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Hypersonic vehicles are difficult to control due to their rapid time variation, dynamic nonlinearity, strong coupling, and model
uncertainty. This paper proposes a new nonlinear predictive controller to solve the problem. An improved model predictive
controller is used to improve the dynamic control performance of hypersonic vehicles by converting nonlinear dynamics into a
state-dependent linear model. The sliding surface can significantly increase the speed of convergence. The radial basis function
is used to reduce the influence of system uncertainty. The stability of the proposed controller is analyzed based on the
Lyapunov approach. The comparison of simulation results verifies the excellent control performance of the proposed method
both in convergence speed and antidisturbance ability.

1. Introduction

Hypersonic vehicles are difficult to control due to their fast
time variation, dynamic nonlinearity, strong coupling, and
model uncertainty. The characteristics of the nonlinear
dynamic model place high demands on the trajectory track-
ing control [1–4]. To ensure stable flight under complex
constraints, the control system must have fast response
and antidisturbance properties [3].

Many papers have been devoted to solving nonlinear
control problems for hypersonic velocities, and many new
controllers have been designed based on fault-tolerant con-
trol [5], robust control [6], adaptive control [7], predictive
control [8], sliding mode control [9], and other control
methods. The dynamic inverse controller is designed to
actively compensate elastic disturbance and solve the system
uncertainty problem [1, 4]. The robust controller is designed
for height and velocity tracking control, and the nonlinear
disturbance observer is used to estimate the external distur-
bances. These controllers can improve the robustness of the
system [6, 7, 10]. Instruction filters and actuators are also
used for robust nonlinear control to eliminate parameter
uncertainty [3]. The adaptive tracking controller based on

neural networks eliminates the uncertainty of the sys-
tem [11].

Sliding mode control is a kind of nonlinear variable struc-
ture control, which has the advantages of fast response, strong
antidisturbance ability, and strong robustness, and has been
widely used in the control of hypersonic vehicle. [9] proposed
a supertorsional sliding mode controller, which can approxi-
mate the global fast terminal sliding mode in finite time and
is robust to uncertain parameters and other disturbances. In
[12], a quasicontinuous sliding mode controller is designed
based on the high-order sliding mode theory, which reduced
the speed and height step response time and suppresses sliding
mode chattering. For the problems of model parameter uncer-
tainty and actuator failure, [13] uses a higher-order linearized
model to establish an adaptive terminal sliding mode to elim-
inate chattering and establishes a fault-tolerant control system
(FTC) to improve the fault-tolerant control capability of slid-
ingmode control. The sliding mode controller based on power
function is used to suppress its chattering effect, and the influ-
ence of disturbance on speed and height is suppressed through
direct feedback [14].

[8, 15] have studied predictive control. The predictive
control method has low requirements, good dynamic control
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performance, and online rolling optimization calculation,
which can better compensate the uncertainty caused by
model mismatch, distortion, and disturbance. [16] proposed
a new passive fault-tolerant control method based on
weighted tubular MPC. By introducing weighting factors,
the control performance of the system can be improved
while the robustness of the system is sacrificed. [17] pro-
posed a predictive control method based on the improved
model and introduced an online parameter estimation
method to eliminate the uncertainty and unknown interfer-
ence of the dynamic model. [18] proposed a tracking robust
nonlinear model predictive control. By combining the
sampled-data model predictive control and sliding mode
control, the influence of uncertainty is reduced efficiently,
and the asymptotic stability of the closed loop system is
improved, while the computational complexity remains
unchanged. [19] proposed an integrated fault-tolerant con-
trol method with a two-layer structure to achieve longitudi-
nal fault-tolerant control of hypersonic vehicles.

From the above analysis, it can be seen that the tradi-
tional nonlinear control methods have poor robustness and
stability, and it is difficult to solve the problem of parameter
uncertainty and system model mismatch. Observers [7, 20],
neural networks [5, 21, 22], and other methods are used to
actively compensate the system uncertainty, which have cer-
tain robustness. The sliding mode control method has obvi-
ous advantages in solving nonlinear problems with fast
response and antidisturbance ability, but it still needs to
solve the chattering problem. The model predictive control
method has the characteristics of good system robustness
and model mismatch. In this paper, the model predictive
sliding mode control method is designed as the trajectory
tracking method for hypersonic vehicle. Based on the model
prediction algorithm, the sliding surface is introduced as the
error model to improve the response speed. At the same
time, to weaken the influence of system uncertainty and
model mismatch, radial basis function neural network
(RBFNN) is introduced to improve the robustness and sta-
bility of the system.

