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The large dynamic and high-speed flight of aerospace vehicle will bring unpredictable conditions to its navigation system,
resulting in that its system random noise probability distribution will no longer meet the preconditions of Gaussian
distribution preset by the existing filter algorithm, thus reducing the accuracy of the navigation system. So, it is very important
to propose an effective method to solve the filter problem of the navigation system in non-Gaussian distribution to improve
the accuracy of the navigation system. Therefore, an integrated navigation method of aerospace vehicle based on rank statistics
(LRF) has been proposed in this paper. Firstly, based on the flight characteristics of aerospace vehicles, an accurate gravity
calculation model has been established to improve the accuracy of system modelling. Then, the state equation and
measurement equation of integrated navigation system have been established. In combination with the rank filter algorithm as
well as the determined weights, sampling points are calculated and nonlinearly propagated through the transition matrix to
achieve an accurate estimation about the predicted values of the state quantities and measurement quantities and the
covariance matrix. In turn, it simulates the probability distribution of the system state effectively. Therefore, when the system
random noise probability distribution of the aerospace vehicle does not meet the Gaussian distribution due to various
interference factors in the actual flight process, the algorithm can simulate the probability distribution of the actual system to
the greatest extent, to improve the accuracy of the integrated navigation system and enhance the reliability of the navigation
system ultimately.

1. Introduction

In recent years, the research on aerospace vehicles repre-
sented by the X37-B series of the United States has been car-
ried out continuously. Countries around the world have also
focused their strategic research on aerospace integration. As
a new type of aircraft with dual functions of aircraft and
spacecraft, aerospace vehicles (ASV) are gradually occupy-
ing an important strategic position in the future battlefield
due to its characteristics of cross-airspace, multimission,
multiworking mode, and large-scale high-speed manoeu-
vres [1, 2]. The reusable aerospace vehicles represented by
X-37B, IXV, X-33, etc. have attracted more and more atten-
tion, promoted the development of low-cost space technol-
ogy, and become a research hotspot in recent years [3, 4].
However, there are still many important problems to be

solved in the field of aerospace vehicles. Among them,
how to ensure the reliable flight of aerospace vehicles in
complex flight environment has become a research hotspot.
To improve the flight reliability of aerospace vehicle, it is
necessary to design its control system perfectly. In the con-
trol system, the navigation system is an important part; its
accuracy and reliability have an important impact on the
subsequent guidance and control parts. Therefore, relying
on high-precision navigation sensors, designing a naviga-
tion system with high reliability, high precision, and strong
robustness has become one of the key problems to be solved.

At present, the multisource fusion navigation system
with inertial navigation system as the core has become the
primary choice of large aircraft navigation system. Inertial
navigation system has the advantages of complete autonomy
and output of complete navigation parameters, which can

Hindawi
International Journal of Aerospace Engineering
Volume 2023, Article ID 1897256, 15 pages
https://doi.org/10.1155/2023/1897256

https://orcid.org/0000-0002-3725-2696
https://orcid.org/0000-0003-4619-4384
https://orcid.org/0000-0002-5965-6958
https://orcid.org/0000-0003-0393-5007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/1897256


provide continuous navigation information for aerospace
vehicles. However, the problem of its own error drifting with
time needs to be corrected by high-precision external mea-
surement information. The mature applications include
global satellite navigation system and celestial navigation
system. The effectiveness of the multisource fusion naviga-
tion system constructed by diverse navigation sensors has
been verified on multiple types and models of aircraft, such
as the embedded GPS/INS system (EGI), which has been
used more widely as a central navigation equipment of air-
craft [5]. Moreover, the use of INS/GPS/CNS integrated nav-
igation can achieve complementary advantages between
navigation systems and improve the accuracy and reliability
of the navigation system output, pointed out by Magree and
Johnson and Vetrella et al. [6, 7]. Researchers have made
fruitful results in this field [8]. However, through the
research on the existing integrated navigation filter algo-
rithms, we found that most of the current navigation system
solutions are applicable to near ground aircraft. Because the
flight altitude of this type of aircraft is generally low, the
earth gravity model is usually simplified when the geo-
graphic coordinate system is used as the reference coordi-
nate system for the calculation of the navigation system. In
addition, in the above algorithm, due to the simplified
modelling of the earth motion, when calculating the conver-
sion matrix from the inertial coordinate system to the earth
fixed coordinate system, it is usually realized by multiplying
the earth rotation angle rate by the earth rotation time. But
as we all know, the earth is an irregular ellipsoid, and its
poles are flatter. For the modelling of aerospace vehicles nav-
igation system, there are three main problems: The first is
the gravity problem, and aerospace vehicles usually have
high dynamic flight characteristics. Therefore, using a single
gravity value to describe the gravity change in the whole pro-
cess obviously cannot meet the accuracy requirements of
aerospace vehicle navigation system. The second is the cur-
vature radius of the earth. The high-speed flight of aerospace
vehicle leads to the rapid change of longitude and latitude.
Therefore, modelling using the curvature radius of the ellip-
soid surface in all directions is also an important part of
improving the accuracy of the navigation system. The third
is that the navigation system model of aerospace vehicle is
inconsistent with the filter model due to large dynamic
flight, which leads to the decline of filter estimation accu-
racy. In recent years, researchers have solved the problem
that the accuracy of integrated navigation system decreases
due to the inaccurate error model through the research of
the adaptive filter [9, 10] and IMM filter algorithm [11].
According to the accurate modelling of aerospace vehicle
navigation system, it can provide high-precision state quan-
tity and measurement quantity for the subsequent filtering
algorithm and then improve the accuracy of navigation
parameter estimation.

