planning algorithm based on conflict
reduction (CR-MOMAPF), which successfully combines
Pareto-based multiobjective optimization with MAPF to
optimize the received signal strength, handover times, and
conflict times. To the best of our knowledge, this study is
the first to use Pareto-based multiobjective optimization in
a multiuser LEO satellite network to optimize three criteri-
ons for handover between ground users and satellites. The
main contributions of this article are as follows:

(i) We model the handover process over a period for
multiuser based on multiple directed graphs and
formulate the optimization problem. We further
propose a new parameter, called the number of con-
flicts between users. Users that access or hand over
to the same satellite at the same time may have con-
flicts, which can affect some network performances.
The handover optimization problem is then trans-
formed into MOMAPF problem. We aim to mini-
mize the average handover times, maximize the
average signal reception strength, and minimize
the average number of conflicts between users

(ii) The CR-MOMAPF is proposed to combine Pareto-
based multiobjective with MAPF. Unlike previous
graph-based handover strategies, CR-MOMAPF
avoids setting the weights of each attribute to
perform multiobjective optimization and considers
the influence between nodes in different graphs. In
addition, this algorithm can bypass the curse of
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dimensionality and obtain multiple solutions for
decision makers to choose

(iii) We build a huge LEO constellation as the scene and
select some cities as ground users. Then, we use the
proposed algorithm to find the Pareto-optimal solu-
tion set for these users in the built scene and analyze
the influence of user density on Pareto front. We
count the handover success rate and handover delay
to show the impact of the number of user conflicts
on performance. Compared with some common
handover strategies, the results obtained by CR-
MOMAPF have better comprehensive performance
and successfully prove the effectiveness of the
algorithm

The rest of this paper is organized as follows. Section 2
introduces the system model and formulates the problem.
In Section 3, a handover strategy based on multiagent multi-
objective path finding that can reduce the number of con-
flicts is proposed. Then, the simulation results are provided
in Section 4. Finally, this paper is concluded in Section 5.

2. System Model and Problem Formulation

2.1. System Model. As shown in Figure 1, a LEO satellite net-
work is composed of M satellites to serve N users in a spe-
cific time period which is divided into T timestamps. The
satellites are indexed by J = 1,⋯,M, and the users which
are static on the ground are indexed by i = 1,⋯,N . The
timestamps are indexed by t = 1,⋯, T . We assume that the
topology and coverage areas of satellites remain unchanged
during each timestamp. The set of satellites, the set of users,
and the set of timestamps can be denoted by M, N , and T ,
respectively. Significantly, in a single time stamp, a user can
only select one satellite for access, and one satellite can pro-
vide services to multiple users.

2.1.1. Channel Model. Antenna gain and misalignment, trans-
mission loss, and shadowing multipath fading are considered
in this model. We assume that the antenna gains of uplink
and downlink are the same. All satellites and users are
equipped with parabolic antennas. The gain is given by [27]

Gr =Gt =
η

πDf
c

� �2
satellites,

0 ground users,

8><
>: ð1Þ

where η represents the aperture efficiency of the antenna, D is
the diameter of the antenna, and c and f represent the speed of
light and the transmission signal frequency, respectively.

Antenna misalignment can cause the power loss which is
given by [27]

L = 0:00245
θDf
c

� �
, ð2Þ

where θ represents the angle between the antenna main

reception direction and the main beam direction of the
incoming signal.

Transmission loss includes many parts. In this model, we
only consider free space loss, which is the main part of trans-
mission loss. The free space loss is given by

FSL = 32:4 + 20 lg dtij + 20 lg f , ð3Þ

where dtij is the distance between satellite j and user i at t and
f is the frequency of the signal.

According to the above formula and the transmitting
power Pt j

of satellite j, the receiving power Prij
without mul-

tipath fading and shadowing of user i is expressed as

Prij
= Pt j

+Gtj
+Gri

− L − FSL: ð4Þ

Considering shadowing and multipath fading, we exploit
the shadowed-Rician channel model in [28]. The shadowing
effect is caused by obstacles between transmitter and
receiver. The slowly varying local mean power Qij is gener-
ally exploited to describe the characteristics of this effect.
The probability density function (PDF) of Qij is described
as log-normal and given by

f Qij
Qij

À Á
=

1ffiffiffiffiffiffi
2π

p
sQij

exp
− ln Qij − ln Prij

� �2
2s2

2
64

3
75, ð5Þ

where s is the shadowing spread.
Given the local mean power Qij, the conditional PDF of

the signal power Pij in Rician fading channel is described as

f Pij
Pij Qij

��À Á
=
Kr + 1
Qij

exp −Kr −
Kr + 1ð ÞPij

Qij

" #
,

I0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Kr Kr + 1ð ÞPij

Qij

s !
,

ð6Þ

where I0ð:Þ is the first kind of zeroth-order modified Bessel
function. Kr is Rice factor, which represents the ratio of
direct component to scattered component in the signal of
the receiver. The cumulative distribution function (CDF)
of Pij is

