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The positioning function of unmanned aerial vehicles (UAVs) is a challenging and fundamental research topic and is the premise
for UAVs to realize autonomous navigation. The disappearance of satellite signals makes it challenging to achieve accurate
positioning. Thus, visual positioning algorithms based on computer vision have been proposed in recent years and these
algorithms have produced good results. However, these algorithms have relatively simple functions and cannot perceive the
environment. Their versatility is poor, and mismatching often occurs, which affects the positioning accuracy. Aiming to
address the need for integrated target recognition, target matching, and positioning of UAVs, we propose an algorithm that
integrates the target recognition, matching, and positioning functions by combining the single-shot multibox detector (SSD)
algorithm with the deep feature matching algorithm. This algorithm is based on the idea of pseudo-Siamese networks and the
SSD algorithm, introducing a deep feature matching method to directly calculate the correspondence between two images. The
main idea is to use the VGG network trained by the SSD target recognition algorithm to extract deep features, without any
special training for feature matching. Finally, by sharing neural network weights, the integrated design of target recognition
and image-matching localization algorithms is achieved. Mismatches between the real-time and reference images are addressed
by introducing the grid-based motion statistics algorithm to optimize the matching result and improve the correct matching
efficiency of the target. The University-Release dataset was used to compare and analyze the performance of the proposed
algorithm to verify its superiority and feasibility. The results show that the matching accuracy of the PSiamRML algorithm is
generally good and that it significantly compensates for changes in the contrast, scale, brightness, blur, deformation, and so on,
apart from improving the stability and robustness. Finally, a matching test scenario with aerial images captured by an S1000
six-rotor UAV served to verify the effectiveness and practicability of the PSiamRML algorithm.

1. Introduction

In recent years, the rapid development of cutting-edge tech-
nologies such as artificial intelligence and robotics has
resulted in the intelligence of unmanned systems becoming
a hot research topic in the field of artificial intelligence.
The key technology of the new generation of intelligent
unmanned systems is based on algorithms and data, focus-
ing on improving the perception, computing, cognitive rea-
soning, and combat execution capabilities of these systems,
thus forming an open, compatible, stable, and mature tech-
nology system. Algorithms are at the core of artificial intelli-
gence technology, which forms the core of an unmanned
system and provides the basis on which the system performs

various actions [1–3]. At present, because various types of
aircraft, such as missiles and unmanned aerial vehicles
(UAVs), need a navigation system to continuously deter-
mine their position to adjust their operating state during
the execution of tasks, further research on the UAV naviga-
tion system is important. UAVs typically rely on global sat-
ellite navigation, inertial navigation, and visual navigation
methods for guidance [4–6]. Traditional satellite navigation
and positioning methods rely on external satellite signals
that are susceptible to environmental and enemy interfer-
ence. This particularly affects low-altitude UAVs, as satellite
signals are easily blocked by high-rise buildings and cannot
provide accurate positioning information [7–11]. The iner-
tial navigation system experiences obvious data drift during
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longer working periods and cannot provide accurate posi-
tioning information for extended periods of time. Visual
navigation is an autonomous navigation technology that
uses image processing, computer vision, and other technolo-
gies to acquire motion information and spatial information
about UAVs during operation [12]. The low cost of visual
navigation, together with its strong anti-interference ability
and good positioning effect, has resulted in this navigation
technology becoming an important research direction for
the autonomous in-flight navigation of UAVs. Visual navi-
gation and positioning technology can be divided into two
types according to whether prior information is used as a
reference: The first entails using a sequence of UAV aerial
images to match and obtain the pose transformation rela-
tionship. Mature technologies include simultaneous localiza-
tion and mapping (SLAM) and visual odometry (VO)
[13–15]. The second technology involves the use of a refer-
ence image with known coordinate information to complete
the localization using image-matching technology [16].
SLAM can complete the localization while building a map
using real-time images captured in an unknown environ-
ment and is widely used in various indoor localization sce-
narios. However, it is less effective in open outdoor
environments [17]. VO uses a sequence of aerial images to
calculate the transformation relationship between the posi-
tion and attitude of the UAV. The principle on which VO
is based is similar to that of the inertial navigation system,
and the positioning results also deviate considerably over
time [18]. The positioning method that uses reference
images for image matching needs to capture ground objects
and scenes as reference images in a predetermined matching
area in advance and mark real geographic information as a
reference image database, which is stored in the onboard
computer of the UAV [19]. When the UAV flies to the pre-
determined area, the real-time images captured by the air-
borne sensor of the UAV are matched with the reference
image in the airborne computer, enabling the current posi-
tion of the UAV to be determined accurately. Therefore,
image-matching navigation is an absolute positioning tech-
nology for UAV navigation [20, 21] and guarantees accurate
positioning for UAVs undertaking extended flights. Image-
matching technology is the process of spatially aligning
two images acquired by the same or different sensors of
the same area to determine the position relationship between
the two images. The main purpose of this technology is to
search for the best matching position of the real image in
the reference image and provide basic data for the position
change of the carrier [22, 23]. Existing image-matching algo-
rithms are mainly divided into grayscale-based and feature-
based image-matching methods [24–28]. Grayscale-based
image matching takes the template image as a sliding win-
dow image, slides through the image in a sequence according
to a certain step size, and selects the part with the largest
similarity as the final result. Unfortunately, the poor real-
time performance and robustness of the gray-scale image-
matching method render it unsuitable for the computation-
ally intensive matching task of visual navigation. The
feature-based image-matching method overcomes the short-
comings of the gray-scale image-matching method by offer-

