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The landing phase of an airdrop process is prone to accidents, and thus, it is important to assess the landing reliability for an
airdrop system. However, full field tests to assess the reliability are unacceptable due to their cost and the time required. As
such, it is necessary to estimate the reliability in the design stage. To address this problem, a method based on vine-Bayesian
Network (vine-BN) is proposed to assess the landing reliability by fusing multisource information. First, the network structure
is determined by the relationship between data of simulation or ground tests and failure modes. Then, nodes are defined as
random variables on [0, 1] based on the definition of the performance metric. Finally, the dependence between nodes is
quantified by expert opinions. To illustrate the effectiveness of the method, a particular ground test or simulation is chosen to
establish a network for a typical heavy cargo airdrop system (HCADS). Forward and backward propagation is carried out on
the network. The forward analysis predicts the landing reliability in the design stage through multisource information fusion.
Beta distribution is applied to fit the fusion result, so Bayesian inference is made to perform field test times decision-making.
The backward analysis works to identify the key performance metrics related to landing reliability. The results and analysis
manifest that vine-BN is feasible for fusing multisource information. Through the network, the reliability of the current design
can be predicted effectively, and the field test times can be remarkably reduced. This method plays a crucial role in airdrop
system design and reducing test time and labor.

1. Introduction

The airdrop system is a typical complex parachute system. It
is aimed at ensuring that the payload lands safely with speed
and attitude requirements and plays a crucial role in military
applications, large-scale humanitarian aid, spacecraft tests,
and planetary exploration. Due to the unsteady aerodynamic
environment and the flexible parts, the whole airdrop pro-
cess is characterized by nonlinear and high uncertainty,
which is unfavorable for the airdrop mission. The airdrop
process can be divided into four major phases: extraction,
parachute deployment, steady descent, and landing. In the
extraction process, due to the unsteady flow around the air-
craft, the initial motion of the payload varies, thus affecting
the subsequent process. This phenomenon is prominent in
personnel airdrop [1], which will lead to personal injury
and nonrepeatable airdrop missions [2, 3]. During parachute

deployment, high-altitude wind usually causes line sail or
whipping phenomenon, which may lead to damage of the
parachutes [4]. In the steady-descent process, parachute
collision usually occurs in parachute clusters, resulting in
structural deformation of the canopy, thus influencing the
aerodynamic characteristic and the system motion states.
This problem involves fluid-structure interaction, which is
quite complicated [5]. The landing phase is the final phase
of the airdrop process and is prone to accidents such as roll-
overs and overloading. Besides the uncertainty of the previ-
ous phases, various factors affect landing, among which the
most significant are the landing terrain and wind field, as
well as the motion states at the moment of landing. For
the precision airdrop systems, the landing accuracy should
be considered [6].

Quantitative assessment of the risk of airdrop missions
due to uncertainties is of interest for system performance
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and design. Due to cost and time, it is unacceptable to per-
form statistical probability estimation that only relies on
field tests. In addition, it is necessary to conduct a reliability
assessment in the design stage, where there is no field test
data. The existing research on the quantitative evaluation
of the success of a drop mission focuses on Monte Carlo
Simulations (MCS). Wachlin and Costello [7] performed
MCS based on a 6-DOF dynamic model for a guided airdrop
system equipped with a trailing edge control parafoil and
bleed air control parafoil, and they regarded the wind speeds
and directions along with the ground contact parameters as
uncertainty factors to investigate the probability characteris-
tic of impact acceleration and rollover in the landing pro-
cess. In planetary exploration, landing stability or landing
site selection are commonly conducted based on MCS. Dong
et al. [8] established a dynamic model for a Mars lander with
attitude control thrusters. Their probability analysis empha-
sized the influence of irregular terrain. Due to the unavail-
able data of Mars, lunar terrain data was used to simulate
terrain characteristics for Mars in order to conduct MCS
for landing stability. Witte et al. [9] established a dynamic
touchdown model for the Philae lander, and they performed
MCS with velocity, attitude angle, and flight path angle input
as uncertainty parameters. Compared with the MCS results,
which considered landing stability and energy absorption
criteria, the optimal landing site was determined. In terms
of test studies, drop tests are generally performed to investi-
gate the landing uncertainty at the moment of landing for
different initial motion states. Lee et al. [10] designed a sub-
scale drop test for the Orion Crew Exploration Vehicle
(CEV). The test device allows for easy adjustment of landing
conditions, and Lee conducted more than 60 drop tests to
simulate potential landing conditions. While MCS can pro-
vide a probabilistic analysis of the uncertainty of the airdrop
process, some drawbacks limit its further application. First,
the accuracy of the probabilistic analysis is limited by the
simulation model or the test method. Second, MCS can only
reflect the effects of a limited number of specific uncertainty
factors, whereas the actual airdrop process involves a large
number of uncertainty factors connected in complex ways
that would make MCS too complex to implement. In addi-
tion, statistical laws for the uncertainty factors are difficult
to obtain or even to describe statistically. Third, it is compu-
tationally demanding for MCS applications, which is prom-
inent in the assessment of the landing process. Many airdrop
systems use airbags for landing buffers, and finite element
methods are often used to model the airbag buffer process
[11–13], which can simulate instantaneous deformation
with high precision but with less computational efficiency.
If the MCS were to be used to analyze the buffering charac-
teristics under different landing conditions, it would face a
massive computational effort.

Therefore, it is not sufficient to analyze the landing prob-
ability properties based on MCS alone. Several researchers
have proposed to use the Bayesian method with simulations
or ground tests as prior information, further combined with
limited field tests, to evaluate the reliability of an airdrop sys-
tem. On the one hand, it can reduce the field test times, and
on the other hand, it can enable the fusion of different pieces

of information to give more reasonable evaluation results.
NASA [14] used a Bayesian approach to evaluate the failure
probability of the Orion CEV Parachute Assembly System
(CPAS), in which the prior information came from the his-
torical airdrop test data of the Soyuz parachute system, the
Apollo parachute system, and the military airdrop system.
Gao et al. [15] constructed a fluid-structure interaction
(FSI) model for the inflation of a slot parachute used in mil-
itary airdrop missions to address the problem of reliability
assessment of inflation. The Bayesian approach was used to
reduce the experimental data on inflation by taking the
structure strength data obtained from the FSI simulation as
prior information. Ma et al. [16] selected test data from dif-
ferent units as prior information for an emergency escape
parachute system. The prior distribution was built from
the zero-failure and with-failure cases for all prior data.
The posterior distribution of the emergency escape para-
chute system was then determined by the Bayesian approach
to further assess reliability. In this work, only the case where
the prior pieces of information were binomial data was con-
sidered. It can be seen that the limitations of the aforemen-
tioned studies based on the Bayesian method to evaluate
the reliability of airdrop systems are in the choice of prior
information. The prior information either is limited to bino-
mial data or relies only on a single information source.