FPij
pð Þ =

ðp
−∞

ð+∞
−∞

f Pij
Pij Qij

��À Á
f Qij

Qij

À Á
dQijdPij: ð7Þ

The received signal power Pij follows cumulative distri-
bution Fpij

ðpÞ. So the signal strength received by user i from

satellite j at time t is given by

p i, j, tð Þ =
F−1
Pij

yð Þ user i is coverd by satellite j,

0 otherwise:

(
ð8Þ
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where F−1
Pij
ðpÞ is the inverse cumulative distribution function

of Pij and y is a random variable subject to standard uniform
distribution, i.e., y ~U½0, 1�.

2.1.2. Multiple DirectedGraphModel.As is shown in Figure 2, a
directed graph is created for each user to carry out path plan-
ning, so as to obtain the handover strategy. Graphs with differ-
ent colors belong to different users. The nodes in each graph
represent the state of the corresponding user. Nodes s0i,null and
sT+1i,null represent that the user i is not connected to any satellite
and is in idle state. Within a timestamp, user i selects one of
the nearest Ki satellites for access. The remaining node sti,k is
the index of satellite and indicates that the user i is in the state
of connecting to the kth nearest satellite sti,k within the tth time-
stamp. So, a satellite in different timestamps or in different
graphs is regarded as different nodes in the graphmodel. There
is an edge between every two nodes in the adjacent timestamp
and no edge between any two nodes in the same timestamp.
The edge indicates that the user has a state transition relation-
ship between two timestamps, and its weight is the reward that
the user can get after state transition. In this model, we can set
weights representing variousmeanings for each edge and create
an abstract agent i for user i to find the path from node s0i,null
(i.e., the start location) to node sT+1i,null (i.e., the final destination).
The location of the agent in each timestamp is the state of the
corresponding user in the timestamp. By using the path plan-
ning algorithm, we can get the optimal path of the agent, which
represents the optimal satellite selection strategy of the corre-
sponding user during the whole time period.

Through the above directed graph model, the multiuser
handover strategy problem is transformed into MOMAPF
problem. Agent imakes path planning on the directed graph
Gi = ðVi, EiÞ, where Vi represents the vertex set and Ei

denotes the edge set. An edge between two vertices sti,u, st+1i,v
∈ Vi is denoted as ðsti,u, st+1i,v Þ ∈ Ei.

In this article, three criteria need to be optimized. The
handover times and received signal strength in a single user
handover strategy are independent (i.e., they are not affected
by the strategies of other users). The number of satellite

selection conflicts is possibly affected by other users’ strate-
gies. For agent i, the weight of an edge is a binary vector,
including the received signal strength psti,u ,st+1i,v

and a binary

indicator hsti,u ,st+1i,v
representing whether user i performs hand-

over or not. They are given by

psti,u ,st+1i,v
=

0 if v = null and t = T ,

p i, st+1i,v , t + 1
À Á

otherwise,

(

hsti,u ,st+1i,v
=

0 if sti,u = st+1i,v ,

1 otherwise,

( ð9Þ

where pði, st+1i,v , t + 1Þ calculates the signal strength that user i
can receive at t + 1 by selecting the satellite with index st+1i,v
according to Equation (8). hsti,u ,st+1i,v

= 1 indicates that hand-

over occurs, while hsti,u ,st+1i,v
= 0 indicates no handover.

2.1.3. User Conflict. Let πi represent a path of agent i from
node s0i,null to node sT+1i,null. It is a sequence of vertices
(i.e.,πi = ðs0i,null, s1i,k1 ,⋯, sTi,kT , s

T+1
i,nullÞ). In this study, the conflict

between agents is the vertex conflict, which is subdivided
into two types.

We use ði, j, stii,ki , s
t j
j,kj
, λÞ to denote a conflict of type of λ

between users i, j ∈N . λ = 1 indicates that two users i, j
access or hand over to the same satellite at the same time.
λ = 2 indicates that user i hand overs to the satellite already
serving another user j. The λ will affect the user’s avoidance
strategy when resolving the conflict in the following algo-
rithm. We use φi,jðtÞ to count the number of conflicts caused
by user i to user j at t timestamp:

φi,j tð Þ =
1 t = 1, πi t½ � = πj t½ �À Á

or t ≠ 1, πi t½ � = πj t½ �, πj t − 1½ � ≠ πj t½ �À Á
,

0 otherwise:

(

ð10Þ

φi,jðtÞ = 1 indicates that the two users i, j have a conflict
at time t and φi,jðtÞ = 0 otherwise.