The navigation system of aerospace vehicle is a typical
nonlinear system because of its complex flight characteris-
tics. How to estimate the parameters of the system accurately
has become an important problem. At present, the Kalman
filter is the most widely used, but it is limited by its applica-
tion, that is, the system needs to meet the linear and the

noise obeys the Gaussian distribution. Therefore, it is diffi-
cult to ensure the accuracy of the parameters estimation of
the aerospace vehicle navigation system. In recent years,
many researchers have proposed some filter algorithms
including EKF and UKF. Among them, the nonlinear func-
tion of EKF, by expanding the nonlinear function with Tay-
lor odd numbers, retaining its linear term, and ignoring the
high-order term, is transformed into a linear function for the
Kalman filter. However, EKF still uses the standard Kalman
filter algorithm for linear systems, so it is only applicable to
nonlinear objects weakly. UKF is also suitable for nonlinear
functions, which estimates the parameters by approximating
the probability distribution [12]. Unlike the Kalman filter,
which uses the prior information of the measured quantity
and the prediction mean square error matrix to determine
the filter gain, it determines the filter gain through the esti-
mated state quantity and the covariance matrix of the mea-
sured quantity. In recent years, based on the standard
Kalman filter algorithm, many filter algorithms to solve the
estimation of nonlinear systems have been proposed. Ara-
saratnam et al. have used the Ito-Taylor expansion of order
1.5 to transform the process equation, modelled in the form
of stochastic ordinary differential equations, into a set of sto-
chastic difference equations [13]. Building on this transfor-
mation and assuming that all conditional densities are
Gaussian-distributed, and the solution to the Bayesian filter
reduces to the problem of how to compute Gaussian-
weighted integrals. Chuang et al. have used the central differ-
ence Kalman filter (CDKF) transform to deal with the non-
linear problem of the model, avoiding to solve the complex
Jacobian matrix [14]. However, the above methods are still
designed from the perspective that the system noise in Kal-
man filter obeys Gaussian distribution.

The complex flight environment of aerospace vehicles
may make it difficult to model all measurement processes
and obtain the statistical characteristics of noise accurately.
Therefore, the traditional Kalman filter based on Gaussian
distribution will be difficult to adapt to this situation. Filter
algorithms for non-Gaussian distribution have also been
studied in recent years. The representative algorithms
include the particle filter and the filter algorithm based on
the maximum correlation entropy criterion. Because of its
unique theoretical advantages in nonlinear non-Gaussian
systems, particle filter has gradually become the focus of
many fusion methods. However, particle degradation and
sample depletion restrict the application of particle filter in
complex engineering [15, 16]. As a local similarity measure,
the filter algorithm based on the maximum correlation
entropy criterion can make full use of the higher order infor-
mation of the measured quantity compared with the classical
least mean square error criterion which only uses the
second-order moment information of the measured quan-
tity. Therefore, the correlation entropy theory is applicable
to the stochastic systems contaminated by non-Gaussian
noise [17, 18]. Zhang et al. have proposed a cubature Kal-
man filter based on maximum correntropy criterion
(MCCKF) [19]. MCCKF took the maximum correntropy
criterion as the optimization criterion, which considers the
high-order moments of estimation errors. Then, the
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estimated state was updated with fixed-point iteration algo-
rithms iteratively, and the cubature quadrature rule was used
to approximate a Gaussian-weighted integral. In addition,
Zhang et al. have developed the minimum kernel risk-
sensitive loss (MKRSL) algorithm to improve the filter accu-
racy and robustness of kernel least mean square (KLMS) in
non-Gaussian noises [20]. From the above analysis, we can
see that in the face of complex non-Gaussian systems such
as aerospace vehicle navigation system, the traditional filter
algorithm based on Gaussian distribution cannot be esti-
mated effectively. Therefore, researchers have carried out a
lot of research on the filter algorithm of non-Gaussian noise.
However, the above algorithm still has the problems of com-
plex calculation and low efficiency, which is difficult to meet
the requirements of aerospace vehicle navigation system. In
recent years, a rank sampling method has been proposed
[21], which can simulate the probability distribution of sys-
tem states effectively. Based on this, a rank filter method
has been proposed. It can be applied to nonlinear filter prob-
lems in which noise conforms to Gaussian distribution or
non-Gaussian distribution. In addition, compared with
UKF, PF, and other algorithms, this method has the advan-
tages of simple calculation and small amount of calculation,
which is convenient for engineering application.