The prior pieces of information of the airdrop system are
complementary to each other and exist in different data
types. Extensive ground tests and simulations are carried
out during the design stage to investigate the uncertainty
characteristics of airdrop systems. After the design is com-
pleted, field tests will be conducted to comprehensively eval-
uate the performance of the airdrop system despite its small
sample size characteristics. In addition, prior information
also includes expert opinion, which is derived from extensive
engineering experience. NASA has emphasized expert opin-
ion in the design of CPAS [17]. Generally, expert opinion is
widely used in the area of reliability assessment, differing
only in the form of elicitation. Therefore, there is a large
amount of available prior information for the airdrop sys-
tem. However, some existing studies that use the Bayesian
method to evaluate the reliability of airdrop systems have
implemented information fusion, but the limitation lies in
the fusion of either a single information source or binomial
data type. The essence of the MCS commonly used in uncer-
tainty analysis of airdrop systems is to evaluate the airdrop
uncertainty using a single piece of information, without
information fusion. As a result, existing studies on uncer-
tainty assessment of airdrop systems do not fully exploit
multisource information. The integration of multisource
information will provide a deeper insight into the uncer-
tainty of the airdrop process, which involves information
fusion issues.

The Bayesian network (BN), as a tool for uncertainty,
has been fully explored for its probabilistic inference capabil-
ity. BN is also able to effectively integrate information from
multiple sources and has been widely used in the field of reli-
ability assessment, fault diagnosis, etc. Sun et al. [18] used a
BN model to fuse health parameters and monitoring signals
to improve the performance of gas path analysis. Chen and
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Liu [19] integrated multimodal surface measurements
through a BN to estimate the strength of aging material.
Junghans and Jentschel [20] applied a BN to integrate sensor
measurement data and conditional data of the sensor in traf-
fic surveillance to improve the accuracy of vehicle classifica-
tion. Through the fusion of information using BNs, Cai et al.
[21] performed a fault diagnosis of the ground source heat
pump with increased accuracy. Nevertheless, the variables
of the BNs in these studies were discrete, and the network
was parameterized using conditional probability tables
(CPTs). With the increase of nodes, the CPTs become large
and complicated. This drawback will be prominent when
continuous nodes are discretized, which limits further appli-
cation of BNs. The nodes in a Gaussian Bayesian network
can be continuous, but the restriction to joint normality is
highly severe. Though mathematical tricks can be applied
to transform the nodes to normal, the partial regression
coefficient on each arc corresponds to the normal node,
rather than the original one, which leads to difficulty in cor-
relation elicitation.

To overcome these hurdles, Kurowicka and Cooke [22]
proposed a method called a vine-BN based on the theory
of vines [23, 24]. The vine-BN is nonparametric, and the
nodes are associated with arbitrary continuous invertible
distribution and connected by copula functions. The rank
correlation on each arc is realized by a copula function,
and it is invariant under monotone transformations. Due
to these advantages, applications of vine-BN’s probabilistic
inference capability have increased in the field of reliability
analysis and risk assessment in the last decade. Morales-
Napoles et al. [25] investigated earth dam safety and ana-
lyzed the causes and consequences of earth dam failure.
Zilko et al. [26] constructed a railway-disruption-length pre-
diction model. Lee and Pan [27] presented an approach to a
reliability assessment of an automated production line of
lithium batteries at the early design stage. Mendoza-Lugo
et al. [28] established the failure probability mode of con-
crete vehicle bridge columns under the combination of traf-
fic load and seismic activity. Pan et al. [29] developed a
structural health model of underwater tunnels. Sun et al.
[30] constructed a network model to assess the risk of water
inrush for a tunnel. As for the research on the information
fusion of vine-BN, to our knowledge, there has been no liter-
ature published yet.

In this paper, a method to assess the landing reliability of
a typical HCADS based on information fusion via the vine-
BN method is proposed, where the information comes from
the ground test of components, the simulation, and the
expert opinions. Multiple ground tests are usually conducted
on the same component to investigate the impact on the
landing process from different angles. Meanwhile, the same
ground test or simulation model may provide multiple data
to predict different failure modes. Performance metrics of
ground tests and simulations can be regarded as symptoms,
and different landing accidents are faults. The correlations
between them are elicited by expert opinions. Therefore,
our proposed method is based on multisource information
fusion, which can provide more reasonable results. The
fusion is implemented by the forward propagation of the

network. Fusion results can be taken as prior knowledge of
landing reliability. Once the field test data (usually a limited
sample) are available, Bayes inferences can be made based
on the fusion results to obtain a posterior distribution of
landing reliability. Backward propagation on the network
recognizes the performance metrics that make a significant
contribution to landing reliability, thus providing guidelines
for system design. Table 1 shows a brief comparison of exist-
ing research methods and our proposed approach.

The rest of the paper is organized as follows: Section 2
describes the system configuration and airdrop process of a
typical HCADS in detail and briefly introduces the ground
test and simulation information needed to build the net-
work; since our study mainly focuses on the fusion of simu-
lations and ground tests, the detailed test method and
simulation model will not be covered. Section 3 illustrates
the basic theory of vine-BN, mainly including pair copula
decomposition, vines, and the sampling algorithm. Section
4 constructs the network for landing reliability, including
network structure, node definition, and network quantifica-
tion. Section 5 demonstrates the application in landing reli-
ability analysis using the network from forward propagation
and backward propagation. Finally, the conclusion and
future work are presented in Section 6.

2. Landing Reliability of the HCADS

2.1. Airdrop Process and System Configuration of HCADS.
Figure 1 illustrates the whole airdrop process of a typical
HCADS. The whole process can be divided into four phases
briefly. First, the cargo platform extracts out of the cargo bay
by the aerodynamic force of the extraction parachute. Then,
the main parachute system, which is composed of four main
parachutes and four drogue parachutes, is deployed by the
pilot parachute. After deployment, the system decelerates
quickly to the steady-descent phase. Finally, the cargo lands
with a cushioning airbag.

2.2. The Formation and Causes of Landing Failure. Landing
failure may occur in three modes, including exceeding the
cargo overload limit, cargo rollover, and airbag structure
failure. The parachute-release process and airbag-buffering
process occur simultaneously and interact with each other.
In the following section, we will thoroughly analyze the
factors that lead to the failure of the landing during the
two processes.

2.2.1. Release Process. To protect the landing failure of the
cargo rollover, the cargo-hanging rope and the parachute-
connecting rope are connected by the release unit, which
ensures the disconnection of the parachute and cargo plat-
form automatically at the moment of landing. Figure 2
shows the physical image and the structure sketch of the
release unit.

The automatic release process can be divided into three
stages: First, before cargo extraction, the spring is com-
pressed to an initial tightening position, and the latch is fixed
by pyrotechnics. Then, when the cargo is extracted and
reaches a steady-descent state, the pyrotechnics explode;
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thus, the tension of the parachute-connecting rope and the
cargo-hanging rope causes the hanger and pull ring to press
against the latch, and a large static friction force is generated
to keep the release unit locked. Finally, the static friction
force on the latch reduces when the rope tension unloads

quickly at the moment of landing; the latch is, hence, ejected
under the spring force, and the cargo and the parachute are
separated.

Figure 3 schematically describes the key time points in
the release process on the time axis.

Table 1: Comparison of the proposed method with existing studies on the uncertainty of the airdrop process.

Existing research
The method proposed in
this study

MCS method Bayesian method Vine-BN method

Advantages Easy to implement
Information fusion; reduction of
the number of field tests

(1) Multisource
information fusion

(2) No data type
restriction

(3) Key performance
metric identification

Disadvantages

(1) Depends on the accuracy of the simulation or test
method

(1) Single-source information

(2) Constraint of data type
(2) Statistical laws for the uncertainty factors are difficult to

obtain or even to describe statistically

(3) Computationally demanding for application

Extraction parachute

Cargo

Pilot parachute

Main parachutes (4)

Drogue parachutes (4)

Parachutes deployment phase

Extraction phase

Release unit

Steady descent phase
and landing phase Airbag

Figure 1: Airdrop process of a typical HCADS.