LEO satellite networks

Satellite orbit

Backhaul network of the
LEO satellite networks

ISL
ISL

ISL

ISL

Figure 1: A LEO satellite network is composed of M LEO satellites and N ground users.
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Then, we use matrix A to record the number of conflicts
between all agents, and its element ai,j represents the total
number of conflicts caused by agent i to agent j. ai,j is given by

ai,j =

0 if i = j,

〠
T

t=1
φi,j tð Þ otherwise:

8><
>: ð11Þ

2.1.4. User Conflict Analysis. Conflicting users compete for
certain resources on the satellite they choose, thus affecting
some aspects of their network performance. For multiple
access protocol in LEO satellite networks, users compete for
channel resources and bandwidth resources.

For example, according to results in [29], in the orthogo-
nal frequency division multiplexing- (OFDM-) based LEO
satellite communication system, with the increase of the
number of users, the average uplink rate and downlink rate
decrease. In addition, according to [30], we know that users
who access the same satellite at the same time share the
computing resources of the satellite equally. Therefore, with
the increase of users accessing the satellite, the computing
resources allocated to each user are reduced, which further
affects the authentication delay, handover delay, etc. In addi-
tion, reducing the number of users accessing the same satel-
lite can also reduce the load of the satellite.

Based on the above analysis, we can conclude that reduc-
ing the number of users switching to satellite j at the same time
(i.e., called conflict in this paper) allows these users to be
allocated more network resources, thus improving network
performance. Therefore, we take minimizing the number of
conflicts as one of the optimization objectives of this paper.

2.1.5. Handover Delay. The handover delay mainly includes
the signal propagation delay in the handover procedure and
the time delay for the satellite to verify the user’s identity.
The former is related to the distance between the satellite

and the user, and the latter is related to the onboard process-
ing capacity of the satellite. According to [30], the available
computing resource for user i allocated by satellite j is

αij tð Þ =
Fj

N j tð Þ
, ð12Þ

where Fj is a constant representing the computing resources
provided by each satellite j. NjðtÞ is the number of users
accessing satellite j at t. The authentication delay for satellite
j to authenticate the identity of user i is [30]

Sij tð Þ =
B

aij tð Þ
, ð13Þ

where B denotes the amount of calculation required for each
user in the handover procedure. We assume four signaling
exchanges between the user and the target satellite after the
source satellite notifies the user of the handover. Therefore,
the handover delay for user i to handover to satellite j at t is

HTt
ij = Sij tð Þ + 4 ⋅

dtij
c
: ð14Þ

2.1.6. Handover Success or Failure. The user’s selection of
satellite at a handover directly affects the success of the
handover. According to [19], the coverage relationship of
the satellite to the user, the communication quality of the
link between the satellite and the user, and the load of the
satellite all determine whether the handover is successful
for the user. We use the value of ri,jðtÞ to indicate whether
the handover from user i to satellite j is successful at t. ri,jð

S1
j, 2

Co
nf

lic
t

Con
flic

t
S1
j, Kj

S2
j, Kj

STj, Kj

STj, 1
STj, 2

S2
j, 1

S2
j, 2

S0
j, null

S1
j, 1Agentj …

…
…

……

……

ST+1
j, null

S1
i, 2

S1
i, Ki

S2
i, Ki

STi, Ki

STi, 1
STi, 2

S2
i, 1

S2
i, 2

S0
i, null

S1
i, 1Agenti …

…
…

……
ST+1
i, null

Time stamps1
2

T

Figure 2: The multiple directed graph model of agents and an example of conflicts between agent i and agent j.
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tÞ is given by [19]

ri,j tð Þ =
0, user i is not covered by satellite j or CNRt

i,j

< CNRmin orNj tð Þ >Nj
max,

1, otherwise,

8>><
>>:

ð15Þ

where Nj
max is the maximum channel number of satellite j.

CNRt
i,j is the carrier to noise ratio of the link between user

i and satellite j at t. CNRmin is the carrier to noise ratio
threshold. When CNRt

i,j is less than CNRmin, it indicates that

the link quality is poor. CNRt
i,j is given by [19]

CNRt
i,j =

p i, j, tð Þ
kBBdT tem

, ð16Þ

where kB is the Boltzmann’s constant (1:38 × 10‐23W/
(Hz∙K)). Bd is the bandwidth of shared spectrum. T tem is
the thermodynamic temperature of the receiver.

2.2. Problem Formulation. The cost vector ci of a single user
path πi is defined as a binary vector including handover
times and signal strength, i.e., ci = ð f i1, f i2Þ. It is the cost vec-
tor of Individualsearch procedure in the following algo-
rithm. Let πk = ðπ1

k, π2
k,⋯, πN

k Þ represent a joint path for all
the users, which is also called a solution. The size of a solu-
tion is N × T . Take the average number of conflicts con-
tained in this solution as another cost element. The cost
vector of a solution is defined as ck = ð�f 1, �f 2, �f 3Þ. Therefore,
this three-objective optimization can be formulated by