ing good robustness to various changes, fast calculation, and
good matching accuracy. Therefore, researchers in the field
of image matching have focused on this method.

2. Related Work

The first problem the UAV has to solve when undertaking a
mission is to determine its exact location in the working envi-
ronment. This means that localization is the basis for UAV
perception and decision-making in unknown environments.
The accuracy, robustness, and real-time performance of
UAV positioning algorithms have a crucial impact on enhanc-
ing the autonomous decision-making and combat capabilities
of UAVs while improving their overall performance. Feature
extraction is an important function of the feature-based
image-matching method. Good features should be stable, reli-
able, repeatable, and moderate in number. In this way, we can
ensure that the same features can be extracted from different
images of the same scene. Traditional feature extraction
methods include scale-invariant feature transform (SIFT)
[29], speeded up robust features (SURF) [30], oriented fast
and rotated brief (ORB) [31], affine SIFT (ASIFT) [32], binary
robust invariant scalable keypoints (BRISK) [33], and binary
fisheye spherical distorted robust independent elementary fea-
tures (FSD-BRIEF) [34]. These algorithms rely on hand-
designed feature descriptors; thus, their real-time performance
and robustness need to be further improved. Many feature-
based matching algorithms that are based on these classical
algorithms have since been optimized and improved [35,
36]. The widespread application of convolutional neural net-
works (CNNs) has led to the proposal of many feature extrac-
tion methods based on these networks. The features extracted
by deep learning methods have stronger description ability
than those extracted by traditional methods and can identify
certain features based on the semantic level. Recent research
efforts have focused on image matching with the aid of deep
learning. Daniel et al. [37] proposed a self-supervised
training-based network model for feature point detection
and descriptor extraction, designed a self-training method,
supervised learning through a keypoint detector, and realized
an end-to-end neural network model for feature point match-
ing. Law and Deng [38] proposed a detection framework
based on frame corners, which linked the regression target
frame with the feature itself for the first time, pointing out a
new direction for target recognition based on feature points
and target-based matching tasks. Simo-Serra et al. [39] pro-
posed a discriminant learning method for feature point
descriptors. This method uses the Siamese network, takes the
nonlinear mapping output by the CNN as the descriptor,
and uses the Euclidean distance to calculate the similarity. This
method is suitable for processing datasets that contain differ-
ent types of data and for different applications, including rota-
tion scaling, nonrigid transformation, and illumination
change. The Siamese network, proposed by Chopra et al.
[40] in 2005, is characterized by two ormore subnetworks that
simultaneously receive two images as input and share the
weights of the two neural networks. More recently, the Sia-
mese network has been widely used for semantic classification
and object tracking because of its excellent structural
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characteristics and relatively simple principle, which makes it
suitable for addressing the “similarity problem.” If the branch
networks on the left and right taken by the two inputs are dif-
ferent, or the network does not share network weights, it is
referred to as a pseudo-Siamese network, which is suitable
for processing image pairs with certain differences in input.
Zbontar and Lecun [41] introduced a Siamese network to cal-
culate the matching cost. The network was trained to predict
the similarity between image patches and applied to disparity
estimation, similar to converting the calculation of the match-
ing cost to a multilabel classification problem. Han et al. [42]
used a patch-level-based Siamese network for feature extrac-
tion and matching by using the similarity measure. Balntas
et al. [43, 44] proposed the triplet network structure, an exten-
sion of the Siamese network, and simultaneously considered
the relationship between three samples during training. Zagor-
uyko and Komodakis [45] improved the Siamese network and
extracted the features of two images for comparison, but only
the similarity of the two images could be obtained. Contrast-
ingly, the position of the target in the reference image could
not be determined. Positioning required a traversal operation,
and the real-time performance of their method was poor. Wu
et al. [46] used a pseudo-Siamese network to estimate the 6D
pose motion of textureless objects, thereby extending the
application of the Siamese network. Although the Siamese net-
work has been greatly improved in the past two years, it is
basically designed for target tracking [47, 48]. At present, com-
monly used deep learning image matching methods include
D2-Net [49], R2D2 [50], SuperGlue [51], Key.Net [52], and
AffNet+HardNet [53]. Existing algorithms are unsuitable for
use in any of these methods to meet the requirements of
real-time performance and robustness under all conditions.
Owing to the scarcity of training samples and real-time
requirements, certain algorithms such as those that rely on
CNNs and deep learning have found limited application in
the field of engineering. In particular, in the case of a drone
that uses a camera as the carrier for image matching, the target
to be identified is often determined before it is detected and
recognized. However, the target position is locked in the refer-
ence image. If the target position is only determined by a com-
monly used image-matching method, unsuccessful matching
resulting from the vibration of the drone, changes in the atti-
tude, an excessive viewing distance, and illumination effects
could occur, exacerbated by low target resolution and notable
defects such as low contrast, distortion, zoom, and lack of tex-
ture. In feature-based image-matching methods, matching
two images using feature point descriptors may generate
incorrect matching points, thus affecting the visual localiza-
tion effect. Therefore, a method is needed to screen the
image-matching results to judge the quality of matching point
pairs, eliminate incorrect matching point pairs more accu-
rately, and improve the reliability and accuracy of visual posi-
tioning. Contrastingly, the use of a deep learning method for
target recognition would result in the target feature informa-
tion provided by the reference image not being fully utilized,
resulting in the feature information of the target being
detected. This information must be stored by the target recog-
nition algorithm, which would substantially expand the net-
work structure and increase the computational load. It

