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The conventional pretension design of cable mesh usually takes the ring truss as a rigid body or assumes small deformation. This
method needs to be more accurate in designing super large aperture antennas. A cable mesh design method considering the large
deformation of the ring truss is proposed in this paper based on the flexible multibody dynamics (FMD) and the force density
method (FDM). With this method, the significant range deviation of the boundary points’ position of the ring truss under the
tension of the external area of the cable mesh after the completion of the pretension design can be predicted with high
accuracy. After the ring truss and cable mesh surface are assembled stably, there is only a minimal deviation between the
actual mesh surface and the theoretical mesh surface of the antenna, and there is only a minimal deviation between the
genuine mesh pretension and the design pretension. The above calculation method is verified by numerical simulation, and the
simulation results show that the technique can be applied to the mesh pretension design of a super large aperture ring
deployable antenna.

1. Introduction

With the development of electronic reconnaissance and
mobile communications, the demand for a super large aper-
ture antenna is increasingly urgent. The large ring deploy-
able antenna has become one of the research hot spots in
the world for its lightweight and high storage ratio [1, 2].
The deployable ring antenna mainly consists of a ring truss,
front mesh, metal mesh, rear mesh, and tension ties, as
shown in Figure 1(a). The ring truss is mainly composed
of the quadrilateral element that consists of the longeron,
batten, thick diagonal, thin diagonal, T-shaped connection,
and synchronous connection, as shown in Figure 1(b). The
rod is usually made of light and long composite thin-
walled pipe fittings, and the connection is usually made of
high-strength and high-rigidity metal. The connecting part
between the cable mesh and the ring truss is called the exter-
nal mesh area; the rest is called the internal mesh area. The
mesh model pretension design is one of the key issues that
researchers focus on during the development of the deploy-
able ring antenna [3–5]. At present, the cable mesh preten-
sion design methods of large deployment antennae include

the force density method [6, 7], the equilibrium matrix
method [8, 9], and the dynamic relaxation method [5]. In
addition, in recent years, some scholars have assumed that
the ring truss occurs small deformation and performed the
cable mesh pretension design by using the overall calculation
method of the ring antenna [10, 11]. The above methods
usually assume that the ring truss is rigid or occurs small
deformation in the design of mesh pretension. However,
with the increased antenna aperture, the super large aperture
ring truss always produces large deformation and displace-
ment under the cable mesh tension. With the mesh preten-
sion design method that assumes the ring truss is rigid or
occurs small deformation for super large aperture ring
antenna, if the mesh is connected to the deployable truss
according to the theoretical design in the real assembly envi-
ronment, the connection nodes for the mesh and ring truss
are deviated from the initial design and the mesh pretension
is reduced to a certain extent compared with the initial pre-
tension. Therefore, the mesh surface accuracy and preten-
sion cannot meet the initial design requirements. The
larger the reflector aperture, the greater the difference, as
shown in Figure 2.
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In recent years, researchers from Tsinghua University
and China Academy of Space Technology applied the flexi-
ble multibody system dynamic theory to the dynamic simu-
lation of the deployment process and structural optimization
design of large deployable antenna [12–17]. They precisely
predicted the large deformation and displacement of flexible
rods which cannot be completed by the traditional finite ele-
ment method during the deployment process of a large
deployable antenna in ground test and orbit environments,
and the simulation is proved by ground tests and observa-
tion in space.

However, few literatures are found on the research of the
mesh design for super large aperture antennas. For this pur-
pose, this paper proposes a cable mesh pretension method
that considers the large deformation of the ring truss based
on the flexible multibody dynamic theory as mentioned
above. This method takes the large displacement and defor-
mation of the ring truss under the mesh pretension into full
consideration. Therefore, the connection node for the ring
truss and the cable mesh after deformation has a very mini-
mal deviation from the theoretical design. In this way, the
mesh pretension is almost consistent with the design preten-
sion. Finally, the antenna has high mesh surface accuracy,

and the actual mesh and design pretension meet the accu-
racy requirements. The simulation results show that this
method is correct and effective and can be used for the cable
mesh design of the deployable ring antenna with a super
large aperture.

2. The Force Density Method

The force density method is basically to establish the force
equilibrium equation of each node on the equilibrium geom-
etries of the cable mesh structure and convert the nonlinear
balance equation into a linear system of equations for the
solution by introducing the force density [18, 19].