This paper is organized as follows: Section 2 briefly pre-
sents the longitudinal dynamic model of the hypersonic
vehicle. In Section 3, a nonlinear predictive sliding mode
control is designed for hypersonic vehicle, and its stability
is analyzed. Numerical simulations are performed to verify
the effectiveness of the method proposed in Section 4. Sec-
tion 5 provides the conclusion.

2. The Longitudinal Dynamic Model of
Hypersonic Vehicles

The longitudinal dynamic model of hypersonic vehicle con-
sidered here was developed at NASA Langley Center [23].
The nonlinear equations of motion are

_V = T cos α −D
m

−
μ sin γ

r2
, ð1Þ

_γ = L + T sin α

mV
−

μ −V2r
À Á

cos γ
Vr2

, ð2Þ

_h =V sin γ, ð3Þ
_α = q − _γ, ð4Þ

_q = M
Iyy

, ð5Þ

where V , γ, h, α, and q denote the velocity, flight path angle,
altitude, angle of attack, and pitch rate; m, Iyy, μ, and r denote
the mass, the moment of inertia of the vehicle, the gravita-
tional constant, and the radial distance from the earth’s center;
and L, D, T, and M are the lift, the drag, the thrust force, and
the pitching moment of the vehicle, which are modeled as

L = 1
2 ρV

2SCL,

D = 1
2 ρV

2SCD,

T = 1
2 ρV

2SCT ,

Myy =
1
2 ρV

2S�cCM ,

r = h + RE,

ð6Þ

where ρ, S, �c, and RE represent the air density, the reference of
the vehicle, the aerodynamic chord, and the radius of the earth
and CL, CD, CT , and CM denote the lift, drag, thrust, and
moment coefficients. These coefficients are closely related to
the flight status and flight environment.

The aerodynamic coefficients for cruise flight at nominal
conditions (V0 = 4590:3(m/s), h0 = 33528 (m), γ0 = 0, and
q0 = 0) are given by the following equations [24]:

CL = 0:6203α,

CD = 0:6450α2 + 0:0043378α + 0:003772,

CT =
0:02576β,

0:0224 + 0:0033β,

(
β < 1,

β > = 1,

CM = CM αð Þ + CM qð Þ + CM δeð Þ,

CM αð Þ = −0:035α2 + 0:036617α + 5:3261 × 10−6,

CM qð Þ = �cq
2V

� �
−6:796α2 + 0:3105α − 0:2289
À Á

,

CM δEð Þ = ce δE − αð Þ:

ð7Þ

Assuming the engine dynamics in second-order form,
the dynamic equation is given by the following equation:

€β = −2ξω _β − ω2β + ω2βT , ð8Þ
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where ξ and ωn represent the damping and the frequency of
the system and β and βT denote the setting value of the
engine throttle valve and its command value.

3. Design and Stability Analysis of Predictive
Sliding Mode Controller

3.1. Linearization of Nonlinear Systems. In this paper, the Lie
derivative method is used to linearize the nonlinear model of
hypersonic vehicle by linearizing its full-state feedback [23,
25]. After several derivations of the time of the output vari-
ables separately, the control variables appear in the differen-
tial equation:

_V = f1 xð Þ,
€V = ω1 ⋅ _x

m
,

  V⃛ = ω1 ⋅ €x + _xT ⋅Ω2 ⋅ _x
m

,

8>>>>><>>>>>:

_h = f2 xð Þ,
€h = _V sin γ + V _γ cos γ,
  h⃛ = €V sin γ + 2 _V _γ cos γ −V _γ2 sin γ + V€γ cos γ,
h 4ð Þ =   V⃛ sin γ + 3€V _γ cos γ − 3 _V _γ2 sin γ + 3 _V€γ cos γ − 3V _γ€γ sin γ −V _γ3 sin γ + V  γ⃛ cos γ,

8>>>>><>>>>>:
ð9Þ

where

x = V γ α β h½ �T ,
_γ = f3 xð Þ,
€γ = π1x,

  γ⃛ = π1€x + _xTΠ2 _x,

ω1 =m
∂f1 xð Þ
∂x ,

Ω2 =
∂ω1
∂x ,

π1 =
∂f3 xð Þ
∂x ,

Π2 =
∂π1
∂x :

ð10Þ

The vectors ω1 and π1 and matrices Ω2 and Π2 are given
in [23]. The equationsf1ðxÞ,f2ðxÞ, andf3ðxÞare represented
in equations (1), (3), and (2), respectively.