cannot meet the real-time requirements of embedded systems.
A practical image-matching algorithm that is insensitive to
influencing factors such as deformation, rotation, and imaging
angle changes in the scene is therefore necessary. Particularly
under the premise of a small number of samples, using deep
learning to perform feature matching operations has been a
great test for the generalization ability of the network.

To solve the above problems, we focus on an integrated
localization algorithm of target recognition and matching.
We combine the single-shot multibox detector (SSD) and
deep feature matching (DFM) algorithms to propose an
integrated network structure for target recognition and
image matching based on the idea of a pseudo-Siamese net-
work. The SSD target recognition algorithm is introduced to
extract the target feature information in real time, and refer-
ence images are used to select the adaptation area. Based on
the trained network structure, the DFM algorithm is used to
complete deep feature matching, and the grid-based motion
statistics (GMS) algorithm is used to eliminate incorrectly
matching pairs. The experimental results show that the algo-
rithm proposed in this paper has stronger robustness and
higher matching accuracy than the traditional matching
algorithm. The proposed algorithm can effectively improve
the generalization ability of the network while ensuring
real-time performance and has practical engineering value.

In summary, the main contributions of this paper are as
follows:

(1) Based on the idea of a pseudo-Siamese network, an
integrated target recognition and matching localiza-
tion algorithm, which combines the SSD and DFM
algorithms, is proposed. The SSD algorithm is used
to select the image-matching adaptation area. By
sharing the weight of the neural network, the acqui-
sition ability of target features is enhanced, and the
integration of target recognition, image matching,
and positioning is realized, thereby improving the
matching performance and positioning accuracy of
the algorithm

(2) A target matching strategy that combines the DFM
and GMS algorithms is adopted to reduce the match-
ing error and incorrect matching point pairs in the
DFM algorithm, optimize the matching result, and
improve the correct matching rate of the target

(3) The University-Release dataset is used to compare
and analyze the performance of the proposed algo-
rithm, and an actual flight test is conducted using
an S1000 six-rotor UAV. The results of the analysis
and flight test show that the performance improved
relative to that of the existing matching algorithm
and that the performance met the requirements of
visual positioning for UAVs. Our method has certain
theoretical and practical reference value

The remainder of this paper is structured as follows. Sec-
tion 3 describes the problem and preliminary work. Section
4 explains the research methods presented in this paper.
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Section 5 presents the experimental results and analysis of
the proposed algorithm. Section 6 concludes the paper.

3. Problem Description and Preliminaries

The aerial and reference images collected by UAVs while
performing image matching and navigation tasks are gener-
ally characterized by their high-definition nature, data inten-
siveness, and high degree of currentness. Processing
reference and aerial images is time-consuming and memory
intensive. In practical tasks, we usually focus on the areas in
which the target is located and refrain from matching the
entire image. Therefore, the development of an integrated
localization algorithm for both UAV target recognition and
matching is challenging. First, information about the target
scene is obtained using the airborne camera. Second, the tar-
get recognition algorithm is used to perceive the target area,
select the adaptation area, extract the target features, and
identify the target. In the adaptation area, the target match-
ing strategy, which combines the DFM and GMS algorithms,
is used to complete the matching and positioning task of the
UAV. The navigation and positioning algorithm of the UAV
is the key component of the flight mission system of the
UAV. Our work mainly focuses on the UAV navigation task
of image matching. The proposed localization algorithm for
UAVs is based on the target recognition algorithm, guaran-
teed by the GMS algorithm, and integrates the tasks of target
recognition and image matching.