As shown in Figure 3, the force equilibrium equation of
the node i in the direction x in the mesh structure equilib-
rium state is

〠
j∈Ui

Tij

Lij
xi − xj
À Á

= f ix: ð1Þ

In Formula (1), Ui is a set of nodes connected to node i.
ij is the element that connects node i and node j. Tij is the
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Figure 2: The deformation of the ring truss under the cable mesh tension.
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tension of the element ij, and Lij is the length of the element
ij.

If qij = Tij/Lij is defined as the force density of the ele-
ment ij, the above formula can be expressed as

〠
j∈Ui

qij xi − xj
À Á

= f ix: ð2Þ

The force equilibrium equation for all nodes in the direc-
tion x in the mesh structure equilibrium state is written in
the matrix form

CTQCx = fx, ð3Þ

where C is the structural topology matrix of m × n, m is the
total number of cable elements, n is the total number of
nodes, and Q is a diagonal matrix of m ×m consisting of
the force density of cable elements. Suppose that in the n
nodes, the number of free nodes is nf , the number of fixed
nodes is ng, and the topological matrix C are divided into
blocks C f and Cg. xf is the coordinate of free nodes, xg is
the coordinate of fixed nodes, the external force on free
nodes is equal to 0, and f xg is the reaction force of fixed node
support. Therefore, Formula (3) can be expressed as

C f

Cg

 !
Q C f Cg

À Á x f

xg

 !
=

0

fxg

 !
: ð4Þ

By solving Formula (4), the coordinates of all free nodes
in the direction x and the force of fixed nodes in the direc-
tion x are obtained.

Similarly, the force equilibrium matrix of nodes y and z
can be obtained. Thus, the coordinates of all free nodes and
the fixed node forces are obtained. According to the
obtained node coordinates, the length Lij of the cable seg-
ment at the time of force balance can be calculated, and then,
the cable force Tij at the time of balance can be obtained by
using qij = Tij/Lij. The pretension form finding for the ring
deployable antenna is to ensure that by finding a set of force
density, the coordinates of the free nodes of the cable mesh
are at the theoretic coordinates when the cable mesh is bal-

anced, and the cable mesh tension is as uniform as possible.
In this paper, the objective optimization mathematical
model is established with the cable segment force density
as the design parameter. The optimization model is shown
in Formula (5).

Find q1, q2,⋯qm,

Min f = Tmax
Tmin

,

s:t:

CTQCx = fx,
CTQCy = f y,

CTQCz = f z ,
0 < qi < q½ �, i = 1 ~m,

zf i =
x2f i + y2f i

4f ,

xgi, ygi, zgi
� �T

= const,

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð5Þ

where qi is the force density of each segment, m is the num-
ber of segments for the cable structure, f is the objective
function, ½q� is the maximum design allowable value of the
force density of the cable segment, f i is the number of free
nodes, and gi is the number of fixed nodes.

3. Dynamic Modelling of the Large Ring Truss

The deployable ring truss consists of the hinge with minimal
deformation and the rod with large deformation. This paper
assumes that the hinge is rigid, and its model is built based
on the rigid body dynamics theory. The rod model is based
on the geometrically exact beam theory [20, 21]. Finally,
the constraints model is built based on the multirigid-body
dynamic theory.

In the study of the flexible multibody dynamics,
Lagrange’s equation of first kind is adopted as the governing
equation of the system dynamics as shown in Formula (6)

d
dt

∂T
∂ _q

� �
−
∂T
∂q

+ ∂V
∂q

+ΦT
qλ =Q,

Φ q, tð Þ = 0,
ð6Þ

where T is kinetic energy, q is generalized coordinate, _q is
generalized speed, V is elastic potential energy, Φ is con-
straint equations, λ is the Lagrange multiplier, and Q is the
generalized external force.

3.1. Rigid Body Modelling. The motion of a rigid body in
three-dimensional space can be divided into the translation
in three directions and the rotation in three directions. Each
rigid body has 6-degree of freedom. In selecting generalized
coordinates, the position of the center of mass of the rigid
body is used to determine the translational configuration,
there are many descriptions of rotation in literature [22].
In this paper, the rotation vector method is used to describe

f j

i

Figure 3: The force density method description.
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the rotation of a rigid body. According to Euler’s rotation
theorem and the definition of the rotation vector [22], the
rotation vector φ is parallel to the rotation axis a, and the
modulus is equal to the rotation angle. The conversion rela-
tionship from rotation vector φ to rotation matrix A is