In a word, the aerospace vehicle can adopt a multi-
source navigation system to meet the needs of its complete
navigation parameter measurement. On this basis, other
auxiliary navigation sensors can be selected according to
the changes of the actual flight environment to improve
the reliability of the navigation system. At the same time,
different navigation sensors can be added according to
the needs of practical projects. Based on the above naviga-
tion configuration, this paper carries out the algorithm
research on the integrated navigation system of aerospace
vehicles. The main innovations include the following two
parts: firstly, according to the characteristics of aerospace
vehicle flying in large dynamic, long distance, and far away
from the earth’s surface, the influence of gravity and
earth’s radius of curvature on navigation results is fully
considered in the modelling stage, and an accurate model
is established to improve the accuracy of navigation calcu-
lation. At the same time, in order to conform to the actual
flight environment of aerospace vehicles, the transforma-
tion matrix from the earth-centred inertial coordinate sys-
tem to the earth fixed coordinate system is established in
combination with the earth motion parameters such as
pole shift, vernal equinox time angle, nutation, and preces-
sion of the equinoxes, to improve the accuracy of the
model. On this basis, combined with the multisource nav-
igation sensor configuration of aerospace vehicles and the
problem that the system noise no longer obeys the Gauss-
ian distribution during large dynamic flight, according to
using the rank filter algorithm and combining with the
principle of rank statistics, the real distribution has been
simulated, and the rank Kalman filter is used to realize
the accurate estimation of navigation parameters. The pro-
posed algorithm can meet the accuracy and reliability
requirements of the navigation system for aerospace vehi-
cles in a large-scale and high-maneuverer flight.

2. Algorithm Design

ASV has a broad flight envelope, and the entire flight process
can be divided into several stages: launch phase, on-orbit
phase, reentry phase, and landing phase. Considering the dif-
ference of flight characteristics between aerospace vehicles and
unmanned aerial vehicle, aircraft, and other near ground vehi-
cles, aerospace vehicles generally fly in low-earth orbit about
300 km away from the earth. At present, the algorithms
designed for the near ground vehicle using the geographic
coordinate system as the reference coordinate system for nav-
igation calculation often ignore the impact of the fact that the
earth is an imperfect ellipse on the navigation results. This
processing method will not have a great impact on the naviga-
tion calculation accuracy of the near ground vehicle. However,
in the navigation calculation process of the aerospace vehicle,
on the one hand, because its flight is far away from the earth’s
surface, parameters related to the earth have an important
impact on its navigation calculation. On the other hand, it
requires higher accuracy of the navigation system. Therefore,
the launch inertial coordinate system is selected as the refer-
ence coordinate system of this algorithm.

Then, since the noise distribution of the system state
quantity and measurement quantity is no longer consistent
with the traditional Gaussian distribution caused by many
uncertain factors in the actual flight process of the aerospace
vehicle, the rank sampling method is adopted to simulate the
real system distribution further effectively, to improve the
output accuracy of the filter. The overall scheme of the algo-
rithm is shown in Figure 1.

Figure 1 is an algorithm scheme diagram. It can be seen
from Figure 1 that the algorithm is divided into three parts.
The blue part is inertial navigation system modelling. Firstly,
the angular rate of the aerospace vehicle is obtained by the
gyroscope, and the attitude is calculated by the quaternion
method. The specific force is obtained by the accelerometer,
and the position and speed are calculated. At the same time,
the specific force of the body coordinate system relative to
the inertial coordinate system is projected in the geographic
coordinate system to calculate the acceleration in the up
direction, and the gravity potential function is calculated
by using the spherical harmonic function, which provides
the basis for the subsequent filtering equation modelling.
The green part is the filter modelling part. Firstly, the navi-
gation parameters are obtained by measuring sensors, and
the Kalman filter model is established by an indirect method.
In view of the fact that the system noise does not conform to
the Gaussian distribution. The orange part is used for rank
statistics analysis. Firstly, the rank sampling points are gen-
erated to obtain the variance matrix of a one-step prediction
error. Then, the updated filter gain matrix is obtained
through the state matrix transition and measurement matrix
transition, and the navigation parameter error is corrected.

2.1. Influence of Earth Gravity. Unlike aviation aircraft, aero-
space vehicles fly far away from the earth’s surface, which
means that the simplified earth model used by traditional
inertial navigation algorithms in the geographic coordinate
system is no longer suitable for ASV navigation systems.
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During the matrix conversion of aerospace vehicle coordi-
nates, an important conversion matrix is the conversion
from WGS84 coordinate system to the J2000 coordinate sys-
tem. Usually, the global satellite navigation receiver receives
the rectangular coordinates under the WGS84 coordinate
system, so the difference between the WGS84 coordinate
system and the J2000 coordinate system is mainly caused
by the pole shift, vernal equinox time angle, nutation, and
precession of the equinoxes. The conversion steps from the
WGS84 coordinate system to the J2000 coordinate system
are shown in Figure 2:

As can be seen from Figure 2, in order to calculate the
transformation matrix from the J2000 coordinate system to
WGS84 coordinate system, it is necessary to fully consider
the relevant parameters of the earth motion. Firstly, the
influence of precession is considered to calculate the coordi-
nate transformation matrix from the J2000 coordinate sys-
tem to the instantaneous horizontal celestial coordinate
system, while the nutation effect is required to be considered
in the transformation from instantaneous horizontal celes-
tial coordinate system to the instantaneous true celestial
coordinate system. Then, the influence of the vernal equinox
time angle shall be considered when converting from the
instantaneous true horizontal celestial coordinate system to
the instantaneous ground fixed coordinate system. Finally,
according to the coordinates of the pole, the instantaneous
ground fixed coordinate system is converted to the WGS84
coordinate system.