Separate the second derivatives of the angle of attack α
and throttle setting β into control-independent and
control-dependent parts:

€α = €α0 +
ce ⋅ ρ ⋅ V2 ⋅ S ⋅ c

2Iyy

 !
⋅ δE ,

€β = €β0 + ω2βT ,

ð11Þ

where

€β0 = −2ξω _β − ω2β,

€α0 =
1/2ρV2Sc CM αð Þ + CM qð Þ − ceα½ �

Iyy − €γ
:

ð12Þ

€α is the derivative of _α. €α0 is not related to δE . €αe = ∂€α/
∂δE is the part related to δE .

Therefore, €x can be written as

€x = €x0 + δEβT½ �
0 0 €αe 0 0

0 0 0 ω2 0

" #

= €V €γ €α0
€β0

€h
h i

+ δEβT½ �
0 0 €αe 0 0

0 0 0 ω2 0

" #
:

ð13Þ

Based on the above analysis, the linearized system
dynamic equation can be expressed as

  V⃛

h 4ð Þ

" #
=

  V⃛0

h 4ð Þ
0

" #
+

B11 B12

B21 B22

" #
δE

βT

" #
, ð14Þ

where

  ⃛V0 =
ω1 _x0 + _xTΩ2 _x

m
,

h 4ð Þ
0 = ω1€x0 + _xTΩ2 _x

À Á
sin γ

m

 !
+ 3€V _γ cos γ − 3 _V _γ2 sin γ

+ 3 _V€γ cos γ − 3V _γ€γ sin γ −V _γ3 cos γ
+V π1€x0 + _xTΠ2 _x
À Á

cos γ, B

=

Tα cos α − T sin α −Dα

m
€αe,

Tβω
2 cos α
m

,

T cos α + γð Þ + Tα sin a + γð Þ + Lα cos γ −Dα sin γ½ �
m

€αe,
Tβ sin α + γð Þ

m
,

26664
37775

TV = ρVSCT ,

Tβ =
1
2 ρV

2SCβ,

DV = ρVSCD,

LV = ρVSCL,

Lα =
1
2 ρV

2 ∂CL

∂α
,

Dα =
1
2 ρV

2 ∂CD

∂α
:

ð15Þ

The linearized system dynamic equation (14) can be
expressed in the following form:

Y = Y0 + B ⋅ u: ð16Þ

3.2. Design of Predictive Sliding Mode Controller. Consider
the following nonlinear systems:

_x = f xð Þ + g xð Þu,
y = h xð Þ,

ð17Þ
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where x ∈ Rn denotes the system state; u ∈ Rm denotes the
input control variables; f ∈ Rn, g ∈ Rn×m, and h ∈ Rm are
smooth bounded functions; n and m are the number of state
variables and control inputs, and y = ½V h�T .

The output in the moving time frame is predicted by the
Taylor series expansion. Repeating the differentiation up to
ρ times of the output concerning time, together with
repeated substitution of the system (17), yields

_y tð Þ = Lf h xð Þ,

⋮

y ρ−1½ � tð Þ = Lρ−1f h xð Þ,

y ρ½ � tð Þ = Lρf h xð Þ + LgL
ρ−1
f h xð Þu tð Þ,

ð18Þ

where Lρif hiðxÞ ∈ R indicates that hiðxÞ calculates the ρi order
Lie derivative along the vector field f .

When the control order is r, the output Taylor expansion
series must be at least ρ + r, so that the control signal can
appear in the prediction, and then, there exists a current
time difference:

y ρ+1½ � tð Þ = Lρ+1f h xð Þ + p u tð Þ, x tð Þð Þ + LgL
ρ−1
f h xð Þ _u tð Þ,

p11 u tð Þ, x tð Þð Þ = LgL
ρ
f h xð Þu tð Þ +

dLgL
ρ−1
f h xð Þ
dt

u tð Þ,
ð19Þ

where p11 is nonlinear for both uðtÞ and xðtÞ.
Similarly, the higher-order derivatives that can be output

everywhere can be summarized as

Ŷ tð Þ =

ŷ 0½ �

ŷ 1½ �

⋮

ŷ ρ½ �

⋮

ŷ ρ+r½ �

2666666666664

3777777777775
=

h xð Þ
L1f h xð Þ
⋮

Lρf h xð Þ
⋮

Lρ+rf h xð Þ

2666666666664

3777777777775
+

0m×1

⋮

0m×1

H ûð Þ

2666664

3777775, ð20Þ

where HðûÞ ∈ Rmðr+1Þ is a matrix about ûðtÞ, _̂uðtÞ,⋯, û½r�ðtÞ.