max �f 1 =
1
N

〠
N

i=1
f i1 =

1
N

〠
N

i=1
〠

sti,u ,s
t+1
i,vð Þ∈Ei

xsti,u ,st+1i,v
psti,u ,st+1i,v

min �f 2 =
1
N

〠
N

i=1
f i2 =

1
N

〠
N

i=1
〠

sti,u ,s
t+1
i,vð Þ∈Ei

xsti,u ,st+1i,v
hsti,u ,st+1i,v

min �f 3 =
1
N

〠
N

i=1
〠
N

j=1
ai,j

s:t:xsti,u ,st+1i,v
∈ 0, 1f g, ∀i ∈N ,∀ sti,u, s

t+1
i,v

À Á
∈ Ei,

ð17Þ

where xsti,u ,st+1i,v
is a binary indicator representing whether

agent i passes through the edge ðsti,u, st+1i,v Þ or not,
i.e.,xsti,u ,st+1i,v

= 1 if the agent i passes through edge ðsti,u, st+1i,v Þ
and xsti,u ,st+1i,v

= 0 otherwise. Given the paths of all agents, we

can get the handover success rate of the corresponding users
under the handover strategies, which is the ratio of the suc-
cessful handover times of these users to the total handover

times [31].

hs =
∑N

i=1∑ sti,u ,s
t+1
i,vð Þ∈Ei

xsti,u ,st+1i,v
hsti,u ,st+1i,v

ri,st+1i,v
t + 1ð Þ

∑N
i=1∑ sti,u ,s

t+1
i,vð Þ∈Ei

xsti,u ,st+1i,v
hsti,u ,st+1i,v

: ð18Þ

Subsequently, we use the dominance relationship
between the vectors to compare the cost vectors of any two
solutions and finally get the Pareto-optimal solution set.

3. Proposed MOMAPF-Based Handover
Strategy for Multiuser

MAPF has been deeply studied in the field of robots and
UAVs, and many algorithms have been developed, including
A∗-based approaches [32] and Conflict-Based Search (CBS)
[33]. However, there are few studies on the MOMAPF prob-
lem of NP-hard [34]. The studies in [34, 35], and [36] are
based on a grid map scenario, and all the agents are on the
same map. In addition, these studies enforce that conflict
cannot occur, which is inconsistent with our goal of reduc-
ing the number of conflicts. Here, we propose CR-
MOMAPF for multiagent multiobjective optimization in
multiple directed graphs to obtain multiuser handover strat-
egy in LEO satellite networks.

The proposed CR-MOMAPF algorithm is an extension
of CBS, which has two key points: two level search and
conflict split. For the low level in two level search, each agent
carries out path finding without considering other agents.
Then, the high level in two level search solves the conflict
between the paths obtained by the low level of multiagent.
The specific approach to solve the conflict is to adopt
conflict split, which splits the conflict into multiple con-
straints and then gives the constraints to the corresponding
agents. The generation process of CR-MOMAPF solutions
is visualized in Figure 3. The purpose of the initialization
stage is to generate the initial root nodes (i.e., the blue
nodes). In the search stage, for the root nodes that have
not been abandoned, as long as conflicts are found, child
nodes will be generated. Through iteration, nodes with bet-
ter and better cost vectors are obtained. The goal of this stage
is to find nodes with excellent cost vectors, and the solutions
represented by these nodes are the final output of the algo-
rithm. The specific process of each stage of CR-MOMAPF
is described in Algorithm 1.

3.1. Initialization Stage. In the initialization stage, according
to the Two-Line Orbital Element (TLE) information of the
satellite constellation, each user calculates the distance of
the satellite within multiple timestamps. To implement the
path planning algorithm, a directed graph Gi is constructed
for each user i, and various weights and meanings are given
to the edges and nodes in the graph according to the dis-
tance file and the previously mentioned channel model.
Then, P (the Pareto-optimal solution set), P1 (the Pareto-
front), and OPEN (node set to be searched) are set as empty
sets. Based on the graph Gi, aiming at minimizing f i1 and

maximizing f i2, each user i executes Individualsearch
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procedure (i.e., multiobjective single-agent path finding
algorithm) to find individual Pareto-optimal solution set Oi
without constraint.

3.2. Search Stage. In this stage, a set of joint paths Π is gen-
erated by taking the combination of Oi, ∀i ∈N , i.e., Π = f
πkjπk = ðπ1

k, π2
k,⋯, πN

k Þ, πi
k ∈Oi,∀i ∈N g. Then, for each

joint path πk ∈Π, ck, πk, and the constraints (empty set)
are combined to form a search node Rkðπk, ck,ΩkÞ and
added to OPEN .