A = I + h1~φ + h2~φ~φ, ð7Þ

where I is the 3D identity matrix and h1 and h2 are the func-
tions of the rotation angle φ

h1 =
sin φ

φ
, h2 =

1 − cos φ
φ2 : ð8Þ

~φ is the antisymmetric matrix of the rotation vector φ,
and the three Cartesian components φ1, φ2, and φ3 using
φ can be expressed as

~φ =
0 −φ3 φ2

φ3 0 −φ1

−φ2 φ1 0

2
664

3
775: ð9Þ

The component form ω and the rotation vector _φ of the
angular velocity of the local coordinate system in the global
coordinate system satisfy the following conversions to the
time derivative:

ω =H φð Þ _φ,
H = h1I − h2~φ + h3φφ

T ,
ð10Þ

where

h3 =
φ − sin φ

φ3 : ð11Þ

In addition, the component form �ω of the angular veloc-
ity of the rotation system of coordinates in the local coordi-
nate system can be obtained by ω multiplying the inverse
matrix of A

�ω = ATω = ATH _φ: ð12Þ

It can be further proved that

HT =ATH: ð13Þ

Finally, we can get

�ω =HT _φ: ð14Þ

Considering that the rigid body has no elastic potential
energy term, Formula (6) can be simplified as

d
dt

∂T
∂ _q

� �T

+ΦT
q λ =Q,

Φ q, tð Þ = 0,
ð15Þ

where q = ½ri φi� .The kinetic energy expression in the above
formula is

T = 1
2mi _ri

T _ri +
1
2 �ωi

T Ji�ωi, ð16Þ

where J is the moment of inertia in the center of mass coor-
dinate system.

3.2. Flexible Body Modelling. Under the external mesh cable
tension, the composite thin-walled pipe fittings of the ring
truss will have large-scale displacement and large deforma-
tion. According to the geometrically exact beam theory, the
section curvature of any beam element with large deforma-
tion and large-scale rotation is geometrically accurate.
Therefore, the model of the composite thin-walled rods
using the geometrically exact beam theory is more accurate
than the conventional finite element method. This paper
uses the flexible beam model based on the geometrically
exact beam theory. In the modeling process, the centerline
position r at the left and right ends of the beam element
and the rotation vector φ is selected as the generalized coor-
dinates to describe the beam element configuration, as
shown in Figure 4.

The generalized coordinates of the beam element can be
expressed as

qb = rT1 φ
T
1 r

T
2 φ

T
2

Â ÃT
: ð17Þ

For the interpolation of the rotation vector φ, Crisfield
and Jelenić [23] proposed to establish a reference coordinate
system in the beam element and interpolate the rotation vec-
tor under the reference coordinate system. Without the
influence of the reference coordinate system, the curvature
obtained based on this calculation can be the same in any
observation coordinate system. In this paper, the rotation
vector is interpolated according to this method. The rotation
vector of any node relative to the reference coordinate sys-
tem is written as φr . According to the above, any node of
the centerline in the beam element r and φr are expressed
as follows:

r = 1 − ξð Þr1 + ξr2,
φr = 1 − ξð Þφr

1 + ξφr
2,

ð18Þ

where ξ ∈ ½0, 1� is the parameter coordinates in the beam ele-
ment. According to the above beam element functions, it can
be expressed as follows:

Tb =
L
2

ð1
0
ρA _rT _r + �ωT J �ω

Ã
dξ, ð19Þ

where L is the length of the beam element and A is the cross-
section area of the element.

The beam element’s potential energy can be expressed as

V = L
2

ð1
0
NT γ − γ0ð Þ +MT κ − κ0ð ÞÂ Ã

dξ, ð20Þ
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where

γ =ATr ′,
κ =HTφ′,
N = CN γ − γ0ð Þ,
M = CM κ − κ0ð Þ,

ð21Þ

where γ is the strain vector, γ0 is the initial strain vector, κ is
the curvature vector, κ0 is the initial curvature vector, and N
and M are section force and moment, respectively. The
above physical quantities can be expressed using the general-
ized coordinates. CN and CM are the constitutive matrix only
related to the material and the section features.

3.3. Constraint Modelling. In the deployed state, the deploy-
able ring antenna features a fixed constraint between the
hinge and the batten, a fixed constraint between the thick
diagonal and thin diagonal, and a rotational constraint
between the thin diagonal and the hinge.