H ûð Þ =

LgL
ρ−1
f h xð Þû tð Þ

p11 û tð Þ, x tð Þð Þ + LgL
ρ−1
f h xð Þ _̂u tð Þ

⋮

pr1 û tð Þ, x tð Þð Þ + prr û tð Þ,⋯,û r−1½ � tð Þ, x tð Þ
� �

+⋯+LgL
ρ−1
f h xð Þû r½ � tð Þ

266666664

377777775
,

ð21Þ

where b�u = ½ûðtÞ _̂uðtÞ⋯ û½r�ðtÞ�.

In this paper, the step function is chosen as the actual
control for predictive control:

u t + τð Þ = u tð Þ,

_u tð Þ =⋯ = u r½ � tð Þ = 0:
ð22Þ

Time-dependent derivative of current system output:

_y1 = Lf h1 xð Þ = _V ,

€y1 = L2f h1 xð Þ = €V ,

   ⃛y1 = L3f h1 xð Þ + Lg1L
2
f h1 xð Þu1 + Lg2L

2
f h1 xð Þu2 =   V⃛ ,

_y2 = Lf h2 xð Þ = _h,

€y2 = L2f h2 xð Þ = €h,

   ⃛y2 = L3f h2 xð Þ =   h⃛,

y 4ð Þ
2 = L4f h2 xð Þ + Lg1L

3
f h2 xð Þu1 + Lg2L

3
f h2 xð Þu2 = h 4ð Þ:

ð23Þ

According to the linearization in the previous section,
the relative orders of the two outputs of the hypersonic vehi-
cle longitudinal model are ρ1 = 3 and ρ2 = 4. During the roll-
ing prediction time, the future output of the system is
expanded by the Taylor series, omitting the high-level term,
to obtain the predicted value:

yV t + τð Þ ≅ yV tð Þ + τ _yV tð Þ+⋯+ τ3

3! y
3
V tð Þ,

yh t + τð Þ ≅ yh tð Þ + τ _yh tð Þ+⋯+ τ4

4! y
4
h tð Þ:

ð24Þ

At the prediction time τ, the output of the nonlinear sys-
tem equation can be expressed as

y t + τð Þ =
y1 t + τð Þ
y2 t + τð Þ

" #
= Γ τð ÞY tð Þ, ð25Þ

where

Γ τð Þ = diag Γ1Γ2½ �,

Γi τð Þ = 1 τ⋯ τρi

ρi!

� �
, 1 ≤ i ≤ 2,

Y tð Þ = diag Y1Y2½ �,

Yi =

yi tð Þ
⋮

y ρi½ �
i tð Þ

26664
37775, 1 ≤ i ≤ 2:

ð26Þ
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For the same reason,

yc t + τð Þ =
yc1 t + τð Þ
yc2 t + τð Þ

" #
= Γ τð ÞYc tð Þ: ð27Þ

In practical application system, due to perturbation and
model adaptation, there is a certain error between the pre-
dicted output of the model and the actual output. The error
at the time t + τ is

e t + τð Þ = yc t + τð Þ − y t + τð Þ = Γ τð Þ Yc tð Þ − Y tð Þð Þ: ð28Þ

In real systems, the initial point is often unknown at any
time. To make the system more stable, the sliding mode sur-
face is designed according to the error between the predicted
output and the expected output, so that the system motion
keeps moving close to the stability of the sliding mode sur-
face. Referring to [14, 26, 27], the sliding surfaces are
designed as equations (29) and (30). The speed sliding mode
surface and the height sliding mode surface are designed,
respectively,

sV t + τð Þ = CV ⋅ EV t + τð Þ = cVi ⋅ e
i½ �
V t + τð Þ, ð29Þ

sh t + τð Þ = Ch ⋅ Eh t + τð Þ = chj ⋅ e
j½ �
h t + τð Þ, ð30Þ

where e½i�V ðt + τÞ =V ½i� −V ½i�
c , e½ j�h ðt + τÞ = h½j� − h½j�c , cVi ⊂ CV

∈ R3×1, chj ⊂ Ch ∈ R4×1, i = 0, 1, 2, and j = 0, 1, 2, 3.
Then, the performance index of the predictive sliding

mode controller can be designed as

J = 1
2

ðTp

0
S t + τð ÞTS t + τð Þdτ: ð31Þ

The necessary condition to achieve the best performance
indicator is

∂J
∂u = 0: ð32Þ

Theorem 1. Consider continuous-time nonlinear systems,
and assume that the output of the prediction interval is pre-
dicted through ρ order Taylor expansion. For a given control
order r ≥ 0, the control law of the minimum index of the opti-
mal nonlinear control system is [15]

u tð Þ = − LgL
ρ−1
f h xð Þ

� �−1
KMρ + Lρf h xð Þ − ω ρ½ � tð Þ
� �

, ð33Þ

where Mρ ∈ Rm×ρ.