For each search iteration in CR-MOMAPF (lines 14-42),
a search node Rkðπk, ck,ΩkÞ is popped from OPEN . Then,
the Check procedure is exploited to determine whether the
node Rk is worth continuing the search. If there is no vector
dominating ck in P1 (i.e., CheckðRkÞ = False), we think node
Rk is worth continuing to search, otherwise the node is dis-
carded. With the Update procedure, those cost vectors dom-
inated by ck in P1 and their corresponding strategies are
removed from P1 and P, respectively. Then, πk and ck are
added into P and P1, respectively. The procedure Update is
necessary due to the fact that it can ensure that the vectors
in P1 are Pareto-optimal in the whole search iteration prog-
ress. As a result, P1 is guaranteed to be the excellent Pareto-
optimal front when the algorithm terminates.

If there is no conflict in πk, then πk is a Pareto-optimal
solution because it has the best performance in terms of �f 3
and no other vector can dominate it. If a conflict ði, j, stii,ki ,
s
t j
j,kj
, λÞ is detected in πk, we adopt the split conflict approach

in CBS to resolve the detected conflict. However, different
from CBS, here, we split a detected conflict to generate only
one constraint ði, stii,kiÞ according the priority of users and the

type of this conflict. The priority can determine which agent
to change the node selection in case of a path conflict (i.e.,

determine which user’s constraint to generate). It can be set
manually by the importance of the user or other factors. The
constraint ði, stii,kiÞ indicates that the path of agent i cannot

contain node stii,ki . There may be multiple conflicts in πk, and
a new set of constraints Ω is generated.

For each constraint ωi ∈Ω (lines 26–40), a new set of
constraints Ωl is generated by combining ωi with Ωk. Then,
agent i executes the Individualsearch procedure to get indi-
vidual Pareto-optimal solution set O∗

i under the restriction
of constraints Ωi

l of user i in Ωl. Hereafter, for each o∗i , we
get a new solution πl by copying πk and then replace πi

l in
πl with o∗i . If there is no vector dominating the cost vector
cl of πl in P1, a new search node Rlðπl, cl,ΩlÞ is created
and added into the OPEN . This system stage continues until
there is no search node in the OPEN .

4. Simulation and Result

4.1. Scene Construction. To evaluate the effectiveness of the
proposed algorithm, we first build a scene including a LEO
satellite constellation and some ground users. For the satel-
lite constellation, we build a typical LEO satellite constella-
tion, Starlink, according to the constellation data in [37].
The parameters of this Starlink constellation are provided
in Table 1, and the visualization is shown in Figure 4.

Due to the huge difference in the mobile speed between
LEO satellites and ground users, we assume that the ground
users are stationary and select some cities to represent the
ground users. Their position parameters, number of visible
satellites, and priority are provided in Tables 2 and 3. Num
represents the average number of satellites simultaneously
covering the ground user in the whole constellation period.

In the first type of conflict ði, j, stii,ki , s
t j
j,kj
, 1Þ between two
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Figure 3: Search process of CR-MOMAPF.
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users, the user with lower priority needs to change the policy
to reduce the number of conflicts. In the second type of con-

flict ði, j, stii,ki , s
t j
j,kj
, 2Þ between two users, user i needs to

change the policy. In this paper, we take NSGAIII [26] as
the algorithm of the Individualsearch procedure and
priority-based coding [39] as the coding method of
NSGAIII. Other parameters used to calculate the objective
function are shown in Table 4.

4.2. Individualsearch Procedure Performance Analysis. Here,
we analyze the factors affecting f i1 and f i2 calculated by the

Input: a distance file of all users
Output:P, P1
1: Initialization stage:
2: Build a set of directed graphs for all users from the distance file
3: P⟵∅, P1 ⟵∅, OPEN ⟵∅
4: for each user i in N do
5: Oi ⟵ Individualsearchði,∅Þ
6: end for
7: Generate a set of joint paths Π
8: for all πk ∈Πdo
9: Ωk ⟵∅
10: ck ⟵ compute path cost of πk
11: Create Rkðπk, ck,ΩkÞ and add it to OPEN
12: end for
13: Search stage:
14: whileOPENnot empty do
15: Rkðπk, ck,ΩkÞ⟵OPEN:popð:Þ
16: ifCheckðRkÞ = Falsethen
17: UpdateðPÞ, UpdateðP1Þ
18: Add πk to P and ck to P1
19: else
20: Continue
21: end if
22: if no conflict detected in πkthen
23: Continue
24: else
25: Ω⟵ split detected conflict
26: for each ωi ∈Ωdo
27: Ωl =Ωk ∪ ωi

28: O∗
i ⟵ Individualsearchði,Ωi

lÞ
29: for all o∗i ∈O

∗
i do

30: πl ⟵ πk

31: Replace πi
l in πl with o∗i

32: cl ⟵ compute path cost of πl
33: Create Rlðπl , cl ,ΩlÞ
34: ifCheckðRlÞ = Falsethen
35: Add Rl to OPEN
36: else
37: Continue
38: end if
39: end for
40: end for
41: end if
42: end while
43: returnP, P1

Algorithm 1: Pseudocode for CR-MOMAPF-based handover strategy.

Table 1: Scene parameters.