With the continuous development of deep learning neu-
ral networks, the size of the model of target recognition algo-
rithms and the complexity of these algorithms are
increasing, which demands higher performance in terms of
the operating speed and integration of hardware processors.
The current mainstream ARM architecture processors can-
not meet the real-time requirements when performing a
large number of operations on unstructured data, which
greatly limits the application of deep learning algorithms in
the field of engineering. Deep neural network models with
high recognition accuracy that have been widely used in
recent years mainly include the following: (1) the region-
based convolutional neural network (R-CNN) series
[54–57]; (2) the you only look once (YOLO) series
[58–61]; and (3) the SSD series [62–65]. The SSD algorithm
integrates the anchor mechanism of Faster R-CNN and the
regression principle of YOLO, which improves both the
speed and accuracy. SSD uses a multiscale convolution fea-
ture map to predict the target area, outputs a series of dis-
crete, multiscale default of the outer frame coordinates,
and uses a small convolution kernel to predict the frame
coordinates of candidate boxes and the confidence of each
category. Therefore, SSD has both the speed of YOLO and
the high accuracy of Faster R-CNN. SSD adopts the VGG-
16 model as the backbone network [66], which has been
improved and modified to some extent. The specific network
structure is shown in Figure 1, where “conv” is a convolution
operation. The SSD model accepts images of a fixed size as
input, integrates feature maps of different levels, calculates
the category and confidence of the predefault bounding
box, and finally obtains the target detection result using non-

maximum suppression. To achieve effective target detection,
the loss function of the network model adopts the weighted
sum of the localization loss (Loc) and the category confi-
dence loss (Conf) [67].

L x, c, l, g = 1
N

Lconf x, c + αLloc x, l, g , 1

where N is the number of positive samples in the a priori
box; x is the indicating function, which indicates whether
the default bounding box matches the real bounding box; c
is the predicted value of category confidence; α is the weight
coefficient; l is the prediction boundary box; g is the real
bounding box. The positioning loss function Lloc uses a
smooth L1 function to calculate the loss between l and g.
The confidence loss function Lconf is calculated by softmax.
The specific definitions of the localization loss Lloc and the
confidence loss Lconf are

Lloc x, l, g = 〠
N

i∈Pos
〠

m∈loci
xkijsmoothL1 lmi − ĝmi ,

Lconf x, c = − 〠
N

i∈Pos
xpij log ĉpi − 〠

i∈Neg
xpij log ĉ0i , ĉpi

= exp cpi
∑pexp cpi

,

2

where ĝcx
j = gcx

j − dcxj /dwj , ĝcyj = gcy
j − dcyj /dhj , ĝwj = log

gw
j /dwj , and ĝh

j = log ghj /dhj ; dcxj , d
cy
j , d

cw
j , and dchj contain

the location information of the target, m represents the
number of feature maps, and lmi represents the i prediction
box in the m category. ĝm

i represents the j prediction box
in the m category. xkij indicates whether the i predicted box
matches the j real box concerning the k category. If the
box matches, the value is 1; otherwise, it is 0. Pos, loc, and
Neg represent a set of positive samples, negative samples,
and a set of bounding box coordinate positions, respectively.

4. The Proposed Approach

The proposed algorithm is designed to extract target features
based on the SSD algorithm, select the adaptation area for
target recognition, and use the depth feature matching
method to construct an integrated target recognition and
matching location algorithm based on a pseudo-Siamese
network. Finally, the GMS algorithm is used to eliminate
mismatching point pairs to achieve the integrated network
function of target recognition and navigation positioning
and achieve accurate positioning for image-matching navi-
gation. Section 4.1 discusses the DFM method in detail. Sec-
tion 4.2 expounds on the error matching elimination
strategy based on GMS. Section 4.3 proposes an integrated
network structure for target recognition and matching based
on a pseudo-Siamese network and explains the principle and
process of the algorithm in detail.
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4.1. Deep Feature Matching Method. DFM is a method that
uses the features extracted by deep neural networks to find
the point of correspondence between two images. The
method does not require external detection and feature
description but directly calculates the correspondence
between two images [68, 69]. The main idea is to use the
VGG network pretrained by the SSD target recognition algo-
rithm to extract features without any special training for fea-
ture matching. When using the VGG-16 network for feature
extraction, we use the conv5_3, conv5_2, relu4_2, conv3_2,
conv2_2, and conv1_2 network layers for feature extraction
and use the deepest translation, scale, and brightness invari-
ances of the neural network. Features corresponding to both
images are found at the semantic level [70]. The process of
the depth feature matching method is shown in Figure 2 [71].