Mρ =

h xð Þ − ω tð Þ
L1f h xð Þ − ω 1½ � tð Þ

⋮

Lρ−1g h xð Þ − ω ρ−1½ � tð Þ

2666664

3777775: ð34Þ

K ∈ Rm×ρ represents the matrix of ΓiðTpÞ = Γ−1i Γi:

Γ i,jð Þ =
Ti+j−1
p

i − 1ð Þ! j − 1ð Þ! i + j − 1ð Þ , i, j = 1,⋯, ρ + r + 1:

ð35Þ

Derivation process:
The performance index for the predictive sliding mode

controller is

J = 1
2

ðTp

0
S t + τð ÞTS t + τð Þdτ = 1

2

ðTp

0
CE t + τð Þð ÞT CE t + τð Þð Þdτ,

ð36Þ

where

C ⋅ E t + τð Þ = C ⋅ M +
0mρ×1

H uð Þ

" # !
, ð37Þ

where

M =

L0f h xð Þ
L1f h xð Þ
⋮

Lρ+rf h xð Þ

2666664

3777775 −

ω tð Þ
_ω tð Þ
⋮

ω ρ+r½ � tð Þ

2666664

3777775: ð38Þ

Derivation of equation (21) is

∂H
∂�u =

LgL
ρ−1
f h xð Þ 0m×m ⋯ 0m×m

xm×m LgL
ρ−1
f h xð Þ ⋯ 0m×m

⋮ ⋮ ⋱ ⋮

xm×m xm×m ⋯ LgL
ρ−1
f h xð Þ

26666664

37777775,

ð39Þ

where xm×m represents a nonzero m ×m size date block in
∂H/∂u and �u = ½uðtÞ _uðtÞ⋯ u½r�ðtÞ�.

Input layer node
number n

Hidden layer node
number m

Output layer

xn

x2

x1

𝜙1

𝜙2

𝜙m

Y

Figure 1: RBFNN structure.
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Equation (39) can be written as

∂H
∂�u

� �T
�TT
ρr
�Trr

h i
M + ∂H

∂�u

� �T
�TrrH �uð Þ = 0: ð40Þ

According to the definition of relativity, LgL
ρ−1
f hðxÞ is

reversible, and the ð∂H/∂uÞT is also reversible. At the same
time, Γ rr is a positive definite matrix. The above equation
can be written in

H b�u� �
= − Γ−1

rr Γ
T
ρrIm r+1ð Þ×m r+1ð Þ

h i
M: ð41Þ

Considering equations (21) and (22), the above equation
can be written as

LgL
ρ−1
f h xð Þu tð Þ + KMρ + Lρf h xð Þ − ω tð Þ ρ½ � = 0, ð42Þ

where K represents the first m columns of Γ−1
rr Γ

T
ρr , and sim-

ilarly, Mρ can be represented as

Mρ = c1 h xð Þ −w tð Þð ÞT c2 L1f h xð Þ −w 1½ � tð Þ
� �T

⋯ cρ Lρ−1f h xð Þ −w ρ−1½ � tð Þ
� �T� �T

:

ð43Þ

Equation (33) can be solved by the above equation,
where½c1,⋯,cρ�T ⊂C = ½CV ; Ch�.

For the current system, equation (33) can be rewritten as
follows: the predictive sliding mode controller designed for
the system dynamic equation (16):

u tð Þ = −B−1 KS + Fx − Ycð Þ, ð44Þ

where Yc = y½ρ�c = ½y½ρ1�V ðtÞ y½ρ2�H ðtÞ�T and Fx = ½   V⃛0 h
ð4Þ
0 �T .

By reference [15, 28], this paper designs the formula
feedback matrix as follows:

K =
K1 0

0 K2

" #
,

K1 =
27
2T3

p

42
5T2

p

7
2Tp

" #
,

K2 =
216
5T4

p

36
T3
p

108
7T2

p

9
2Tp

" #
,

ð45Þ

where Tp = step∗stepNum, in which Tp represents predict
time, step means the simulation step, and stepNum is num-
ber of predictive steps.

3.3. Radial Basis Function Neural Network Controller. Radial
basis function (RBF) has the advantages of being able to
approximate any nonlinear function, dealing with the laws
that are difficult to analyze in the system, strong generaliza-
tion ability, and fast learning convergence [29, 30].