Parameters Values

Altitude 550 km

Orbital planes 24

Satellites per plane 66

Inclination 53°

Satellite half angle of view 44.85°

Minimum communication elevation 40°
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Individualsearch procedure. Given a specific number of
users in the scenario, we use three levels to measure the den-
sity of these users. The first level is sparse, which means that
no satellite can cover multiple users at the same time. The
second level is general, which means that a single satellite
can cover multiple users at the same time, but not all users.
The third level is dense, which indicates that a single satellite
can cover all ground users. We construct three scenarios
with different user density levels, and the initial Pareto fronts
of users obtained by Individualsearchði,∅Þ procedure are
shown in Figure 5. The user’s location (latitude, longitude)
is used to represent the user, and different colored Pareto
fronts belong to different users. The bidirectional Hausdorff
distance values [40] between any two of the three Pareto
fronts of the blue user (i.e., user with location (30, 104)) in
the three scenarios are 0. So, these three Pareto-front are
exactly the same. This indicates that user density does not

affect handover times and received signal power of a single
user. In addition to the constraints of the paths of users
(i.e., the parameters of Individualsearchð:Þ procedure), f i1
and f i2 are only affected by their own location (i.e., longitude
and latitude).

4.3. CR-MOMAPF with Different Density Levels of Users. We
construct three scenarios with 5 ground users each based on
the user density levels in Section 4.2. The parameters of users
are shown in Table 3. Depending on the Num parameter

Table 4: The parameters of simulation.

Parameters Values

Transmission signal power of each satellite 50 dBw

Carrier frequency 6GHz

s of shadowing 4 dB

Kr for Rician fading 10

T 50

Duration of each timestamp 10 s

Population size of Individualsearch 1000

Evolution algebra of Individualsearch 1000

Cross rate of Individualsearch 0.9

Variation rate of Individualsearch 0.2

Parameters in Equation (1) η = 0:55, D = 3m
Bd 1MHz

T tem 290K

CNRmin 4 dB

Nmax
j 3

Fj 2200MIPS [30]

B 6.6M [30]

Table 2: The parameters of cities.

Scenario City Lat/Lon (°) Num Priority

1 (sparse)

Guangzhou 29.13/113.26 2.97 0

Tokyo 35.69/139.69 3.86 1

Sydney -33.87/151.21 3.67 2

Xi’an 34.29/108.94 3.71 3

Islamabad 33.70/73.06 3.65 4

2 (general)

Chongqing 29.56/106.55 3.32 0

Chengdu 30.67/104.07 3.39 1

Xi’an 34.29/108.94 3.71 2

Changsha 28.23/112.94 3.14 3

Wuhan 30.58/114.27 3.40 4

3 (dense)

Shanghai 31.22/121.46 3.43 0

Nanjing 32.05/118.79 3.51 1

Wuxi 31.54/120.30 3.47 2

Hangzhou 30.29/120.16 3.37 3

Hefei 31.86/117.28 3.49 4

Table 3: The parameters of cities.

City Lat/Lon (°) Num Priority

Chongqing 29.56/106.55 3.32 0

Chengdu 30.67/104.07 3.39 1

Xi’an 34.29/108.94 3.71 2

Changsha 28.23/112.94 3.14 3

Wuhan 30.58/114.27 3.40 4

Shanghai 31.22/121.46 3.43 5

Nanchang 28.68/115.88 3.25 6

Zhengzhou 34.76/113.65 3.75 7

Hangzhou 30.29/120.16 3.37 8

Hefei 31.86/117.28 3.49 9

Lanzhou 36.06/103.79 3.91 10

Kunming 25.04/102.72 3.06 11

Taiyuan 37.86/112.55 4.16 12

Guiyang 26.58/106.72 3.16 13

Beijing 39.91/116.40 4.48 14

Figure 4: Huge LEO satellite constellation, Starlink, which is
drawn by cesium [38].
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value of each user in Table 2, we set the Ki of user i to 3 or 4.
The Pareto front of the proposed algorithm with different
density levels of users is shown in Figure 6. Eight solutions
in each scenario are randomly selected from their Pareto-
optimal solution sets and then presented in Table 5. The cor-
responding numbers of Pareto-optimal solutions obtained in
the three scenarios are 19, 56, and 99, respectively. So, the
number of Pareto-optimal solutions increases when the den-
sity level grows. In addition, through comparison, we can
observe that the average number of conflicts also increases
when the density level grows. In other words, the Pareto
front becomes higher when the density level grows. Specifi-
cally, when the distance between any two users in the sce-
nario is greater than the coverage diameter of a single
satellite, there can be no conflict between users. In this case,
the problem in this paper becomes a two-objective optimiza-
tion problem. As described in Section 4.2, f i1 and f i2 are only
affected by the user’s location. So, for average handover
times and average signal reception strength, their own distri-
bution differences in different scenarios are caused by the

differences in the location of users and the constraints gener-
ated by conflict split.