For the given images, A and B, we first use the pretrained
VGG-16 network to perform deep feature extraction on
these two images to obtain feature blocks FA and FB, after
which we use the dense nearest neighbor search algorithm
to search FB to find each element of FA for the best matching
position. The dense nearest neighbor search (DNNS) algo-
rithm uses mutual nearest neighbor search and ratio testing
in dense feature maps for search matching [72]. Setting the
distance L2 as the nearest neighbor matching distance, for
point PA in feature map FA, point PA matches PB if the ratio

of distance L2 to PB of the best match and PB − 1 of the next
best match is below a given threshold τ. However, the pair is
accepted if they match each other. If PB also matches PA,
then PA and PB are returned as a matched pair. For the
matching pair set, the hierarchical refinement method
(HRM) is used to implement a coarse-to-fine matching
strategy, using the semantic characteristics of the deep net-
work and the detailed characteristics of the shallow network
to map the deepest features to the shallowest to achieve
accurate matching purpose [73, 74]. PA,B

n represents the
matching pair at layer n, while FA

n−1 and FB
n−1 represent the

feature mapping at layer n − 1. In the VGG-16 network, each
point in a matching pair is the parent of 4 points in the pre-
vious layer of the network. For each pair of matches, the
point sets ΩA and ΩB are constructed to represent the recep-
tive fields of PA and PB in the n − 1 layer. We feed the
patches of feature maps FA and FB to a DNNS algorithm
and receive the matched pairs in n − 1 layers to optimize
the matched pairs. We iteratively apply DNNS sequentially
using 2 × 2 feature patches to refine the matching pairs hier-
archically by moving to a finer resolution at each step until
the first layer. As the features in the shallow layers of the
neural network are not as robust to geometric transforma-
tions as the deep layers, pairs that have been correctly

SS
D

D
et

ec
tio

ns

N
on

-m
ax

im
um

 su
pp

re
ss

io
n

Conv
3 × 3 × 1024

Conv
3 × 3 × 1024

Conv
1 × 1 × 256

Conv
1 × 1 × 128

Conv: 3 × 3 × (6 × classes + 4)

Extra feature layers

VGG-16
Conv5_3 layer

Conv: 3 × 3 × (4 × classes + 4)

Conv
1 × 1 × 128

Conv
1 × 1 × 128

Image Conv 4-3

Figure 1: SSD network structure chart.

Real-time image
Dense nearest

neighbor
search

Dense nearest
neighbor

search
Warping

Geometric
transformation

estimation

Reference image
Warping image

Matching results

Hierarchical
refinement

Figure 2: Process chart of the deep feature matching method.

5International Journal of Aerospace Engineering



matched are usually generated in the deeper network layers.
These matching pairs are eliminated as they move to shal-
lower layers during the hierarchical refinement matching
process. Therefore, before performing hierarchical refine-
ment matching, PA

5 and PB
5 provided by DNNS are used to

obtain a set of matching points. Using this set of matching
points, a homography matrix HBA is obtained, and image
B is reversed to obtain image C such that images A and B
are initially aligned, whereas images A and C are hierarchi-
cally refined and matched to find possible matching pairs.
Finally, the matching points of image C are mapped to
image B through the homography matrix HBA to complete
the matching task. An overview of the entire proposed
approach is presented in the form of Algorithm 1.

4.2. Mismatch Elimination Strategy Based on GMS. The GMS
algorithm is an image-matching algorithm that processes a
large number of matching points to accomplish high quality
and highly robust imagematching based on grid-based feature
points as neighborhood support estimators [75, 76]. The prin-
ciple of the GMS algorithm is illustrated in Figure 3.

In Figure 3, the image on the left is the matching image
IA, the image on the right is the to-be-matched image IB, and

the two images have M and N feature points, respectively.
The set of all matching points of IA and IB is set to X =
x1, x2,⋯,xi,⋯,xN , where xi = M,N represents a matched
pair of feature points. The GMS algorithm converts motion
smoothness constraints into statistics. A field with few cor-
rect matching points would contain several matching points,
whereas a field with no matching points would contain few
matching points. Therefore, counting the number of other
matching points in the neighborhood of a matching point
enables one to judge whether the matching point is correct.
According to this characteristic, a feature point Mi exists
in area a that matches Ni in area b. The matching pair xi
matches correctly, but the matching pair xj matches incor-
rectly. For region a in Figure 3, let si denote the xi neighbor-
hood support estimator, then [77],

si = xi − 1, 3

where −1 refers to subtracting the matching pair from the
total number. Considering that each feature point is inde-
pendently matched, si could be approximately considered

Input:imageA and imageB
Output:Matching results of two images
// Get the feature map at the n layer
1: imageA->FA

n and imageB->FB
n

// Get feature map mapping points
2: FA-> PA and FB->PB

// Get matching pairs at layer n
3: if (L2 PA

n , PB
n /L2 PA

n , PB
n − 1 < τ)

PA,B
n = PA

n , PB
n

else:
return null

4: Function HRA(FA
n−1, F

B
n−1, P

A,B
n ):

for PA, PB in PA,B
n do

(1) Get the receptive fields at layer
n − 1for feature points defined at layer n:

ΩA= receptive(PA)
ΩB= receptive(PB)

(2) Perform Dense Nearest Neighbor Search:
MA,B = DNNS FA

n−1 ΩA , FB
n−1 ΩB

(3) Record the matched pair at layer n − 1:
PA,B
n−1 append transf orm MA,B

end
return PA,B

n−1
// Find the homography matrix from

matching point pairs
5: PA,B

n−1 -> HBA
6: To initially align imageA and imageB, according to the homography matrix HBA, warp the

imageB to obtain the imageC.
7: imageA and imageC perform steps (2) (3) (4) again.
8: Map the matching points of imageC to imageB by HBA.
9: Output matching point pairs of imageA and imageB.