As shown in Figure 1, the RBFNN structure is mainly
composed of an input layer, a hidden layer, and an output

Table 1: Some default parameters used in this paper.

Parameter Value Parameter Value Parameter Value

m (kg) 136820 Iyy (kg·m2) 9490740 ρ0 (kg/m
3) 1.2266

S (m2) 334.73 Ce 0.292 H0 (m) 7315.2

C (m) 24.38 ξ 0.7 δE [-20, 20]

ε 3.9802E14 ω 20 CV [80, 105, 50]

βT [0~ 1.2] step (s) 0.05 Ch [40, 50.625, 45, 10]

RE (m) 6373100 stepNum 30

RBFNN

Sliding
surface

Dynamics
model

V,𝛾,h,𝛼,qδE,𝛽t

𝜌

Predictive
sliding mode

controller

SV,ShEV,Eh

V,h

Linearized
model

EV,Eh

Ve,he

Figure 2: Trajectory tracking control system based on the predictive sliding mode controller.
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layer. Use the Gaussian function as the transfer function of
RBF [31]:

ϕi xð Þ = exp −
x − cik k2
2σ2i

� �
, i = 1, 2,⋯,m: ð46Þ

When the Gaussian function is selected as the hidden layer
transfer function of RBF, the hidden layer is used to realize the
nonlinear mapping of X⟶ ϕiðxÞ, using the output layer to
realize linear mapping of ϕiðxÞ⟶ yk. Assume that the input
of the input layer is X = ðx1, x2,⋯, xj,⋯, xnÞ and the actual
output is Y = ðy1, y2,⋯, yk,⋯, ypÞ; the output of the k neural
network in the output layer can be expressed as

ŷk = 〠
m

i=1
wkϕi Xð Þ, k = 1, 2,⋯,m, ð47Þ

wherem is the number of output layer nodes and hidden layer
nodes, p is the number of output layer nodes, wik is the con-
nection weight between the ith unit of the node in the hidden
layer and the k neurons in the output layer, and RiðxÞ is the
transfer function of the ith neuron in the hidden layer. There-
fore, when the cluster center ci and weight wk of RBF are
determined, the corresponding output value of RBF can be
obtained under the condition of a given output.

3.4. Design of Predictive Sliding Mode Controller considering
Uncertainty Compensation. Considering the mathematical
model uncertainty and the existence of external disturbances
dt ∈ Rm×1 in the system,

Y = Y0 + B ⋅ u + dt: ð48Þ

The RBFNN approximation error is introduced. The
learning algorithm of neural network weight matrix is

_WV = −αVϕVSV ,

_Wh = −αhϕhSh:
ð49Þ

Then, the predictive sliding mode controller using RBF
neural network to compensate for the disturbance error is

u tð Þ = −B−1 KS + Fx − Yc + ρð Þ, ð50Þ
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Figure 4: Height changes with time under different controllers.
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Figure 3: Velocity changes with time under different controllers.

7International Journal of Aerospace Engineering



where ρ denotes the compensation for system uncertainty
factors:

ρ = WVϕVWhϕh½ �T = W∗
VϕVW

∗
hϕh½ �T + εVεh½ �T , ð51Þ

where W∗ is ideal optimal weight matrix and εV and εh
represent approximation errors. Assume that εV and εh are
bounded, and the neural network can approximate the
uncertainty of the model with any precision.

εVk k ≤ εVp,
ð∞
0

εVk k2dt <∞,

εhk k ≤ εhp,
ð∞
0

εhk k2dt <∞,
ð52Þ

where εVp and εhp are normal numbers.
Based on the SMC and RBFNN, this paper designs an

improved nonlinear predictive sliding mode controller. The
proposed control scheme is summarized in Figure 2.

3.5. Stability Analysis of the Control System. This section
analyzes the stability of the control law (50) proposed in this
paper and first makes the following assumptions [32]:

The internal zero dynamics of the nonlinear system
driven by desired state (w) are defined for all t ≥ 0, bounded
and uniformly asymptotically stable.

Assume matrix K in equation (50) be expressed as K =
½k0 k1 ⋯ kρ−1�, where ki ∈ Rm×m. Formula (50) is substituted
into formula (18):

y ρ½ � tð Þ = Lρf h xð Þ − 〠
ρ−1

i=0
kici Lif h xð Þ −w i½ � tð Þ
� �

− Lρf h xð Þ +w ρ½ � tð Þ +Wϕ,
ð53Þ

where ci represents the values of sliding surfaces (29) and
(30), respectively, ½c1,⋯,cρ�T ⊂C = ½CV ; Ch�; Wϕ represents
compensation for uncertainty.