4 International Journal of Aerospace Engineering



(1) Stage AB: stage AB is the rope tension force–unload-
ing process. The rope tension force at point B is
denoted as the design release force Ts and is a key
design parameter. The process is complicated and
determined by the initial motion state at the moment
of landing and interacts with the buffering process.
In addition, the aerodynamic force has a remarkable
influence on the rope tension force, so the parachute
collision and wind field should be considered

(2) Stage BC: to ensure safety separation, the latch-
ejection response time te should be as small as possi-
ble. Due to the machining precision, the surface
roughness of the release unit and the spring stiffness
are variable, which directly affect te

2.2.2. Buffering Process. Cargo rollover or exceeding the
overload limit may occur in the buffering process due to
landing terrain and initial motion state at the moment of
landing. The airbag-rebound problem can also lead to
uncontrollable attitude and secondary shock in the landing
process, leading to cargo rollover and exceeding the overload
limit. In the worst case, airbag peak pressure above a speci-
fied threshold can lead to airbag structure failure.

2.3. Data Collection for Assessing Landing Reliability.
According to the above analysis, Figure 4(a) shows compre-
hensive factors and the corresponding landing-failure
modes. Note that the above qualitative analysis is derived
from extensive engineering experience. More comprehensive
factors can be determined via simulation or testing. The pur-
pose of this article is to fuse different pieces of information
from those simulations and tests to evaluate landing.

Due to the limitations of test conditions and the simula-
tion model, we will introduce typical ground tests and a
simulation model from the simplified factors shown in
Figure 4(b). Specified data will be extracted from the simula-
tion and ground test to evaluate the landing. Note that this
paper is aimed at proposing a general framework to assess
the landing reliability for an airdrop system. The specific test
methods and simulation models are beyond the scope of this
paper. The following only introduces several typical tests
and a simulation model to pave the way for the construction
of the methodology in subsequent sections.

2.3.1. Data Collection for Release Process

(1) Release Simulation. The purpose of the release simulation
is to investigate the failure of cargo rollover under the factors
of wind field, initial motion state, and rope tension force.
Wang et al. [31] proposed a release simulation model for
stage AB in Figure 3, and they only considered the influence
of the parachutes’ initial motion state and wind field of the
landing site. The release process is considered a success
when the rope tension force is smaller than the design
release force Ts, in which case the cargo rollover at landing
would not occur. This model will be used in our research.
Full details are given in the appendix.

(2) Release Unit Test. The purpose of the release unit test is
to investigate the failure of cargo rollover under the factor
of latch-ejection response time. As discussed above, the
latch-ejection response time varies with machine errors
and is critical to landing. It is imperative to arrange a ground
test of the release unit to determine the statistical law of the
latch-ejection response time caused by machining errors,

(a) Physical image

Hanger

Spring

Pull ring

Latch

(b) Sketch of the structure

Figure 2: Release unit.

A B C

B. Spring force > Friction

Unload

A. Landing moment 

Latch ejection, te

C. Separation of
parachutes and cargo 

force on latch

Figure 3: Release process.
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and the performance target t0 should be specified by the
designer. The case in which the latch-ejection response time
is greater than t0 indicates the risk of cargo rollover at land-
ing. Note that the machining accuracy uncertainty is perva-
sive, and only the factors that play a substantial impact on
successful landing should be concerned.

2.3.2. Data Collection for Buffering Process. The purpose of
the airbag drop test is to investigate the failure of cargo roll-
over and overload limit exceeded under the factors of initial
motion state and airbag-rebound height. In some studies on
spacecraft-landing uncertainty, drop tests are usually used to
investigate the influence of the terrain and the motion states
on landing [10, 32, 33]. Similarly, the drop test can be con-
ducted for HCADS. A large number of drop tests are needed
to investigate the landing reliability under different initial
motion states at the moment of landing. Lee et al. [10]
designed a subscale drop test for the Orion Crew Explora-
tion Vehicle. The test device can easily adjust the landing
conditions, and Lee et al. conducted over 60 drop tests to
simulate the potential landing conditions. The test method
can also be applied to the ground test for HCADS, and the
test configuration is shown briefly in Figure 5 Three pieces
of data should be of concern: the rebound height, the over-
load, and the rollover cases of the airdrop test. The perfor-
mance targets of the rebound height and overload are also
specified by the designer. That is, if the overload or the
rebound height is greater than the performance target G0
or h0, respectively, the risk of landing failure increases.

To sum up, we will evaluate the landing reliability with
the information of the ground test and simulation shown
in Table 2 in subsequent sections.

The relationship between collected data and failure
modes can be specified by probabilistic dependence, which
can be constructed through vine-BN.

3. Basic Theory of the Vine-BN Method

Vine-BN is a combination of BN and a vine. A vine provides
a decomposition form of a multivariate joint distribution,
and the specific structure of the BN simplifies the decompo-
sition of the vine and its sampling algorithm. In the follow-
ing section, we first introduce the basic theory of vines and
then illustrate how the vine is combined with the BN.

3.1. Vine

3.1.1. Decomposition Form. A joint distribution function
implies not only the marginal distribution of each variable
but also the degree and the structure of the correlation between
them. According to Sklar’s theorem [34], any joint density
function can be decomposed into an n-dimensional copula
function and n univariate marginal distribution functions.

F x1, x2,⋯, xnð Þ = C F1 x1ð Þ, F2 x2ð Þ,⋯, Fn xnð Þð Þ: ð1Þ

The density function form of Equation (1) is

f x1, x2,⋯, xnð Þ = c F1 x1ð Þ, F2 x2ð Þ,⋯, Fn xnð Þð Þ
Yn
i=1

f i xið Þ,

ð2Þ

where c represents the derivative of the corresponding
copula function.

Since the n-dimensional copula function can also be
regarded as the cumulative distribution function on ½0, 1�n,
its derivative is also the probability density function. The
dependency and structure between variables are character-
ized by the copula function. Therefore, through the copula
function, we can study the marginal distribution and the
dependency separately and reduce the difficulty of modeling

Cargo overload
limit exceeded

Cargo rollover 

Airbag structure
failure

Wind field

Landing terrain

Initial motion state

Parachutes
collision

Landing
failure

Airbag rebound
height

Latch ejection
response time

Airbag peak
pressure

…

Rope tension force 

(a) Comprehensive factors

Cargo overload
limit exceeded

Cargo rollover 

Wind field

Initial motion state

Landing
failure

Airbag rebound
height

Latch ejection
response time

Rope tension force 

(b) Simplified factors

Figure 4: Factors causing landing failure.
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and analyzing a multivariable probability model. As the
dimension grows, the copula function has a limited ability
to describe the dependency among variables, and the solu-
tion of its derivative function is also very complex. To tackle
this issue, Bedford and Cooke [24] proposed a pair-copula
decomposition method based on Joe’s work [35], which
essentially decomposes the joint density function into the
product form of multiple bivariate copula functions and
each marginal density. This method is more flexible in mul-
tidimensional distribution modeling. Since such decomposi-
tion can come in various forms, Bedford and Cooke [23]
further proposed a graphical modeling tool, the vine, to
describe the logical structure of a particular type of decom-
position. A vine consists of many trees, and each tree has
many nodes. The line connecting nodes is called an edge.
The nodes and edges form a set jointly, which can be com-
bined in different ways to constitute a vine. A vine also comes
in many forms, and one is called a D-vine, which is directly
related to vine-BN. Here, we take the four-dimensional
decomposition as an example to show the D-vine.