4.4. Unilateral Performance with Different Strategies. Here,
we compare the performance of the proposed CR-
MOMAPF with the following handover strategies:

(1) RSS-based strategy [41]: each ground user accesses
the satellite that provides the strongest signal
strength within each timestamp

(2) Minimum handover time- (MHT-) based handover
strategy: based on the graph in [22], we set the
weight of the edge as handover times and adopt
Dijkstra’s shortest path algorithm to realize this
handover strategy

(3) Minimum conflict time- (MCT-) based handover
strategy: different ground users try to select different
satellites for access within each timestamp. Based on
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Figure 5: The initial Pareto front of users with different density levels of users: (a) sparse; (b) general; (c) dense.
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Figure 6: The Pareto front with different density levels of users: (a) Scenario 1 (sparse); (b)Scenario 2 (general); (c) Scenario 3 (dense).

Table 5: Some results to show the trade-off among different objectives.

(a)

Obj
Scenario 1 (N = 5, sparse) Scenario 2 (N = 5, general)

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

f1 8.4 4.8∗ 6.8 7.6 5.0 6.4 5.2 7.2 6.4 5.0∗ 6.6 5.6 6.2 6.6 5.4 7.2

f2 1.650∗ 1.612 1.647 1.649 1.620 1.646 1.628 1.648 1.730∗ 1.679 1.674 1.722 1.686 1.727 1.707 1.706

f3 0.0 0.0 0.0∗ 0.0 0.0 0.0 0.0 0.0 2.8 2.4 1.6∗ 3.0 1.8 2.6 2.4 2.0

(b)

Obj
Scenario 3 (N = 5, dense) Scenario 4 (N = 10, general)

x1 x2 x3 x4 x5 x6 x7 x8 x1 x2 x3 x4 x5 x6 x7 x8

f1 6.6 4.6∗ 6.2 5.2 5.6 6.4 5.8 5.2 7.1 4.8∗ 6.9 6.3 6.2 5.8 6.7 6.4

f2 1.643∗ 1.571 1.512 1.630 1.634 1.641 1.637 1.554 1.695∗ 1.637 1.585 1.691 1.693 1.688 1.694 1.694

f3 16.2 8.0 6.4∗ 11.0 11.2 13.2 11.8 7.4 7.1 4.8 2.7∗ 4.9 5.3 5.0 5.8 5.8

(c)

Obj
Scenario 5 (N = 15, general)

x1 x2 x3 x4 x5 x6 x7 x8 Weighted-based MHT-based MCT-based RSS-based

f1 6.9 4.9∗ 5.7 6.0 5.6 4.9 6.4 5.5 15.6 3.0 35.8 7.3

f2 1.681∗ 1.618 1.623 1.666 1.633 1.629 1.679 1.638 1.270 1.388 1.165 1.690

f3 4.9 3.5 3.1∗ 3.9 3.3 3.8 4.8 3.3 3.3 3.8 0.9 6.8

∗ represents that this value is the optimal value of the objective function in the Pareto-optimal solution set.
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geatpy [42], we adopt SOGA (single-objective
genetic algorithm) to realize the handover strategy

(4) Weighted-based handover strategy [43]: the weight
of the received signal strength, the handover times,
and the conflict times are set as by w1 = 1/3, w2 = 1
/3, and w3 = 1/3. Then, we exploit single-objective
optimization to get the optimal solution based on
geatpy

In this simulation, in order to make the results more
obvious, we set more users in the scene. We take 15 cities
in Table 3 as ground users. The Pareto front obtained by
CR-MOMAPF is shown in Figure 7. The Pareto-optimal
solution set contains 427 solutions. We randomly select a
solution from it and show the performance difference
between this solution and the solutions of other strategies
in Figure 8. From Figure 8(a), we can observe that users
can receive the strongest signal strength under the RSS-
based strategy, while the signal strength that users can
receive under CR-MOMAPF is second only to the RSS-
based strategy. Figure 8(b) shows the cumulative distribu-
tion of the number of handovers under each strategy. We
can observe that the handover times of users under CR-
MOMAPF are second only to those of MHT-based strategy
and better than those of the other three strategies. As for
the number of user conflicts, it can be observed from
Figure 8(c) that CR-MOMAPF is better than the RSS-
based strategy and worse than MCT-based strategy. Com-
pared with MHT-based and weighted-based strategy, CR-
MOMAPF does not have obvious advantage in the average
number of conflicts. This is due to the fact that reducing
the number of handovers can reduce the number of conflicts
to a certain extent, which is known from the definition of
user conflict. However, from the total number of conflicts,
there are 47 conflicts in CR-MOMAPF, which is better than
57 conflicts under the MHT-based strategy and 50 conflicts
under weighted-based strategy.