The beam section can be regarded as the rigid body
according to the geometrically exact beam theory. Therefore,
the constraint model can be processed as follows. Assuming
a mark point on a beam section, the position and attitude of
the mark point relative to the section center point will not
change during the movement. Assuming that the coordinate
system described by the attitude of the center point of the
section is the rigid body coordinate system, record the rela-
tive position of the initial mark point in the coordinates sys-
tem of the rigid body as rm. The component forms of this
point in the coordinates system of the rigid body are
recorded as xm, ym, and zm. If the position of the section cen-

ter point in the global coordinate system is r, the rotation
vector is ϕ, and the vector rotation matrix is A, the position
Rm of the mark point in the global coordinate system is

Rm = r +Arm: ð22Þ

In addition, the axial components xm, ym, and zm of the
mark point in the rigid body coordinate system and the
components Xm, Ym, and Zm in the global coordinate sys-
tem are, respectively,

Xm =Axm,
Ym = Aym,
Zm =Azm:

ð23Þ
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Table 1: Comparison of tip axial displacement using FDM and
Ansys (m).

ML/ πEIð Þ Analytical FDM Ansys

0.2 0.64511 0.63937 0.64519

0.4 2.43173 2.40926 2.43191

0.6 4.95449 4.85451 4.44831

0.8 7.66128 7.56397 Unconverged

1 10.00000 9.96377 Unconverged

Table 2: Comparison of tip vertical displacement using FDM and
Ansys (m).

ML/ πEIð Þ Analytical FDM Ansys

0.2 3.03958 3.01894 3.03971

0.4 5.49866 5.47749 5.49880

0.6 6.94455 6.97115 6.67273

0.8 7.19785 7.30276 Unconverged

1 6.36620 6.54480 Unconverged

M = 𝜋 EI/L

M = 0.8𝜋 EI/L
M = 0.6𝜋 EI/L

M = 0.4𝜋 EI/L
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Figure 6: Large deformation of the cantilever under bending
moments.
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Assume that the mark points of two different compo-
nents forming a fixed constraint are, respectively, i and j.
The fixed constraint requires that the position and altitude
of two-mark points coincide completely and include 6 con-
straint equations.

Rim − Rjm = 0, Xim ⋅ Z jm = 0,
Xim ⋅ Y jm = 0, Y im ⋅ Z jm = 0:

ð24Þ

Similarly, assume that two-mark points of two different
components forming the revolute constraint are i and j.
The revolute constraint requires that the positions of two-
mark points coincide completely, and one of the coordinate
systems coincides completely. The rotation around this axis
is allowed between two-mark points. Assuming the rotation
is around the z-axis, it contains five constraint equations.

Rim − Rjm = 0, Xim ⋅ Y jm = 0, Xim ⋅ Z jm = 0: ð25Þ

3.4. Large Deformation Numerical Example. A classical large
deformation flexible beam test example [21, 24–26] (shown
in Figure 5) is carried out to prove the availability of the pro-
posed method in large deformation simulation calculation,

and the test results are compared with the calculation results
of commercial software Ansys Workbench 2020. There is an
analytical solution for the concentrated bending moment of
this cantilever beam; therefore, it is widely used in the test of
large deformation beam modeling method.

The structural parameters of the cantilever beam are
shown in Figure 5. During the calculation, the cantilever
beam is divided by 10 elements. The proposed method
integral error is set to 1e − 3 in this paper. The beam ele-
ment is modelled by Beam188, and the convergence

Figure 7: Antenna cable mesh design process.

Table 3: The parameters of simulation model.

Item Calculation parameters

Antenna aperture 26m

Antenna focal length 4m

Rod inner diameter 22mm

Rod outer diameter 24mm

Rod elastic modulus 160GPa

Cable diameter 5mm

Cable elastic modulus 50GPa

The average tension of front mesh 70N

The average tension of rear mesh 180N
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criterion is carried out according to the system default cri-
terion in Ansys.

According the test results shown in Tables 1 and 2 and
Figure 6,when the applied torque does not exceed ð0:4πEIÞ
/L, the difference between the calculation of 10 elements
using the proposed method and the theoretical value is
within 1%, while Ansys has an error within 0.01%. When
the applied torque is not lower than ð0:6πEIÞ/L, Ansys has
a larger error and its calculation even cannot converge.
However, the proposed method still has high calculation
accuracy, with the maximum within 2.8%.

The error can be further reduced to 0.05% by dividing
into 50 elements with the proposed method. Even if Ansys
increases the step size by 100 times and dividing into 100
elements, its calculation results cannot converge when calcu-
lating the applied torque M = ðπEIÞ/L.

By comprehensive consideration, the proposed modeling
method has more advantages than Ansys when dealing with
the large deformation flexible beam element model.