In the D-vine, nodes represent variables, edges represent
copula functions that connect two nodes, and the edge of the
i-th tree becomes the node in the i + 1-th tree. As shown in
Figure 6, nodes 1 and 2 on tree T1 represent variables 1
and 2, respectively. They are connected by edge 12, and their
copula density function is denoted as c12. Nodes 12 and 23
in tree T2 are also edges 12 and 23 in tree T1, and they are
connected by edge 13j2, which indicates that nodes 1 and
3 are connected with node 2 as the conditional variable,
and their copula density function is denoted as c13j2.
According to this rule, the D-vine decomposition of the
four-dimensional density function can be written as

f x1, x2, x3, x4ð Þ = f1 x1ð Þf2 x2ð Þf3 x3ð Þf4 x4ð Þ,
c12 F x1ð Þ, F x2ð Þf gc23 F x2ð Þ, F x3ð Þf gc34 F x3ð Þ, F x4ð Þf g,
c13j2 F x1jx2ð Þ, F x3jx2ð Þf gc24j3 F x2jx3ð Þ, F x4jx3ð Þf g,
c14j23 F x1 x2, x3jð Þ, F x4 x2, x3jð Þf g:

ð3Þ

The essence of the D-vine decomposition is to describe
the overall dependency structure through the (conditional)
dependency between any two variables.

3.1.2. Sampling Algorithms. The general principle for sam-
pling a vine is as follows.

Set the sampling order as x1, x2,⋯, xn. For convenience,
we assume that the variables are uniform at ½0, 1�. The sam-
pling formula is then

xn = u1, n = 1,

xn = F−1 un x1, x2,⋯, xn−1jð Þ, n > 1,

(
ð4Þ

where un is the uniform random number on ½0, 1�. For a
D-vine, the conditional function is determined by the fol-
lowing equation [36]:

F xj x1,⋯, xj−1
��À Á

=
∂Cj,1 2,⋯,j−1j F xj x2,⋯, xj−1

��À Á
, F x1 x2,⋯, xj−1

��À ÁÈ É
∂F x1 x2,⋯, xj−1

��À Á :

ð5Þ

The implementation of the algorithm is a recursive
process of Equation (5). Kurowicka and Cooke [37, 38]
used a graphical structure to describe this process, which
will not be covered here. In the following section, we will
see that vine-BN is a combination of BN topology and D-
Vine decomposition: BN topology introduces conditional
independence for D-vine decomposition, thus simplifying
its decomposition structure and the corresponding sam-
pling algorithm.

3.2. Vine-BN

3.2.1. Brief Introduction to BN. According to the chain rule, a
joint probability density can be factorized as

f x1, x2,⋯, xnð Þ = f x1ð Þ
Yn
i=2

f xi x1 ⋯ xi−1jð Þ: ð6Þ

The BN is a directed acyclic graph. Nodes represent uni-
variate random variables, and arcs represent the direction of
influences. Based on the (conditional) independence state-
ments encoded in the BN, Equation (6) can be simplified as

f x1, x2,⋯, xnð Þ =
Yn
i=1

f xi xPa ið Þ
���� �

, ð7Þ

where xPaðiÞ represents the parent node of xi. Equation (7)
shows that the BN is another concise, yet complete, repre-
sentation of the joint probability distribution [39]. The
decomposition also has a corresponding discrete form. In
the discrete BN, marginal distributions specify the root
nodes, and the child nodes are specified by the CPTs. CPTs
are also used to characterize the dependency between nodes.
In vine-BN, rank correlations are assigned to arcs to mea-
sure the strength of the connection between nodes, whose
definition is below.

𝜃

Vertical velocity

Test article

Horizontal velocity

Impact angle

Figure 5: Subscale drop test [10].
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3.2.2. Measure of Dependency. The rank correlation, or
Spearman correlation, of two random variables is defined
as follows [24]:

r X, Yð Þ = ρ FX Xð Þ, FY Yð Þð Þ, ð8Þ

where FX and FY are the cumulative distribution functions
of X and Y , respectively. ρ is the Pearson correlation, also
called the product moment correlation, which is defined
as follows.

The Pearson correlation of random variables X and Y ,
with expectations EðXÞ and EðYÞ and variances σ2X and σ2

Y ,
is expressed in the following equation:

ρ X, Yð Þ = E XYð Þ − E Xð ÞE Yð Þ
σXσY

: ð9Þ

That is, the Spearman correlation of the variables X and
Y are equal to the Pearson correlation of their distribution
functions. The rank correlation is a measurement of the
dependence between two random variables, and it can be
realized using any copula that has the zero-independence
property; i.e., any copula that represents (conditional) inde-
pendence as a zero (conditional) rank correlation. Further-
more, the rank correlation measures the strength of the
monotonic relationship between two random variables. It
is invariant under a monotone transformation, and the non-
linear relationship can be measured by it.

The concept of conditional rank correlation is vital in
vine-BN, which refers to the correlation of X and Y given
Z, defined as [40]

r X, Y jZð Þ = r ~X, ~Y
À Á

, ð10Þ

where ðX̂, ŶÞ represents the conditional distribution of ðX, YÞ
given Z.

3.2.3. Combination of Vine and BN. Vine-BN is parameter-
ized by a (conditional) rank correlation. Assume that node
i has pðiÞ parent nodes. The correlation on each arc is then
given by the following equation:

r i, ip ið Þ
� �

, k = 0,

r i, ip ið Þ−k
���ip ið Þ,⋯,ip ið Þ−k+1

� �
, 1 < k < p ið Þ − 1:

8><
>: ð11Þ

Kurowicka and Cooke [22] proved that, using a BN with
continuous invertible distribution nodes specifying (condi-
tional) rank correlations (11) through the zero-independence
copula, the structure of the BN uniquely determines a joint dis-
tribution, and the correlations are algebraically independent.

Due to the (conditional) independence implied by the BN,
the correlation between any child node and its non–parent
node is zero, so the corresponding copula density function
cð∙,∙Þ = 1. Thus, the D-vine decomposition can be simplified.

Vine-BN sampling is accomplished by building a corre-
sponding D-vine. First, set the sampling order: start with
root nodes and end with leaf nodes. Afterward, let Di denote
the D-vine on node i, i.e., sampling node i by the method for
sampling Di. Because of the conditional independence, only
the parent nodes of i are needed to construct Di.

The sampling order for Figure 7(a) can be 12345 or
13245. D4 is constructed for sampling node 4, as shown in
Figure 7(b). The node order in the first tree of the D-vine
corresponds to the correlation specification in the BN; for
example, an alternative correlation specification can be
fr21, r31, r42, r43j2, r54g, and nodes in the first tree of
D4 can then be placed as f4, 2, 3g.

4. Network Modeling of Landing Reliability

4.1. Network Structure of Landing Reliability. When a prod-
uct is in the design stage or there is no field data available,
the system-level performance is usually evaluated by simula-
tion or component tests before the decision analysis. In
other words, simulation or component-level tests are used
to predict possible failures. Therefore, data provided by
simulation and ground tests can be regarded as symptoms,
and different landing accidents are faults. The relationship

Table 2: Simulation and ground tests for assessing landing reliability.