Subsequently, we calculate the handover delay of each
strategy based on formula (14). Figure 9 shows the change of
the cumulative handover delay of all users with time. The
CR-MOMAPF strategy in the figure is a solution randomly
selected from the Pareto-optimal solution set. We can observe
that the handover delay of the CR-MOMAPF strategy is sec-
ond only to the MHT-based strategy. This is because the latter
has the least number of handovers. Then, for each of these
handover strategies, we count the average delay of each hand-
over. The average handover delay is 27.68ms for the MCT-
based strategy, 25.94ms for the weighted-based strategy,
19.87ms for the MHT-based strategy, and 19.53ms for the
RSS-based strategy. The average handover delay of CR-
MOMAPF is the best, which is 17.96ms.

Without loss of generality, we count the performance of
all solutions in the Pareto-optimal solution set and compare
them with the other four strategies. We find that the cumu-
lative handover delay of all solutions in the solution set is
second only to the MHT-based strategy. Moreover, 89% of
the solutions in the Pareto-optimal solution set (i.e., 381
solutions) have the lowest average handover delay. The

handover efficiency is improved by up to 28.31% compared
with the RSS-based strategy, 29.54% compared with the
MHT-based strategy, 49.41% compared with the MCT-
based strategy, and 46.03% compared with the weighted-
based strategy.

Finally, we compare the handover success rate under dif-
ferent strategies, and the results are shown in Figure 10. We
can see that the solution randomly selected from the Pareto-
optimal set of CR-MOMAPF has the highest handover suc-
cess rate. To avoid accidents, we calculate the handover suc-
cess rate of all solutions in the Pareto-optimal solution set. It
is found that the lowest handover success rate is 98.76%, and
the highest handover success rate is 100%. This is due to the
fact that the three optimization objectives of our proposed
algorithm improve the users’ signal quality, reduce the num-
ber of handovers, and make the users choose the lightly
loaded satellites for handover as much as possible.

In summary, our algorithm can comprehensively opti-
mize three objectives, which further optimize the handover
delay and handover success rate. Compared with the other
four strategies, most of the solutions in the Pareto-optimal
solution set have the best performances. The decision maker
can select the appropriate handover strategy from the
Pareto-optimal solution set according to the user
classification.

4.5. Comprehensive Performance with Different Strategies. In
this simulation, we design an index to evaluate the compre-
hensive performance of a solution. We firstly calculate the
extremum of these three performance indexes in this prob-
lem. Then, we exploit min-max normalization to normalize
the three indexes of a solution and sum them to get the eval-
uation index EI of the solution. EI is given by

EI = −pnormal + hnormal + cnormal, ð19Þ

where pnormal, hnormal, and cnormal are the normalized values
of the received signal strength, handover times, and the
number of conflicts of a solution. It can be known that the
smaller the EI value of the solution, the better the compre-
hensive performance of the solution. In this way, we com-
pare the solutions obtained by each handover strategy.

Based on the cities in Table 3, we select three groups of
users for this simulation. The first group is the top 5 cities
(N = 5), the second group is the top 10 cities (N = 10), and
the third group is all 15 cities (N = 15). The Pareto front
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Figure 7: The Pareto front of the scenario with N = 15.
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obtained in these three scenarios is shown in Figures 6(b), 7,
and 11, respectively. Eight solutions in each scenario are ran-
domly selected from their Pareto-optimal solution sets and
then presented in Table 5. As is shown in Figure 12, in the
three scenarios, the comprehensive performance of ran-
domly selected solutions in the Pareto-optimal solution sets
obtained by CR-MOMAPF is the best. MCT-based strategy
produces too many handovers to reduce the number of con-
flicts, resulting in the worst comprehensive performance.
Subsequently, to avoid contingency, we calculate the EI
values of all solutions in the Pareto front. The results show
that in the scenarios of N = 5, N = 10, and N = 15, the solu-
tions with the best comprehensive performance account for
62.5%, 87.83%, and 97.89%, respectively. The remaining
solutions have the second best comprehensive performance.
This means that there is a great possibility that selecting a
solution from the Pareto-optimal solution set will have the
best comprehensive performance.
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5. Conclusions

(1) A multiobjective multiagent optimization algorithm
is proposed for solving the handover problem that
is transformed into a path finding problem, and the
transformation is implemented by the proposed
multiple directed graph model. We conducted our
experiments using the Starlink constellation and
some terrestrial cities as scenarios

(2) The experimental results show that the algorithm
finds a set of Pareto-optimal solutions for the users
in the scenario. It is also shown that the average
number of user conflicts in a multiuser scenario is
related to the density of users. Additionally, the
increase in the number of users may not lead to an
increase in the number of conflicts. The number of
handover and the average received signal strength
are related to the location of users, but not to the
density of users. Compared with other strategies, this
strategy has advantages in terms of the number of
solutions and the quality of performance

(3) In the future, we will study the handover strategy for
multiple users with high-speed mobility and the
point of incorporating handover strategy into hand-
over protocols
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