Algorithm 1: Depth feature matching method.
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to obey a binomial distribution, that is,

si ~
B n, pt if xi is true,

B n, pf if xi is false,
4

Then, the average value mt and the standard deviation st
of correctly matching pairs and the average value mf and
standard deviation sf of incorrectly matching pairs are

mt = Knpt , st = Knpt 1 − pt ,

mf = Knpf , sf = Knpf 1 − pf
5

The GMS algorithm typically uses grids of nonoverlap-
ping regions to segment images, and the grid size is set to
G = g × g. The si value of each matching point pair is calcu-
lated in the unit of its grid, thereby reducing the computa-
tional complexity of solving the si value of each feature
point. Figure 4 shows the mesh motion division. The for-
mula for calculating the threshold τ is as follows:

τ =mf + αsf , 6

where α represents the adjustment parameter. In practice,
the value of mf is usually small, and the value of α is large.
Therefore, the value of τ can be approximately expressed as

τ ≈ αsf ≈ α n 7

The matching pairs in the grid area in which the neigh-
borhood estimator si is greater than τ are retained as the
final reliable feature matching pairs.

4.3. PSiamRML Network Architecture. In actual navigation
tasks, certain differences in illumination, scale, rotation,
translation, deformation, and imaging angle exist between
the real image captured by the UAV and the reference image
prestored in the navigation system. These changes greatly
increase the difficulty and computational complexity of the

image-matching task. The image-matching performance is
usually improved by focusing on two aspects. The first is
to design a more accurate image-matching algorithm. The
second involves the selection of a more appropriate adapta-
tion area in the reference image by choosing an adaptation
subarea with rich features, good stability, and high signifi-
cance as the reference image for navigation. During its flight,
the UAV could attempt to pass across the adaptation area
and bypass the nonadaptation area to realize accurate navi-
gation. With these requirements in mind, based on the
SSD target recognition algorithm, our matching strategy
consisted of combining the DFM and GMS algorithms to
construct an integrated network structure for target recogni-
tion and matching based on the pseudo-Siamese network
and by sharing network weights. The proposed network
structure first selects the adaptation area between the refer-
ence and real-time image using the SSD target recognition
algorithm. Then, it uses the VGG-16 network structure to
extract the target features and the DFM algorithm to match
the target in the adaptation area. Finally, it identifies the
real-time image in the reference image by selecting its posi-
tion using the affine transformation box. The network archi-
tecture model is shown in Figure 5.

5. Experimental Results and Analysis

We verified the feasibility and superiority of the proposed
algorithm by using Opencv3 and MATLAB2016b to conduct
related experiments on the University-Release dataset and
images recorded by the aerial video recorder of the S1000
six-rotor UAV. The operating system of the ground control
station is Ubuntu18.04, and the processor is a laptop with an
Intel(R) Core(TM) i7-11800U CPU with a 2.30GHz proces-
sor and 32GB memory. In this study, nine classical match-
ing algorithms were selected to compare the matching
performance, and the positioning effect of the algorithm
was analyzed and verified by aerial video recorded by the
UAV.

5.1. Comparison of Matching Efficiency. To verify the posi-
tioning performance of the PSiamRML algorithm on the
same scenes from the University-Release dataset, the

True matching
number = 9

|s1| = 8

|s2| = 0

Support matching

xi

False matching
number = 1

xj

IA IB

Figure 3: Schematic diagram of GMS principle. In this example, nine pairs of points are correctly matched, whereas one pair is incorrectly
matched, and the neighborhood support estimate according to the formula is 8.
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significant targets are intercepted from different perspectives
as real-time images, and the other perspective images are
reference images for positioning verification. In the experi-
ment, variations of four matching scenes with interference
effects such as contrast, scale, brightness, blur, and deforma-
tion were selected for comparison in the positioning experi-
ment. Among these scenes, scene A is a low-resolution
environment at different scales, scene B is an environment
with different levels of brightness and blurring, scene C is
an environment with different levels of brightness and con-
trast, and scene D is an environment with different levels
of rotation and deformation. The algorithms ORB+GMS,
AKAZE+GMS, D2-Net, R2D2, SuperGlue, SuperPoint, Aff-
Net+HardNet, and PSiamRML were used for feature match-
ing. Owing to the different application fields for which
image-matching methods are designed, it is difficult to use
a unified evaluation index to define the quality of image-
matching results [78]. In this study, we analyzed the match-

ing and positioning performance of the algorithm by com-
paring two metrics: the putative match ratio and
positioning error. Assuming that the matching rate refers
to the ratio of the number of matching feature points to
the total number of features, the calculation formula is as
follows:

Ppmr =
Nall
NF

, 8

where Nall is the actual total matching points and NF is the
total number of feature points. The higher the putative
match ratio, the greater the number of matching point pairs
obtained by the algorithm and the higher the matching per-
formance; however, a few incorrect matching point pairs
invariably exist. The positioning error refers to the closeness
between the determined UAV position information and its
real position based on the relative position relationship of

IB

a1 a2 a3

a4 a5 a6

a7 a8 a9

b1 b2 b3

b4 b5 b6

b7 b8 b9

IA

Figure 4: GMS grid motion model.