Simulation or ground test Collected data Performance target Failure mode

Release simulation Release or not in simulation (RNS) Yes Cargo rollover

Release unit test
Latch-ejection response time via ground test

(LERTGT)
LERTGT < t0 Cargo rollover

Airbag drop test

Drop test overload (DTO) DTO <G0 Overload limit exceeded

Drop test rebound height (DTRH) DTRH < h0
Overload limit exceeded, cargo

rollover

Rollover or not in drop test (RNDT) No Cargo rollover

1 2 3

12 23

12 23

13|2

434

3424|3

13|2 24|314|23

T1

T2

T3

Figure 6: D-vine decomposition on four variables.
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between the symptoms and faults can be described by
probabilistic dependence. Based on this idea, a general net-
work for inferring the landing performance is shown in
Figure 8(a). More specifically, according to the analysis in
Section 2 and the available information in Table 2, the
network structure for the landing reliability of HCADS is
simplified as Figure 8(b).

4.2. Node Definition of Landing Reliability Network:
Performance Metrics for Collected Data. Since the copula
function is defined in ½0, 1�, the nodes in vine-BN need to
be converted to the distribution on ½0, 1�. Some studies [25,
26, 29] transformed each node to ½0, 1� through cumulative
distribution functions (CDFs), and the original distribution
was then converted back from their inverse CDFs. In this
research, we define the nodes as random variables on ½0, 1�
directly. In terms of each piece of data shown in Table 2,
the probability of meeting the performance target deter-
mines the system performance. Therefore, the root nodes
are defined as the probability of meeting the performance
target, which can be regarded as a continuous random vari-
able on ½0, 1�. In the following, we refer to the probability as
the performance metric for data collected from simulations
or ground tests. It can obtain a random variable on 01 for
any type of data through the definition of the performance
metric on which information fusion is based. Therefore,
the method is not constrained by the data type of the
information source, and data collected from simulations or
ground tests can be of any type. Take root node LERTGT
for instance; the performance metric can be defined as the
following equation:

NodeLERTGT = P LERTGT ≤ t0ð Þ: ð12Þ

NodeLERTGT can be regarded as a continuous random
variable on ½0, 1�. When the data of the simulation and
ground test is not available, it is legitimate to model the per-
formance metrics as uniformly distributed. Once the data
are available, the distribution or the estimation of the perfor-
mance metrics can be determined. However, it is usually dif-
ficult to determine the distribution of performance metrics.
On the other hand, since vine-BN can be updated with
values or intervals, there is no need to specify the distribu-
tion of performance metrics, but only an estimation with
available data is needed. For success/failure data, such as
RNDT, the estimation is straightforward. For continuous
data, such as LERTGT, the estimation can be determined
through the probability density function (PDF) with avail-

able data. The PDF can be determined by the parametric
method and the nonparametric method. The former
assumes that the form of PDF is given, and the parameters
are estimated. This method relies on prior assumptions
about the population. The nonparametric method does not
specify the distribution of population, and the PDF is
directly determined by data. The kernel density estimation
(KDE) is a nonparametric method. When the observations
of variable X are available: fx1, x2,⋯, xng, the PDF of X
can be given by the following equation [41]:

f̂ h xð Þ = 1
nh

〠
n

i=1
K

x − xi
h

� �
, ð13Þ

where h is the bandwidth and K is the kernel function.
Note that the sample size of the simulation results can be

infinite, so the probability can be estimated directly from the
data. For the ground test, although the sample is not small, it
is also relatively limited. In this case, the nonparametric
bootstrap method can be used to improve estimation accu-
racy. For details, we refer the readers to literature [41].

4.3. Quantification of Dependency between Nodes. In this
section, we elicit the correlations on the arcs of Figure 8(b).
Before elicitation, the type of copula function must be
specified. Copula functions differ in many properties, such as
symmetry and tail behavior [34], which will lead to different
reliability assessment results. There are several commonly
used copula functions, such as Gaussian, Clayton, Frank, and
Gumbel. Clayton was assigned to each arc of the network.
The expression of the bivariate Clayton density function is
as follows:

c u1, u2ð Þ = 1 + δð Þ u1u2ð Þ−1−δ u−δ1 + u−δ2 − 1
� �−1/δ−2

: ð14Þ

The assignation was based on the following phenomena:
Simulation and component-level tests are generally per-
formed first, and if the results prove to be reliable, field
tests are carried out to evaluate the system performance
further. However, if the simulation and component-level
test results are not satisfactory, the system will be adjusted
until the simulation or component-level test results show
satisfactory performance before the field test. In other
words, when the reliability of the simulation and ground
test results is low, the possibility that the system has low
reliability is considerable. If the simulation and ground tests
perform well, the system does not necessarily have high

1 3

42 5

r31

r21

r42|3

r43

r54

(a) BN with five nodes

4 3 2r43 0

r42|3

(b) D4 for sampling variable 4

Figure 7: Illustration of the BN and the corresponding sampling D-vine.
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reliability. This characteristic corresponds to the lower-tail
dependence behavior of the Clayton function, which is
demonstrated in Figure 9.

Figure 9 shows the sample generated by a bivariate
Clayton copula function with a rank correlation of 0.8. It
shows that, when the values of these two variables are small,
they have a stronger correlation, which is due to a lower-tail
dependence.

Moreover, the Clayton copula function can only specify
a positive correlation, which is consistent with the network
shown in Figure 8(b); that is, any child node has a positive
impact on its parent node. The higher the performance of
any simulation or test results, the more reasonable it is to
consider that the landing is safe.

Expert judgments are regularly used in helping reliability
modeling when data is insufficient. With regard to discrete
BN, expert judgments are for instantiation [42], i.e., specify-
ing the conditional probabilities. For the vine-BN correla-
tion, the instantiation is accomplished by eliciting the
correlation. The elicitation can be achieved by assessing the
exceedance probability [40]. It is unintuitive for specialists
when the number of parent nodes is large. An alternative
way to elicit the correlation is to assess the exceedance prob-
ability for unconditional rank correlation; then, the condi-
tional rank correlation can be elicited through the ratio of
unconditional rank correlation [25].

For illustration, we numbered the nodes in Figure 8(b) and
assigned a (conditional) correlation to each arc according to
Equation (11), as shown in Figure 10. When updating the net-
work, the number also corresponds to the sampling order.

The assessment started from the unconditional rank cor-
relations, such as r61. The experts were asked the following
question, which we denote as question 1: “If the simulation
results show that the release probability (Node 1) is greater
than 0.5, then what is the probability that the reliability of
no rollover during the actual landing (Node 6) is also greater
than 0.5?” That is, this question requires experts’ estimation
of P1:

P1 = P X6 > 0:5jX1 > 0:5ð Þ: ð15Þ

Question 1 was answered by three experts, and the
mean value was taken as P1, which satisfied the following
equation:

P1 =
1

1 − 0:5

ð1
0:5

ð1
0:5
f61 X1, X6ð ÞdX6dX1: ð16Þ

The parameter of the Clayton copula function can
be obtained through Equation (16), so the correlation
r61 can be determined. According to the assessment,
P1 = 0:670, and r61 = 0:4868.

Then, the corresponding question to elicit r62j1 is
denoted as question 2: “Given previous results, what is the
ratio of r62/r61?” The ratio will be restricted by r61. Due
to the algebraic independence of correlations entailed in
Equation (11), r62j1 can take any value in ½0, 1�. So the range
of r62/r61 can be determined through simulation by build-
ing the D-vine on X1, X2, and X6. In this way, Figure 11
shows the relationship of r62/r61 to r62j1.