Therefore, based on the previous research on the strap-
down inertial navigation system model in the launch inertial
coordinate system [22], this paper further deduces the uni-
versal gravitation model which affects the accuracy of the
aerospace vehicle navigation system and then improves the
original model.

The specific force measured by the accelerometer is cal-
culated from the difference between the absolute accelera-
tion and the gravitational acceleration of the aerospace
vehicle relative to the inertial space. Combined with New-

ton’s second law, the specific force equation can be obtained
as follows:

f = €R −G: ð1Þ

In Equation (1), G is the gravitational acceleration and R
is the position vector of aerospace vehicle in inertial coordi-
nate system. The derivative of R in the geocentric inertial
coordinate system can be expressed as

dR
dt

����
i

= dR
dt

����
e

+ωie × R: ð2Þ

Gyroscope Quaternion

Direction cosine matrix

Matrix transformationAccelerometer

Acceleration
calculation

Outputs Measurement
transition matrix

Variance matrix of one-
step prediction error

Filter gain
matrix

Simulation of state distribution of navigation system state quantity and measurement quantity

Generate rank
sampling point set

State transition
matrix

Gravity
field model

Spherical
harmonic
function

Gravitational
potential function

Position

Velocity

Attitude
Measurement

quantity

State quantity

Filter model

𝜔
b
ib

𝜔
n
ie

𝜔
n
en

cbn
fbib fnib

q

G
Xc

𝜈
n
z

.

Figure 1: The overall scheme of the algorithm.
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Figure 2: Schematic diagram of the conversion process between
the J2000 coordinate system and WGS84 coordinate system.
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In Equation (2), dR/dtje is the velocity of the aerospace
vehicle relative to the earth, ωie is the rotation speed of the
earth, and ωie × R is the implicated acceleration caused by
the earth’s rotation.

Suppose vep represents the velocity of the aerospace vehi-
cle relative to the earth:

vep =
dR
dt

����
e

: ð3Þ

The two sides of Equation (2) are derived in the inertial
coordinate system; then:

d2R

dt2

�����
i

=
d2vep
dt

�����
i

+ d
dt

ωie × Rð Þ
����
i

: ð4Þ

Due to ωie is a constant, so

d2R

dt2

�����
i

= _vep + 2ωie + ωep

À Á
× vep +ωie × ωie × Rð Þ: ð5Þ

From Equations (1) and (5):

f +G = d2R

dt2

�����
i

= _vep + 2ωie + ωep

À Á
× vep + ωie × ωie × Rð Þ:

ð6Þ

Then the relationship between the specific force output
by the accelerometer and the motion acceleration can be
obtained:

_vep = f − 2ωie +ωep

À Á
× vep − g

Â Ã
: ð7Þ

According to Equation (7), the up direction geographic
velocity of the aerospace vehicle relative to the earth surface
can be obtained:

_vnz = fnz − 2ωie cos L +
vnx
Rn

� �
× vnx +

vny
Rm

vny − g: ð8Þ

It can be seen from Equation (8) that the real-time alti-
tude of the aerospace vehicle can be calculated by _vnz through
two integrals.

From Equation (8), it can be seen that _vnz includes the
gravitational acceleration. Therefore, G is not constant.
There is a functional relationship between G and height h,
and its value decreases with the increase of h. R is the radius
of the earth, and when h≪ R, the gravity model utilized in
conventional inertial navigation algorithm is as follows:

g = 0 0 g0 1 − 2h
r

� �� �T
: ð9Þ

where g is the local gravity vector and g0 is the launch point
gravity value.

From the above equation, it can be found that the gravity
model is greatly simplified. The gravity model utilized in
conventional inertial navigation algorithm is only related
to g0 and h.

Since the orbital height of ASV is about 300 km, it can be
roughly regarded as a low-earth orbit satellite, which means
that the greatest influence factor on the gravitational field is
the ellipticity of the earth.