126.9649° E
44.40564° N

GPS location information

Real-time image
Extracting target

depth features Target recognition

Network
weight

Depth feature
matching GMS

Localization result

Matching resultsTarget recognitionReference image
Extracting target

depth features

Figure 5: PSiamRML network architecture. PSiamRML algorithm flow: the aerial image captured by the UAV during the image-matching
navigation task is matched with the reference map preloaded on the UAV. The algorithm first uses the SSD target recognition algorithm to
select the area in which the reference map corresponds with the real-time map, extracts the target features using the VGG-16 network
structure, uses the depth feature matching algorithm to match the targets in the corresponding area, and finally selects the position of
the real-time map on the reference map using the affine transformation box, and feeds the position navigation information back to the UAV.
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the matched feature points. In our work, the L2 distance is
used to measure the error in the positioning center between
the real-time and reference images. The results of the match-
ing and positioning experiments on the images of the four

scenes are shown in Figure 6. The matching results indicate
that, under the condition that the GMS algorithm operates
effectively, the PSiamRML algorithm has a higher matching
success rate without any false matches. In addition, the

Scene A

SIFT+GMS

R2D2

SuperGlue

Location center point
Target recognition box

SuperPoint
AffNet+HardNet
PSiamRML

SURF+GMS
ORB+GMS
AKAZE+GMS
D2-Net

Scene B Scene C Scene D

Figure 6: Comparison of experimental results of various algorithms for sequences of test images.
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algorithm can effectively overcome complex environmental
conditions such as scale, blur, deformation, and low resolu-
tion. Figures 7 and 8 compare the results of the assumed
matching rate and error in the center position in four typical
environments to evaluate the matching performance of the
PSiamRML algorithm in a complex environment. The leg-
end shows the average value of the assumed matching rate
and error in the center position of various algorithms in four
environments. Figures 7 and 8 show that, compared with the
traditional algorithms SIFT+GMS, SURF+GMS, ORB
+GMS, and AKAZE+GMS, PSiamRML is superior in that
it identifies the correct matching points, and the positioning
error is smaller. Although deep learning matching algo-
rithms such as D2-Net, R2D2, SuperGlue, SuperPoint, and
AffNet+HardNet assume a high matching rate and a large
number of correct matching points, the positioning error is
large because of mismatches. The comparison of the match-
ing efficiency in Figures 7 and 8 shows that the PSiamRML
algorithm has high matching accuracy, and it has good sta-
bility and robustness against changes in the contrast, scale,
brightness, blur, deformation, and so on, combined with a
good positioning effect.

5.2. UAV Visual Localization Test. The Pixhawk flight con-
trol board was used to independently build the S1000 six-
rotor UAV image-matching test system to verify the practi-
cability of the proposed algorithm. The UAV image-
matching system includes the UAV, ground control station,
remote control, pod, and wireless image transmission equip-

ment. The real-time flight data of the UAV can be transmit-
ted to the ground station in real-time using the digital
transmission equipment, and the flight instructions of the
ground station can also be transmitted to the UAV. The data
transmission equipment uses the 3DRRadio data transmis-
sion station V5 module. The frequency is 915MHz, the
transmission power is 1000MW, and the transmission dis-
tance is 5 km. The ground station uses QGroundControl to
control drone flight and monitor flight status. When the
UAV moves at high speed or performs actions such as pitch,
roll, and yaw, it is often subjected to vibration and offset
from the external environment and itself, which results in
camera shake. The pod is a device that controls the attitude
stability of the camera, which prevents the camera from tilt-
ing following the UAV, thereby avoiding image instability
caused by shaking. The model that was selected for the
Pan-Tilt-Zoom (PZD) pod is a TOP-T10XPro. The images
collected by the pod are output by an HDMI interface with
a resolution of 3840 × 2160 and an output frame rate of
60 FPS. The pod meets the needs of target recognition and
matching positioning and ensures real-time image recogni-
tion performance. The MK15 model remote control is
selected to control the flight of UAV and display real-time
visual image information of the pod and UAV inspection
area. In image matching, the pod camera captures the real-
time image and transmits it to the wireless image transmis-
sion equipment, which transmits it to the ground station
and remote controller. The designed target recognition and
matching integration algorithm on the computer realizes
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target matching and positioning based on the image
sequence. Then, the coordinates of the UAV and the target
in the world coordinate system are determined by calculat-
ing the photographic geometry to adjust the pose of the
UAV and realize the visual positioning of the UAV. The
configuration of the built UAV image-matching system is
shown in Figure 9.