As the figure depicts, the experts will be required to
determine the ratio of r62/r61 in the approximate range of
½0, 1:7�. The red mark in the figure marks the mean value
evaluated by three experts, and thus, r62j1 can be deter-
mined. In this way, the network was quantified, as shown
in Figure 12.

Note that a high-precision simulation model can provide
a more insightful analysis of the landing process than a low-
precision model. A higher-precision simulation model
deserves a larger correlation, as does the ground test. There-
fore, experts should conduct the assessment rigorously to
obtain a rational estimate. If the corresponding simulation
model or ground test method is modified, the correlation
should also be changed.

M: Data of simulation or ground test

A: Probable accidents in landing process

M2M1 M3

A2A1 A3

M4 Ms

An. . .

. . .

Successful
landing

(a) General network structure

Successful
landing

Overload
exceeds

limit
Rollover

LERTGT DTRH DTORNS RNDT

(b) Simplified network for a typical HCADS

Figure 8: Network structure for evaluating landing reliability.
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5. Network Model Implementation for
Landing Reliability

After quantification, the network can be updated in the for-
ward and backward directions. Forward propagation inferred
the distribution of the leaf nodes from the root nodes; i.e.,
the landing reliability is estimated in light of ground test and
simulation. Backward propagation updates the other nodes’
distribution under the given leaf nodes, and it is aimed at
exploring the most probable causes in fault diagnosis while,
in our studies, it works to identify the key performancemetrics
related to landing reliability. In the subsequent section, we will
illustrate the network application from the two propagations
in the landing reliability assessment.

5.1. Forward Propagation Analysis: Reliability Prediction and
Test Times Decision. Once the simulations and ground test
data are available, the network can be updated accordingly.
Figure 13 depicts the general updating process. The estimation
of the performance metrics described in Section 4 is taken as
evidence to update the network. The leaf node distribution is
also the fusion of simulation and ground test. The beta distri-
bution will be adopted to fit the fusion result so that decision-
making of field test times can be implemented.

The distribution of the leaf node will be utilized as the
prior distribution to yield the posterior distribution with
field data. Let R denote the landing reliability, and let πðRÞ
denote the probability density of the distribution of the leaf
node, which can be expressed by the beta distribution:

π Rð Þ = β Rja, bð Þ = 1
B a, bð ÞR

a−1 1 − Rð Þb−1, 0 < R < 1:

ð17Þ

After updating, parameters a and b can be determined by
the leaf node’s sample through the following equation:

a =
μ2R 1 − μRð Þ − σ2RμR

σ2
R

, b =
μR 1 − μRð Þ2 − σ2R 1 − μRð Þ

σ2
R

,

ð18Þ
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Figure 9: Lower-tail behavior of Clayton copula.
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Figure 10: Vine-BN of the landing reliability network.
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Figure 11: r62/r61 versus r62 ∣ 1, given P1 = 0:670.

X8

X7X6

X2

0.6723

0.8914 0.6778

X4

0.5617

X5

0.8213

X1

0.4868
0.3639

X3

0.5422

Figure 12: Quantified network.
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where μR is the sample mean and σR is the variance. When
field test data are available, the posterior distribution of
landing reliability can be obtained directly by taking πðRÞ
as the prior distribution. Assume that n airdrop tests have
been carried out. s is the number of successful tests, and
the posterior distribution of R is [43]

π Rjn, sð Þ = β R a + s, n − s + bjð Þ: ð19Þ

The decision-making of field test times can be conducted
from the posterior distribution. Given the lower bound of
the landing reliability RL and confidence level γ, the zero-
failure test times N can be determined by the following
equation:

ð1
RL

β R a +N , bjð ÞdR = γ: ð20Þ

In the forward propagation section, the following analy-
sis will be presented from two aspects: reliability prediction
and test times decision. The use of forward propagation for
reliability prediction and test times decision has two advan-
tages. First, expert opinions are reasonable measurements of
simulation models or test methods, which can avoid the
unreasonable results provided only by MCS. Second, the
fusion of multisource information, which has complemen-
tarity due to the diverse sources, can perform reliability pre-
diction and test times decision-making more reasonably. In
the following, we will illustrate the two advantages from
single-source and multisource forward propagation, respec-
tively. Note that the single-source information in the follow-
ing section refers to the root node of the network, that is, the
amount of simulation or test information adopted. However,
since the network is quantified by expert opinions, the

expert opinion information is integrated even under single-
source information.

5.1.1. Reliability Prediction and Test Time Decision Based on
Single-Source Information. X1 represents the release proba-
bility calculated by Wang et al.’s model [31], which took
the motion state of the parachutes and the wind field as
random factors to perform MCS to investigate the landing.
For details, we refer the reader to the appendix. The system’s
performance can be improved by adjusting key design
parameters in the design stage. Wang et al. pointed out that
the design release force Ts has considerable influence on the
release process. Table 3 shows simulation results under dif-
ferent Ts (1000 times MCS). The point and interval estima-
tions of X1 are also given.

If the landing reliability is evaluated only by taking the
release simulation results, according to Table 3, the lower
bound of the landing reliability can reach 0.9388 by simply
adjusting the design release force to 8 kN, which is far from
the actual engineering experience. For a more reasonable
evaluation of landing reliability, the simulation results are
substituted into node X1 in the network for forward propa-
gation. Theoretically, the network can be updated with
values, intervals, or distributions on ½0, 1�. Here, we took
the point estimation as an example to illustrate.

Simulation or
ground test

Performance metric 

Distribution of leaf node 

Data collection

Updating network Beta
distribution

fitting

Bayesian
inference

Reliability predictionDecision-making of
field test times

Figure 13: Forward propagation process.

Table 3: Simulation result under different Ts.

Ts

Simulation result
(success cases,
failure cases)

Point
estimation

Interval estimation,
confidence
level of 0.9

2 kN (437, 563) 0.437 [0.4169, 1]

4 kN (734, 266) 0.734 [0.7160, 1]

6 kN (865, 135) 0.865 [0.8510, 1]

8 kN (948, 52) 0.948 [0.9388, 1]
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Figure 14 presents the distribution of the leaf node under
four different design release forces. The figure shows that the
sample of leaf nodes is slightly concentrated in the right
region as the release design force increases. Table 4 shows
the results of reliability prediction and field test times deci-
sion based on the distribution of leaf nodes for a given lower
bound on reliability of 0.8 and confidence level of 0.9. Also,
the test times required for reliability assessment based solely
on binomial data (airdrop test) is presented. The results
indicate that landing reliability can be improved by increas-

ing the design release force, but the improvement is quite
limited. The point estimate improves only from 0.5292 to
0.6451, while the lower bound improves from 0.1576 to
0.2830 as the design release force increases from 2kN to 8kN.
The zero-failure test times are reduced from 9.889 to 8.450,
which is quite limited since only 10.32 zero-failure tests are
required based solely on the airdrop test.

The results manifest that the information for landing
performance provided by the release simulation is quite lim-
ited, and it is difficult to make a definitive judgment on the
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Figure 14: Distribution of leaf node by updating with simulation results.

Table 4: Reliability prediction and test times decision based only on release simulation, confidence level of 0.9 and lower-bound
reliability of 0.8.