According to Newton’s law of universal gravitation, the
gravitational potential function can be written as:

dV = Gdm
ρ

: ð10Þ

In Equation (10), dm is the mass element of the total mass
of the earth. The distance between the mass of a particle out-
side the earth and dm is ρ. Therefore, the potential function
generated by the mass of the whole earth is equal to the sum
of the potential functions of its various mass elements:

V =
ð
M
dV =G

ð
M

dm
ρ

: ð11Þ

Combining Equations (10) and (11), the second-order
partial derivative of the three-dimensional coordinates of the
potential function can be obtained:

∂2V
∂x2

=G
ð
M

∂2

∂x2
1
ρ

� �
dm

∂2V
∂y2

=G
ð
M

∂2

∂y2
1
ρ

� �
dm

∂2V
∂z2

=G
ð
M

∂2

∂z2
1
ρ

� �
dm:

8>>>>>>>>><
>>>>>>>>>:

ð12Þ

Using the spherical coordinates of a particle outside the
earth ðq,ψ, σÞ and the spherical coordinates of a mass ele-
ment inside the earth ðQ,ψ ′, σ′Þ, Q is the radial diameter,
and its included angle with q is ϕ.

So, the function Pnðcos ϕÞ composed of the above four
spherical angular coordinate variables can be calculated:

Pn cos ϕð Þ = 〠
n

k=0

2 n − kð Þ!
1 + δkð Þ n + kð Þ! P

k
n cos ψð ÞPk

n cos ψ ′
� �

cos k σ − σ′
� �

:

ð13Þ

In Equation (13), ψ, ψ ′, σ, and σ′ are the four spherical
angular coordinate variables.

By integrating the spatial dynamic coordinates ðQ,ψ ′, σ′Þ
and combining the trigonometric function identity, the poten-
tial function can be rewritten as:

V = μ

r
1 − 〠

∞

n=1

Re

r

� �n

JnPn cos ψð Þ + 〠
n

k=1
JknP

k
n cos ψð Þ cos k σ + σk

n

� �" #( )
:

ð14Þ
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In Equation (14), Jn is the second-order harmonic
coefficient.

According to Newton’s second law of motion, the
motion equation of aerospace vehicle in the earth’s gravita-
tional field is:

€r = f : ð15Þ

In Equation (15), the displacement vector of aerospace
vehicle in earth-centred inertial coordinate system is r =
½x y z�T , and the earth’s gravitation to aerospace vehicles
is f = ½ fx fy f z�T . Therefore, the gravity field model is as
follows:

G =

−
μx
r3

1 − J2
Re

r

� �2
7:5 z

2

r2
− 1:5

� �" #

−
μy
r3

1 − J2
Re

r

� �2
7:5 z

2

r2
− 1:5

� �" #

−
μz
r3

1 − J2
Re

r

� �2
7:5 z

2

r2
− 4:5

� �" #
:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð16Þ

where ðx, y, zÞ is the position of aerospace vehicles in the
inertial coordinate system, J2 = 1:08263 × 10−3 is the
second-order harmonic coefficient, μ = 3:986 × 1014m3s−2 is
the gravitational constant, Re = 6378137m is the equatorial
radius, and r is the distance from aerospace vehicles to the
geocentric. If a higher precise gravitational field is needed,
the formula using multiorder harmonic coefficients can be
applied.

Comparing Equations (9) and (16), we can find that
the gravity model calculation equation in Equation (9)
only has a mathematical relationship with the flying
height of the aircraft and does not consider the impact
of the earth’s ellipticity on the gravity field, because it
is generally applicable to the navigation solution of near
ground aircraft. When the altitude h of the aircraft is
far less than the radius R of the earth, this equation
can calculate the gravity of the aircraft approximately.
However, it is well known that the aerospace vehicle is
in the orbit for a long time, and its flying height is about
300 km. Therefore, the influence of the earth ellipticity on
its gravity field cannot be ignored. In combination with
Equation (14), we can deduce the calculation Equation
(16) of the gravity field of the aerospace vehicle during
flight. This model fully considers the influence of the
earth ellipticity on the gravity field and improves the
accuracy of the navigation system model of the aerospace
vehicle.

2.2. Modelling of Integrated Navigation System. After we
have established an accurate gravity model, the strapdown
inertial navigation model is further established. According
to the design scheme shown in Figure 1, the strapdown iner-
tial navigation model can be divided into attitude calculation
module and velocity/position calculation module. Since the

launch inertial coordinate system is different from the geo-
centric inertial coordinate system only in the coordinate ori-
gin, therefore, combining with gyroscope outputs, ωb

lb can be
written as:

ωb
lb =ωb

ib: ð17Þ

In Equation (17), ωb
ib is the projection of the angular rate

of the body coordinate system relative to the inertial coordi-
nate system under the body coordinate system.

In order to calculate the direction cosine matrix
between the launch inertial coordinate system and the geo-
graphic coordinate system and further calculate the atti-
tude of the aerospace vehicle in the launch inertial
coordinate system, the quaternion method is adopted in
this paper. Compared with the traditional Euler angle
method, this method can greatly reduce the amount of
calculation.

The quaternion differential equation of attitude calcula-
tion is as follows:

_q = 1
2 ×

q0 −q1 −q2 −q3
q1 q0 −q3 q2

q2 q3 q0 −q1
q3 −q2 q1 q0

2
666664

3
777775 ×

0
ωbx

ωby

ωbz

2
666664

3
777775: ð18Þ

In Equation (18), q is the attitude quaternion.
The quaternion q can be obtained by discretizing Equa-

tion (18) and calculating it by the Picard successive approx-
imation method. By approximating the exponential integral,
the following quaternion recurrence expression can be
obtained:

qi t + Tð Þ = cos Δθ0
2 I + sin Δθ0/2ð Þ

Δθ0
Δθ½ �

� �
qi tð Þ: ð19Þ

In Equation (19), qiðt + TÞ is the attitude quaternion of
the carrier at time t + T . I is a 4 × 4 identity matrix.