Consider tracking error:

e tð Þ =w tð Þ − y tð Þ: ð54Þ

Substitute (54) into (53):

e ρ½ � tð Þ + kρ−1cρ−1e
ρ−1½ � tð Þ+⋯+k0c0e tð Þ = 0: ð55Þ

It can be proved that the current controller is stable. Ref-
erence [15] shows the detailed proof process.

To prove that the RBFNN controller is convergent, the
Lyapunov function is designed as [13]

L = 1
2 s

T
V ⋅ sV + 1

2αTr
~WT ⋅ ~W

� �
, ð56Þ

where ~WV =WV
∗ −WV . Because of the similarity of the

proving process between the stability of velocity channel

and altitude channel, only the velocity channel is analyzed
here.

Differential equation (56):

_L = sTV ⋅ _sV + 1
αV

Tr ~WT
V ⋅ _~WV

� �
: ð57Þ

Solve the two distributions above:

1
αV

Tr ~WT
V ⋅ _~WV

� �
= 1
αV

Tr ~WT
V ⋅ WV

∗ −WVð Þ
h i

= −
1
αV

Tr ~WT
V ⋅ −αVϕVs

T
V

À Áh i
:

ð58Þ

According to formulas (29) and (48)–(50),

_sV = cV1 _eV + cV2€eV + cV3   ⃛eV +WT
VϕV − ρV : ð59Þ

General assumptions [26]:

DV x, u, tð Þj j ≤ DV0 x, u, tð Þj j, ð60Þ

where DV0ðx, u, tÞ are nonnegative numbers. Take con-
trol quantity u as solution

−KV sVj j = sV cV1 _eV + cV2€eV + cV3   ⃛eVð Þ, ð61Þ

where KV is optional positive integer; then,

f s = −KV sVj j +DVsV ≤ DVj j − KVð Þ SVj j: ð62Þ

Substitute (62) and (59) into (54):

sTV ⋅ _sV = f s +WT
VϕV − ρV ,

_L = f s + sTV ~WT
VϕV −W∗

VϕV − εV
� �

−
1
αV

Tr ~WT
V ⋅ −αVϕVsTV
À Áh i

= f s − sTVεV ≤ DVj j − KVð Þ sVj j − sTVεV :

ð63Þ

When KV > jDV0j and sV ≠ 0, _L is negative definite, while
outside region ∑sV = fsVðtÞj0 ≤ ksVðtÞk ≤ ðεV /ðjDV j − KVÞÞ
g. According to the assumption and Lyapunov theory,
lim

t⟶∞
sVðtÞ = 0. According to formula (29), lim

t⟶∞
eVðtÞ = 0,

which means the closed loop system of velocity channel is
asymptotically stable. Similarly, it can be deduced that the
closed loop system of high channel is asymptotically stable
as lim

t⟶∞
shðtÞ = 0 and lim

t⟶∞
ehðtÞ = 0 show.

4. Simulation

For the longitudinal dynamic model and predictive sliding
mode control of the hypersonic vehicle in this paper, this
section verifies the correctness and effectiveness of the con-
troller through simulation. In this section, we select level
flight cruising stage (V0 = 4590:3m/s, h0 = 33528m, γ0 = 0,
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q0 = 0, and α = 1:8736 ° ), the initial elevator angle δE = −
0:4129 ° , and the engine throttle command valve βT =
0:1788. Given the expected trajectory,

Yd =
Vd

hd

" #
=

4600 + 20 ⋅ cos 0:01 × tð Þ
33538 + 30 ⋅ sin 0:01 × tð Þ

" #
: ð64Þ

Relevant vehicle and controller parameters adopted are
shown in Table 1.

In this simulation, the computing platform is Intel i7-
12700 @2.1GHz, 32GB RAM, and the operating system is
Windows 10.

4.1. Comparison between Different Controllers. To verify the
rationality of the nonlinear predictive sliding mode control-
ler with RBFNN (NPCR) designed in this paper, the
dynamic inversion controller (DIC) in [33], the adaptive
sliding mode controller (SMC) in [34], and the nonlinear

predictive controller (NPC) in [28] are introduced for
comparison.

The state tracking curves are shown in Figures 3 and 4,
and the error curves are shown in Figures 5 and 6. It is obvi-
ously that the NPCR controller is the fastest one to reach the
expected convergence state both in velocity and height con-
trol. The SMC controller is the second one to reach conver-
gence in velocity control, while the DIC controller is the
second in height control. The traditional NPC is the slowest
with oscillation. In terms of stability, the NPCR and SMC
controller have no oscillation, and DIC controller is better
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Figure 8: Height changes with time under different prediction
steps.
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Table 2: Standard deviation comparison of different controllers.