Ts
Point

estimation

Interval
estimation,
confidence
level of 0.9

Zero-failure
test times

Zero-failure test
times, binomial
data (airdrop
test data) only

2 kN 0.5292 [0.1576, 1] 9.889

10.32
4 kN 0.6183 [0.2482, 1] 8.831

6 kN 0.6322 [0.2645, 1] 8.573

8 kN 0.6451 [0.2830, 1] 8.450
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landing performance based on the simulation results. This is
due to the roughness of the release simulation model. When
quantifying the network according to the expert opinions,
wherein the experts estimatedP1 of Equation (15) based on
question 1, only a conservative value of 0.670 was given. A
crude simulation model can provide relatively limited infor-
mation, whereas the results of a high-precision simulation
model should be given sufficient attention. According to
the expert opinion, a more accurate simulation model would
correspond to a larger P1, thus affecting the reliability pre-
diction and test times decision. To illustrate it from a
quantitative point of view, we show reliability prediction
and test times decision under different expert opinions.
The release simulation probability is assumed to be 0.95; that
is, X1 = 0:95 is used to update the network.

From Figure 15, we can see that the lower-bound reli-
ability increases as the experts estimate a larger P1, while
the zero-failure test times decrease as the P1 increases.
Specifically, when the experts assess P1 to be 0.55, the
lower-bound reliability is only 0.142 and the zero-failure test
times are 8.724, which is almost the same as the results
without any prior information since the simulation model
is too crude to provide valid information. Conversely, the
lower-bound reliability increases to 0.6187 and the test times
drop to 6.018 when experts estimate P1 to be 0.95, in which
case the experts consider the simulation model with high
accuracy. The analysis demonstrates that expert opinion,
which measures the effectiveness of a simulation or ground
test, has a significant impact on the reliability prediction
and test times decision. Therefore, experts should carefully
and comprehensively analyze the rationality of simulation
models and test methods.

It is important to note that even with the expert evalua-
tion of P1 = 0:95, the lower bound of the landing reliability is
only 0.6178, which still requires 6.018 zero-failure drop tests,
while relying solely on drop tests requires only 10.32 tests.
This is due to two reasons. First, the performance metric
for node 1 only concerns rollover accidents caused by the
release process, and it does not investigate accidents due to
overload; that is, node 1 is connected only to faulty node 6.
Second, the accuracy of the simulation model is limited. As
a result, it is necessary to integrate multisource information
to assess landing reliability from multiple perspectives.

5.1.2. Reliability Prediction and Test Time Decision Based on
Multisource Information Fusion. The prediction of landing
reliability will be more reasonable and accurate if more
information is available. To demonstrate the feasibility of
vine-BN in information fusion, Table 5 shows three infor-
mation cases, and Figure 16 shows the corresponding distri-
bution of the leaf node under these cases.

Figure 16(a) shows the leaf node distribution correspond-
ing to case 1. Due to the satisfactory performance of all met-
rics, the samples are concentrated in the right area of the
picture, and the lower bound of landing reliability is 0.8327.
Figure 16(b) shows an opposite result to Figure 16(a), where
all the performance metrics have a poor state: the samples
concentrate in the left area of the picture, and the lower bound
of landing reliability is only 0.0638. Note that the samples in

Figure 16(b) are more concentrated than those in
Figure 16(a). This is due to the lower-tail characteristic of
the Clayton function; i.e., it is more reasonable to identify
the low reliability of the systemwhen the simulation or ground
test shows poor performance. Figure 16(c) shows the distribu-
tion under case 3. Although the three metrics show good per-
formance, the lower bound is only 0.5620 due to the poor
performance of two metrics.

From Table 6, we can see that out of the three cases, only
case 1 requires the minimum number of zero-failure field
tests. For case 2, since both simulation and test results indi-
cate poor landing performance, more field tests are needed
to prove that the reliability of the system is up to standard,
but this is only the result of theoretical calculations. In prac-
tical engineering, it is also impossible to have more than 100
zero-failure airdrop tests if the simulation or ground test
performance metrics fail to meet the performance target.

The essence of integrating multiple information is to
investigate the landing reliability of the system from differ-
ent perspectives. Combining with the results of case 1 in
Table 6 and Table 4, it can be seen that when field tests are
insufficient, more information can be fused to reduce the
zero-failure test times. To illustrate this quantitatively, we
present Figure 17.

Figure 17 shows the landing reliability as a function of
the number of zero-failure test times under different
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Figure 15: Reliability prediction and test times decision with
different expert opinions, confidence level of 0.9, and lower-bound
reliability of 0.8.

Table 5: Reliability prediction cases using evidence from
simulation and ground test.

Evidence
Case

No. 1 No. 2 No. 3

RNS 0.9 0.2 0.9

LERTGT 0.9 0.2 0.9

RNDT 0.9 0.2 0.9

DTRH 0.9 0.2 0.2

DTO 0.9 0.2 0.2
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information fusions. It can be seen that the number of zero-
failure tests decreases as the information fusion increases.
Specifically, when fusing five pieces of information and
achieving 1 for each performance metric, 8.324 more zero-
failure field tests are required to give a lower bound of 0.9
for landing reliability, while 19.33 zero-failure field tests
are still needed when evaluated from simulations alone. It
should be noted that the gap between different information
fusions gradually narrows as the number of field tests
increases. In addition, if the number of field tests is large,
RL tends to be stable. This is because, when the number of
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Figure 16: Distribution of leaf node by updating with multisource information.

Table 6: Reliability prediction and test times decision based on
fusion of multisource information, confidence level of 0.9, and
lower-bound reliability of 0.8.

Case
Point

estimation

Interval
estimation,
confidence
level of 0.9

Zero-failure
test times

Zero-failure test
times, binomial
data (airdrop
test data) only

Case 1 0.9234 0.8327 0

10.30Case 2 0.1061 0.0638 110.6

Case 3 0.7078 0.5620 19.60
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Figure 17: Lower bound of landing reliability versus zero-failure
test times with different information fusions and confidence level
of 0.9.
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field tests is small, the assessment mainly depends on the
simulation and ground test, so the RL between the two
methods will be significantly different. With the increase of
field tests, the knowledge of landing mainly depends on field
tests, so the gap gradually narrows. Since the field samples
are usually limited, more information can be fused by the
network, resulting in a significant reduction in the cost and
workload of testing.

Note that different performance metrics have different
contributions to landing reliability, which will be discussed
in the next section.

5.2. Backward Propagation Analysis: Identification of Key
Performance Metrics. As mentioned above, backward propa-
gation updates the network under the given landing reliability.
The variations of the root nodes indicate the degree that con-
tributes to landing reliability. To be specific, we investigate the
variation of performance metrics’ distribution according to
the extremely low landing reliability. The performance met-
rics’ distribution changes significantly, indicating that when
the reliability of performance measures is low, landing acci-
dents are likely to occur. Therefore, more effort should be
made to improve the performance metric in the design stage.
In the following, we will illustrate the backward propagation
from both qualitative and quantitative points of view.

5.2.1. Qualitative Analysis. Identifying the most critical var-
iables within a given range of target variables is essentially a
local probabilistic sensitivity analysis [44]. Cooke and van
Noortwijk [45] introduced a visual tool for sensitivity analy-
sis, called the cobweb plot. The cobweb plot can intuitively
show the relationship between multivariate variables based

on a large number of multivariate samples, and it has been
applied to the reliability analysis of underwater tunnels
[29], complex electronic systems [46], subsea pipelines
[47], etc. Unigraph provides cobweb plot functions and is a
postprocessing module of Uninet, but is also available as a
standalone software. Uninet is a calculation software
developed by Ababei and Lewandowski [48] based on vine
copula and vine-BN theory, and it is theoretically sup-
ported by Delft University of Technology. An academic
version of the software is available at https://lighttwist-
software.com/uninet/. In the following, we will illustrate
the qualitative analysis via Unigraph. First, we sample
from the landing reliability network and import the sam-
ples into Unigraph, then condition the landing reliability
on interval ½0, 0:1�.