Δθ2
0 = Δθ2

x + Δθ2y + Δθ2z : ð20Þ

After normalizing q, the attitude transfer matrix Cb
l can

be obtained:

Cb
l =

q0
2 + q1

2 − q2
2 − q3

2 2 q1q2 + q0q3ð Þ 2 q1q3 − q0q2ð Þ
2 q1q2 − q0q3ð Þ q0

2 − q1
2 + q2

2 − q3
2 2 q2q3 + q0q1ð Þ

2 q1q3 + q0q2ð Þ 2 q2q3 − q0q1ð Þ q0
2 − q1

2 − q2
2 + q3

2

2
664

3
775:

ð21Þ

Furthermore, the expressions of attitude angles are
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obtained as follows:

γ = − arctan Cb
l 13

Cb
l 33

 !

θ = arctan Cb
l 23

� �

ψ = arctan Cb
l 21

Cb
l 22

 !
:

8>>>>>>>>><
>>>>>>>>>:

ð22Þ

In Equation (22), γ is the roll angle, θ is the pitch angle,
and ψ is the yaw angle.

The output of accelerometer fbib is the vector formed
by the axial component of the acceleration of the body
coordinate system relative to the inertial coordinate sys-
tem under the body coordinate system; similarly, combin-
ing with Equation (21), we can project the output of the
accelerometer to the emission inertial coordinate system,
and get:

f lib = Cl
bf

b
ib: ð23Þ

Among them, Cl
b is the transformation matrix of the

body coordinate system relative to the launch inertial
coordinate system.

From Equation (23), the specific force equation in
launch inertial coordinate system can be written as follows:

f lib = _v − Cl
iG: ð24Þ

In Equation (24), v is the velocity value under the launch
inertial coordinate system, and Cl

i is the attitude transforma-
tion matrix of the inertial system relative to the launch iner-
tial coordinate system. G is calculated by Equation (16);
then, the position value in the launch inertial coordinate sys-
tem can be calculated:

_p = v: ð25Þ

Combining Equations (17), (18), (24), and (25), the nav-
igation model can be established.

_q = 0:5q ⊗ωb
lb

_p = v

_v = f lib + Cl
iG:

8>><
>>: ð26Þ

After we have established the strapdown inertial naviga-
tion system model, the state model and observation model of
SINS/GNSS/CNS-integrated navigation system are estab-
lished directly.

The state equation of the navigation system after discre-
tization is as follows:

_X = F tð ÞX tð Þ +G tð ÞW tð Þ: ð27Þ

In Equation (27), FðtÞ is the system matrix, XðtÞ is the

state vector, GðtÞ is the system noise matrix, and WðtÞ is
the system noise vector.

Then, we can get the state vector X is:

X = δq1 δq2 δq3 δpx δpy δpz δvx δvy δvz ωrx ωry ωrz f rx f ry f rz
h i

:

ð28Þ

In Equation (28), δq1, δq2, and δq3 are the three-
dimensional vector error part of attitude quaternion q; δpx,
δpy, and δpz are the position error; δvx, δvy, and δvz are the
velocity error; ωrx, ωry, and ωrz are the gyro random walk
error; and f rx, f ry , f rz are the accelerometer randomwalk error.

The system noise vector W is:

W = ωεx ωεy ωεz ωnx ωny ωnz fnx fny fnz
h i

:

ð29Þ

The discrete equation of state for the navigation system
is obtained by discretizing Equation (27) as follows:

Xk =Φkjk−1Xk−1 + Γ k−1Wk−1: ð30Þ

In Equation (30), Xk is the state quantity at moment k,
Xk−1 is the state quantity at moment k − 1, Φkjk−1 is the sys-
tem state transfer matrix from moment k − 1 to moment k,
Γ k−1 is the corresponding discrete system noise matrix,
and Wk−1 is the system noise at moment k − 1.

In the observation equation of integrated navigation sys-
tem, position information from GPS and attitude informa-
tion from CNS are regarded as observation measurements.
Then the observation vector of SINS/CNS subsystem can
be written as follows:

Z tð Þ =H tð Þ × X tð Þ + R: ð31Þ

R is the measurement noise matrix of measurement.