No. DIC SMC NPC NPCR

1 0.1234761 0.387294 0.0648344 0.238022

2 0.132577 0.3969378 0.0645986 0.2374112

3 0.1224386 0.3837611 0.0649847 0.2368241

4 0.129998 0.3970867 0.064596 0.2380209

5 0.1229457 0.3866949 0.0642442 0.2455137

6 0.120701 0.3871694 0.0634814 0.256432

7 0.1216268 0.3908661 0.0649917 0.253489

8 0.1189904 0.3919185 0.0642716 0.2385589

9 0.1200567 0.3810074 0.0623854 0.2328096

10 0.1232244 0.3859532 0.0633241 0.2370749

Average 0.12360347 0.38886891 0.06417121 0.24141563
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Figure 6: Height error changes with time under different
controllers.
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than NPC controller. The error curves can support these
views.

In addition, the running time of different controllers is
simulated and analyzed. Run all the simulations for 10 times.
The running time is shown in Table 2. It is found that
among all the four controllers, NPC controller has the fastest
computing speed while its effect is the worst. SMC controller
is the slowest while its effect is only second to NPCR control-
ler. Due to the introduction of RBFNN, the running time of
NPCR controller proposed in this paper has increased com-
pared with NPC controller, but it still has high computa-

tional efficiency. The calculation time of all controllers is
far less than the flight time of hypersonic vehicles, which
can meet the mission requirements.

It is found that the convergence stability of NPCR is bet-
ter than the other controllers. Moreover, compared with
other controllers, the NPCR proposed in this paper has the
following advantages: nonoscillatory, fast convergence
speed, and stable flight.

4.2. Comparison of Predictive Steps. To better analyze the
control performance of NPCR, this paper designs different
prediction steps [30, 40, 50, 60, 70, and 100] to compare,
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Figure 12: Height error changes with time under different
controllers.
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and the results are shown in Figures 7 and 8. Simulation
shows that when the predictive step size is small (<29), the
prediction time is too short to realize trajectory tracking
control. By comparing the velocity change curve and the
height change curve, it is found that the convergence time
of NPCR controller increases with the increase of the predic-
tion step; that is, the smaller the prediction step, the faster
the convergence speed. Therefore, 30 (the prediction time
is 1.5 s) is selected in this paper as the prediction step.

4.3. Comparison of Jitter Suppression. To solve the uncer-
tainties existing in the system, RBFNN is introduced in this
paper to predict and compensate for the disturbances in the
control process. In this section, the SMC controller means
the nonlinear predictive controller with sliding surface. As
is shown in Figures 9 and 10, the SMC and NPCR controller
have converged to the expected state in a very short time on
velocity control, while the NPC controller is still oscillating.
The same goes for height control as shown in Figures 11 and
12. It is found that the traditional NPC controller has a weak
ability to suppress uncertainties, while the NPC effect is bet-
ter than the traditional NPC controller after the introduction
of sliding mode and RBF. The introduction of RBF and the
sliding mode can achieve good control performance. At the
same time, it has strong robustness to model uncertainty
and external disturbances.

Although the introduction of RBFNN has considerable
advantages, it is difficult to distinguish the differences
between SMC and NPCR controller. To further analyze the
effect of introducing RBFNN, run for 10 times, intercept
the error value of the 25th~30th seconds, and count its stan-
dard deviation. The details are shown in Table 3. The aver-
age standard deviation of NPCR controller is less than
SMC controller both in velocity and height, while that of
the above two controllers is obviously less than NPC con-
troller. It is found that the introduction of RBF improves
the convergence speed, the stability of the controller, and
the performance of the controller.

5. Conclusion

The hypersonic vehicle has the characteristics of a large
flight airspace span, fast speed, being sensitive to environ-

mental parameters, fast time variation, coupling, nonlinear-
ity, uncertainty, and so on, which means that the
performance of the flight controller needs higher require-
ments. Traditional linear control methods and nonlinear
predictive control methods have shortcomings. Therefore,
this paper adopts a nonlinear predictive control method,
introduces sliding mode surface as an error function, and
uses RBFNN to compensate for uncertainty and external dis-
turbance. Simulation results show that the predictive sliding
mode control method proposed in this paper can not only
significantly improve the convergence performance, conver-
gence speed, and stability of nonlinear predictive control but
also significantly improve robustness to parameter uncer-
tainties and external disturbances.
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