As Figure 18 shows, on top of each vertical axis label are
the names of the performance metrics. The leftmost axis rep-
resents landing reliability. The remaining four labels, from
left to right, correspond to the root nodes’ names of the net-
work shown in Figure 8(b). Each axis marks the percentile
sample of each variable. Since all nodes in the network are
defined as uniformly distributed on ½0, 1�, the samples gener-
ated by sampling from the network are the percentile sam-
ples. The blue lines connect each pair of sample on the
vertical axes. It is intuitive to see that the samples of RNS
and LERTGT are concentrated at the bottom of the axis,
while the other samples are distributed nearly uniformly
along the axis. A preliminary conclusion can be drawn that
RNT and LERTGT have a significant influence on landing
reliability according to Figure 18. Therefore, to improve
landing reliability, the parachute-separation probability cal-
culated from the release simulation model should first be
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Figure 18: Conditional cobweb plot and landing reliability condition on [0, 0.1].
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increased, together with a reduction in the response time of
the latch ejection.

In this paper, we present a simplified network based on
specific ground test and simulation information. If more
information is available and multiple failure modes are con-
sidered simultaneously, as shown in Figure 8(a) for complex
network structures, the identification function of the cobweb
graph would be prominent.

5.2.2. Quantitative Analysis. Figure 19 shows the variation of
mean and standard deviation with the landing reliability
condition on ½0, 0:1�. Note that the variation is calculated
by jðupdated − priorÞ/priorj, where the prior distribution
is uniform.

As shown, the sequence of contribution to landing reli-
ability is RNS, LERTGT, DTRH, RNDT, and DTO. RNS
and LERTGT experience significant changes (62.72% and
26.22% and 50.34% and 10.81%, respectively). Therefore,
more attention should be paid to the performance metrics
of RNS and LERTGT in the design stage. Specifically, the
corresponding design parameters, such as the spring stiff-
ness of the release unit and the design release force, should
be adjusted first to meet the performance requirements.
However, the performance metrics are also influenced by
different design parameters, which are connected in complex
ways. Therefore, the network can be further extended to set
the design parameters as root nodes, while the metrics as
intermediate nodes, to identify the key design parameters.

For illustration, Figure 20 shows an extension of the gen-
eral network structure, where from the bottom to the top are
the design parameter layer, the performance metric layer,
and the failure mode layer. The present work is limited to
exploring the correlation between performance metrics and
failure modes. In practical engineering applications, the
design parameter layer should be considered in order to
determine the key parameters more directly. The definition
of nodes for design parameters and the elicitation of correla-

tions between performance metrics and design parameters
will be challenging and require further research.

6. Conclusion and Future Work

(1) A methodology for assessing the landing reliability
of airdrop systems by fusing multiple-source infor-
mation based on vine-BN is proposed. For illustra-
tion, a network is developed based on specified
ground tests and simulation for an HCADS. The net-
work structure is determined by the correlation
between the performance metrics of simulation or
ground tests and landing-failure modes. Nodes in the
network are defined as random variables on ½0, 1�,
and the correlation coefficients on arcs are elicited by
expert opinions

(2) The forward propagation under different informa-
tion cases shows that vine-BN is a reasonable tool
for fusing multisource information. Through the
fusion results, landing reliability can be predicted in
the design stage. Decision-making regarding the field
test times can be performed, and the field test times
are reduced remarkably. The methodology can sig-
nificantly reduce the cost and workload of the test

(3) The backward propagation only recognizes the key
performance metrics; it is not intuitive in system
design. In order to provide a more intuitive analysis,
the key design parameters should be identified, and
the network should be extended. How to define the
design parameter nodes and how to derive the corre-
lations at the arcs of the design parameters are the
most critical issues and require further research

Appendix

Figure 21 is the schematic diagram for the release simulation
model. The parachute-connecting rope and the cargo hanger
rope are simplified to a single unit, and the release unit is a
point on it. The influence of the cushion process will not
be considered in this model.
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M4 Ms

An

Successful
landing
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Figure 20: Extensions to the general network structure.
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Figure 19: Change of statistical characteristics during backward
propagation.
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The kinetic equation is

mp +mf

À Á €xp

€yp

" #
= FL + FD + T +Gp, ðA:1Þ

where mp and mf is the parachute mass and added mass,
respectively; the expression for mf is

mf = kf ρ CAð Þ3/2: ðA:2Þ

kf is the added mass coefficient, and its value can be 0.66
[49]. The tension force T is as follows:

T =
k L − L0ð Þ, L > L0ð Þ,
0, L ≤ L0ð Þ:

(
ðA:3Þ

L0 is the original length of the parachute-connecting
rope and L is the instantaneous length during landing, which
can be calculated by Equation (A.3).

L≐
ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2p + y2p

q
: ðA:4Þ

The stiffness k can be calculated by

k =
T0
ΔL0

: ðA:5Þ

T0 is the tension in the parachute-connecting rope when
the system is in a stable descending state, and it equals the
gravity of the cargo. ΔL0 is the elongation before landing,
and it is a given parameter.

FL and FD are the lift force and drag force, respectively,
expressed as

FL =
1
2
ρv2CLA0, FD =

1
2
ρv2CDA0 ðA:6Þ

where CL and CD are the lift and drag coefficients, respec-
tively, and for the relationship with the attack angle, we
can refer to reference [50].

In this model, we only consider the case where the wind
field is horizontal and the airspeed of the parachute can be
calculated by

v =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_xp + u0

À Á2 + _y2p

q
, ðA:7Þ

where u0 is the wind speed. T can be calculated through the
above equation. If T satisfies Equation (A.7), the release pro-
cess is successful.

T < Ts: ðA:8Þ

Ts is the design release force in system design. If T is
greater than T0 during landing, it indicates that the cargo
may be pulled up, in which case, the rollover may occur;
thus, the release process can be regarded as a failure.

The initial swing angle θ0, swing speed vp0, and falling
speed _y0 of the system with the influence of the wind con-
tribute to the uncertainty of landing jointly. The release
probability, i.e., the probability of no rollover, can be calcu-
lated using MCS.

According to engineering experience, it is assumed that
the variables follow the following distribution:

θ0 ∼N 0, 3:332
À Á

_y0 ∼N −7, 0:332
À Á

u0 ∼N 7, 22
À Á

: ðA:9Þ

The approximately linear relationship between vp0 and
θ0 is taken:

vp0 = ±vp0 max 1 −
θ0
10

����
����

� �
: ðA:10Þ

Other parameters are shown in Table 7.

Data Availability

The data used to support the findings of the manuscript
(titled “Landing Reliability Assessment of Airdrop System
based on Vine-Bayesian Network”) have been deposited in
the “figshare” repository (10.6084/m9.figshare.20304609.v1).
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Table 7: List of the calculation parameters.

mc (kg) Ts (kN) L0 (m) ΔL0 (m) A0 (m
2)

8200 5 65 6.5 2584
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