The UAV test scene based on the PSiamRML algorithm
is shown in Figure 10 and has various unstructured environ-
mental characteristics. The experimental environment
adopts the direct downward flight view of the UAV to more
precisely verify the effectiveness of the proposed algorithm.
The resolution of the reference image was set to 1200 ×
1260, the flying altitude of the UAV was between 300 and
305m, and the flight distance was 350m. The video record-
ing was transmitted to the ground control station in real
time by the wireless image transmission device and was used
as input for the visual positioning algorithm. The aerial
image was preprocessed during the experiment, and the res-
olution of the image collected by the pod was adjusted to
480 × 360 to improve the computing efficiency and save
hardware computing resources. The visualization result of
the real-time image captured by the UAV is shown in
Figure 10. Figure 11 presents the matching result of the
UAV matching reference image and target recognition and
shows that the matching result of the PSiamRML algorithm
completely coincides with the flight trajectory. The
PSiamRML algorithm produced a good identification and

matching result and could output the corresponding center
point of the real-time image in the reference image to realize
the navigation and positioning of the UAV.

The test results in Sections 5.1 and 5.2 show that, com-
pared with other matching algorithms, the proposed
PSiamRML algorithm delivers greatly improved matching
performance and produces good matching and positioning
results for images of scenes affected by deformation, blur,
and complex backgrounds. Based on the above analysis,
the proposed algorithm delivers excellent performance com-
prehensively with the added advantages of robustness and
practicability. Compared with traditional matching algo-
rithms, the accuracy and success rate are also significantly
improved. The PSiamRML algorithm has good practical
applicability and application value.

5.3. Discussion. Image matching is an important task in the
field of computer vision. The advantages of traditional
image-matching methods are their simple principles and
structures that enable them to run in real-time on a CPU,
and their robustness and matching accuracy in general.
Image-matching methods based on depth learning use a
CNN to extract more robust depth features. Although this
has greatly improved the matching accuracy, most depth
learning algorithms rely on the powerful computing power
of a GPU. In recent years, application of deep learning to
image matching has gained attention because a large amount
of data is trained using a multilayer CNN to extract the deep
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features of the target, which further improves the matching
effect. However, various problems would need to be solved
before the deep learning method would be ready for practi-
cal application to image-matching tasks. Currently, the
matching region is arbitrary; hence, a network pretrained
on an image classification dataset may not be entirely suit-
able for the image matching and positioning task, which is
also a great test for the generalization ability of the deep
learning network. The image-matching positioning algo-
rithm needs to have high real-time performance. The deep
learning image-matching algorithm improves the robustness
of the matching by extracting the deep features of the image

using a multilayer CNN, thereby improving the matching
and positioning effect. However, an increase in the number
of convolutional layers and the complexity of the training
network would increase the number of training samples
required and the computational intensity. These shortcom-
ings would adversely affect the real-time performance of
the algorithm, which would not be conducive to accurately
positioning the target. The advantage of the PSiamRML
algorithm is that it combines the characteristics of easy
implementation of a pseudo-Siamese network with a small
number of parameters. It has the ability of a target recogni-
tion algorithm to perceive the environment and integrates

Figure 10: Real-time image captured by UAV ((green circle) geometric center point of real-time image).

Ground station

PSiamRML software

Remote control

Digital transmission
module

Image transmission
module

Vision
integrated PTZ pod

Figure 9: UAV visual localization test system.
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the functions of image matching and positioning of depth
features. It effectively integrates target recognition, match-
ing, and positioning and overcomes the deficiencies of a sin-
gle algorithm.

6. Conclusion

We proposed an integrated localization algorithm for target
recognition and matching based on a pseudo-Siamese net-
work. The algorithm adopts the pseudo-Siamese network
structure, selects the matching area between the reference
and real-time images using the target recognition algorithm,
and uses the matching strategy, which combines the depth
feature and the GMS algorithm, to complete the target rec-
ognition and matching positioning tasks. The experimental
results showed that the proposed algorithm has stronger
robustness and higher matching accuracy than other match-
ing algorithms. Under the premise of ensuring real-time per-
formance, the generalization ability of the network was
effectively improved to realize an integrated design consist-
ing of target recognition and matching positioning algo-
rithms. The computational load is reduced, notably for
substantial changes in the illumination, scale, and imaging
angle, and the recognition and matching performance are

improved. Although the operational efficiency is not as good
as that of some deep learning image-matching methods, the
PSiamRML algorithm has a simple structure and does not
require more prior knowledge of the adaptation area. The
superior image-matching effect has practical value in the
field of engineering. Future research plans are to improve
the operating efficiency of the algorithm while ensuring
excellent matching location capability.
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