4. The Cable Mesh Design Process

The cable mesh design process is shown in Figure 7. Firstly,
at the initial theoretic boundary C0 of the truss, the initial
mesh model is built using FDM and the mesh tension is
optimized to be uniform. Then, the first set of mesh coordi-
nates and the mesh element tension is obtained. The force F0
of the external mesh cable to the deployable truss at the con-
nection between the cable mesh and the deployable truss is
obtained. The large deformation rod model is built based
on the geometrically exact beam theory. The minimal defor-

mation hinge model and the constraint model are built
based on the multirigid-body dynamic theory, thus achiev-
ing the dynamic modelling of the deployable truss. Consid-
ering that the cable mesh is connected to the deployable
truss through the external mesh cable, the force F0 of the
external mesh cable is applied to the deployable truss. The
coordinates C1 of the deployable truss boundary after the
deformation under the action F0 of the external mesh cable
are obtained, and the displacement variation of each point
ξ1 and the maximum displacement variation ξ1 max are
calculated.

When the calculation time k > 1, only taking the new
truss boundary Ck−1 instead of the initial one and ensuring
the others are unchanged (Formula (5)), a set of new mesh
coordinates and the mesh element tension are obtained
and the force Fk−1 of the external mesh cable to the deploy-
able truss at the connection between the mesh and the
deployable truss is extracted.

The newly obtained external mesh cable tension Fk−1 is
applied to the deployable truss to obtain the coordinates
Mk of the truss boundary after deformation. The displace-
ment variation ξk of each node from the previous and the
maximum displacement variation ξk max are calculated.

When ξk max < ξk−1 max, set the next calculation truss
boundary Ck =Mk or set Ck = Ck−1 + ðMk − Ck−1Þ/2.

The difference between the relative distances of the truss
boundary for the k time and for the k − 1 time should be less
than the allowable error, that is jξk max − ξk−1 maxj ≤ tol. The
error size is related to the mesh surface accuracy and the
mesh tension uniformity. If the above requirement is not
satisfied, continue to perform step (3); otherwise, stop the
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Figure 8: The change of the maximum deviation distance of boundary points with iterations.
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calculation. The mesh is connected to the deployable truss
without apparent position deviation or tension change due
to truss deformation. The internal node coordinates and
the mesh tension meet the theoretical design.

5. Simulation Example

The calculation program for the cable mesh design can be
obtained through the numerical simulation and program-
ming of the above cable mesh design method. In addition,
the pretension design of a positive-feed ring deployable
antenna with a 26m aperture is performed in this paper.
The primary antenna parameters are shown in Table 3.

Multiple iterative calculations are carried out through
the above cable mesh design method. It can be seen from
Figure 8 that in the early stage of iteration, the maximum
displacement change before and after the boundary point
deformation decreases rapidly. At the end of the iteration,
the change is slow. After 13 counts, the maximum deviation
of front and rear boundary points is less than 0.1mm. When
the maximum deviation is less than 0.1mm, the cable mesh
model is built based on the geometrically exact beam theory
and the previous modeling method for the ring truss. After
the cable mesh system is stable, the RMS deviation of the
mesh surface accuracy from the theoretical form is only
0.006mm, and the change of the cable mesh pretension is
less than 0.5% of the initial design.

6. Discussion

At present, the pretension design process of large deployable
ring antenna cable mesh is based on the assumption of rigid-
ity or small deformation of the ring truss. However, large
displacement and large deformation of the super large ring
truss occur under the tension of the cable mesh, and the cal-
culation accuracy is insufficient if the traditional method is
used. Therefore, this paper proposes a cable mesh pretension
method that considers the large deformation of the ring
truss. According to the simulation test results, this method
can ensure that the antenna mesh model has high accuracy
and that the cable mesh pretension and the initial design
pretension change very little after the whole ring antenna
has stable cable mesh pretension. Therefore, it can be used
to guide the design of the cable mesh pretension for the
deployable ring antenna with a super large aperture.

Considering the discreteness of mechanical properties of
different composite thin-walled pipe fittings, it is to achieve a
more accurate design of cable mesh, the mechanical param-
eters of the bar can be tested and updated to the calculation
program.

The mesh is usually not unloaded during the develop-
ment of large ring deployable antenna. For the super large
aperture ring deployable antenna, the weight of cable mesh
will significantly impact the antenna surface accuracy and
the mesh pretension distribution. According to the FDM,
relevant modeling and simulation can be carried out in the
ground gravity environment to guide the profile adjustment
in the gravity environment to ensure that the antenna meets

the surface accuracy and cable mesh tension requirements in
orbit.
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