3. Integrated Navigation Filter Algorithm

3.1. Rank Kalman Filter Algorithm. After the models of
strapdown inertial navigation system and integrated naviga-
tion system are established, the filter algorithm of integrated
navigation system needs to be further studied. Aerospace
vehicles need to complete the task of cross-airspace, high
dynamic, and large range; therefore, the noise statistical
characteristics of its navigation system no longer obey the
Gaussian distribution, which will lead to the inconsistency
between the filter model and the actual navigation system
model. At this time, the performance of the existing filter
algorithms based on the assumption of Gaussian distribu-
tion will decline. According to the principle of the rank Kal-
man filter [21], it adopts the rank sampling algorithm, which
collects the sampling points according to the correlation
principle of rank statistics, and then simulates the probabil-
ity distribution of the system state effectively, which can
solve the problems of system model error and noise uncer-
tainty in the actual system.
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3.1.1. Principle of Rank Sampling. The rank sampling is a
deterministic sampling method, which is based on the mean
of input vector �X and its covariance matrix Pkx

, to calculate
the mean �Y and covariance matrix Pky

of the nonlinear

function.
Firstly, according to the mean value �X and covariance

matrix PX of input vector X. Computing the set of rank sam-
pling points:fχ ig:

χ i = �X + r jλpj
ffiffiffiffiffiffiffi
Pkx

p� �
l
, ð32Þ

i = j − 1ð Þn + l j = 1, 2,⋯u

i = j − 2ð Þn + l j = u + 2, u + 3,⋯2u + 1:

(
ð33Þ

In Equation (32), χ i is the i-th sampling point of X, with a
total of 2un sampling points, n is the dimension of state vari-
able X, u is the number of sampling layers, r j is the correction
coefficient of sampling points in layer J, pj is the j-th sampling
point,χ i is the corresponding probability, λpj is the quantile of
probability pj in the one-dimensional standard distribution
probability of X distribution, and ð ffiffiffiffiffiffiffi

Pkx
p Þl is the l-th vector

of the square root of covariancematrix Pkx
. Due to the singular

values that often appear in practical use, which leads to the
decline of numerical stability, therefore, singular-value
decomposition is adopted to improve the stability of the algo-
rithm. The specific algorithm is as follows:

Pkx
=Ukx

Skx 0
0 0

" #
VT

kx
: ð34Þ

In Equation (34), S is a diagonal matrix, S = diag ½s1, s2,
⋯,sn�. After SVD decomposition, the covariance matrix of
Equation (34) can be written as follows:

Pkx
=Ukx

SkxV
T
kx
: ð35Þ

For each point χ i of the rank sampling point set fχ ig, the
point set fY ig of the output variable Y is obtained by nonlin-
ear transformation. According to fY ig, calculate the mean �Y
and the covariance matrix PY .

�Y = 1
2un〠

2un

i=1
Y i, ð36Þ

PY = 1
ω
〠
2un

i=1
r∗i Y i − �Y
À Á

Y i − �Y
À ÁT

: ð37Þ

Among Equation (37), r∗i is the covariance correction
coefficient corresponding to the i-th sampling point; the
covariance weight coefficient ω can be written as follows:

ω = 〠
2u+1

j=1,j≠u+1
r2jλ

2
pj
: ð38Þ

3.2. Filter Equation. Let the estimated value of state vector X at
time k − 1 be X̂k−1, and the covariance matrix is Pk−1. Accord-
ing to the principle of rank sampling in Equation (32), we can
get the set of sampling points χ i. Therefore, the estimated
value of X at time k is obtained X̂kjk−1:

X̂k k−1j = 1
2un〠

2un

i=1
Φ χk−1,ið Þ i = 1, 2,⋯, 2un: ð39Þ

One-step prediction covariance matrix is:

Pk k−1j = r∗i
ω
〠
2un

i=1
~Xk k−1j ~Xk k−1j

� �T� �
+Qk−1: ð40Þ

In Equation (40):

~Xk k−1j = Xk k−1j ,i − X̂k k−1j : ð41Þ

Measurement update: according to Equation (37), the new
set of sampling points fχkjk−1,ig is obtained by rank sampling
again:

χk k−1j ,i = X̂k k−1j + r jλpj

ffiffiffiffiffiffiffiffiffiffiffi
Pk k−1j

q� �
l
: ð42Þ

χkjk−1,i is the i-th sampling point of X̂kjk−1, a total of 2un;
ð ffiffiffiffiffiffiffiffiffiffiffi

Pkjk−1
p Þ

l
is the l-th column vector of Pkjk−1. After SVD

decomposition, the covariance matrix of Equation (34) can
be written as follows:

Pk k−1j =Uk k−1j Sk k−1j Vk k−1j
T : ð43Þ

The set of sampling points χkjk−1,i calculated by Equation
(42) is introduced into the measurement equation and nonlin-
ear propagation is carried out:

Zk k−1j ,i =H χk k−1j ,i
� �

 i = 1, 2,⋯, 2un: ð44Þ

From Equation (44), we can get the estimated value Ẑkjk−1
of observation measurement:

Ẑk k−1j = 1
2un〠

2un

i=1
Zk k−1j ,i: ð45Þ

From Equations (44) and (45), we can get the covariance
matrix of forecasting innovation:

Pzz =
r∗i
ω
〠
2un

i=1
Zk k−1j ,i − Ẑk k−1j
� �

Zk k−1j ,i − Ẑk k−1j
� �T� �

+ Rk:

ð46Þ

From Equations (41), (44), and (45), the prediction cross-
covariance matrix can be obtained:
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Pxz =
r∗i
ω
〠
2un

i=1
χk k−1j ,i − X̂k k−1j
� �

χk k−1j ,i − X̂k k−1j
� �T� �

: ð47Þ

From Equations (46) and (47), the filter gain can be
obtained:

K = PxzPzz
−1: ð48Þ

The k-time state estimation is:

X̂k = X̂k k−1j + K Zk − Ẑk k−1j
� �

: ð49Þ

The variance matrix of k-time estimation error is as
follows:

Pk = Pk k−1j −KPzzK
T : ð50Þ

4. Simulation and Analysis

In order to verify the performance of the algorithm, this paper
adopts the Monte Carlo simulation method. At the same time,
two simulation scenarios are set. Firstly, the performance of
the algorithm is verified when the random noise distribution
of the system does not meet the Gaussian distribution. Then,
on the basis that the random noise distribution does not meet
the Gaussian distribution, the system noise error is further
increased by simulating the inconsistency between the system
model and the filter model. Finally, the performance of the
algorithm is verified. This paper selects UKF as the compari-
son algorithm.

4.1. Simulation Parameter Setting. The initial longitude, lat-
itude, and altitude of aerospace vehicles launch are 118 ° ,
32 ° , 100m, the initial yaw angle is 90 ° , the launching azi-
muth angle is 30 ° , the launch time is 0 h 0min 0 s on
November 15, 2020, the flight time is 300 s, and the filter
period is 1 s. In Table 1, the actual system model random
walk parameters are inconsistent with the filter random walk
parameters in Equation (51), and the driving white noise
parameters of the accelerometer are also different from the
corresponding parameters in the filter. Therefore, the simu-
lation conditions can be regarded as the inconsistency
between the filtering model and the actual system model.

Filter parameters are set as follows:
System noise variance:

Q = diag 0:1°/h 0:1°/h 0:1°/h 0:1°/h 0:1°/h 0:1°/h 1 × 10−4g 1 × 10−4g 1 × 10−4g
Â Ã2� �

:

ð51Þ

Measurement noise variance:

R = diag 21″ 21″ 21″ 15m 15m 15m
h i2� �

: ð52Þ

From Table 1, it can be found that the actual system
model parameters are inconsistent with the parameters in

the filter. This simulation condition can be considered that
there is an error in the filter model.

4.2. Simulation Analysis

4.2.1. Non-Gaussian Random Noise. Based on the above sim-
ulation conditions, the flight path of aerospace vehicles is
simulated, as shown in Figure 3. The simulation flight path
of aerospace vehicle includes vertical launch, constant speed
rise, turning 45 degrees, and incline acceleration climbing.
The actual flight trajectory of the aerospace vehicle is simu-
lated. At the same time, we adjust the random errors of gyro-
scope and accelerometer to make them no longer conform to
Gaussian distribution, to verify the effectiveness of this
algorithm.

Figures 4 and 5 show the simulation results of the ran-
dom error distribution of the gyroscope and accelerometer.
The black line in the figure represents the Gaussian distribu-
tion curve, and the red part is the noise set in the simulation
experiment in this paper. After adjustment, the random
error noise distribution of the gyroscope and accelerometer
obviously no longer conforms to the Gaussian distribution.
It can also be seen from the data in Table 2 that the noise
of the gyroscope and accelerometer set in this paper meets
the characteristics of non-Gaussian noise in terms of mean
and variance. In subsequent simulation experiments, this
group of noise is used to verify the effectiveness of the algo-
rithm in this paper.

4.2.2. Navigation Parameter Error under Non-Gaussian
Distribution. From Figures 6–14, we can see that due to
the addition of non-Gaussian noise, the errors of both

Table 1: Error parameter setting.

Noise object Noise type Noise parameters Update rate

Gyroscope
Random walk 4°/h

0.2 sWhite noise 0:2°/h
Accelerometer Random walk 5 × 10−2g
GPS White noise 15m

1 s
CNS White noise 21′′

10
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4

2

0

5

0 8
6 4

z (
m

)
2

0

×104

×105
×105

Launch point

x (m)
y (m)

Figure 3: Flight path of aerospace vehicles.
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UKF algorithm and LRF algorithm fluctuate. In the atti-
tude error comparison curve, the roll angle error and pitch
angle error estimated by UKF algorithm are greater than
those estimated by the LRF algorithm, and the heading
angle error estimated by UKF algorithm is significantly
greater than that estimated by the LRF algorithm around
100 seconds. In the position error comparison curve, it
shows the same performance as the attitude error compar-
ison curve, that is, the UKF algorithm error is significantly
greater than the LRF algorithm error. In this paper, the
velocity of aerospace vehicle is calculated from its position,
so the variation trend of velocity error is consistent with
that of position error. Because the LRF algorithm designed
in this paper can better simulate the non-Gaussian distri-
bution of system random noise, it is more suitable for

the practical engineering application of aerospace vehicles.
From the statistical results of root mean square of naviga-
tion parameter estimation error in Table 3, when the nav-
igation system noise does not meet the Gaussian
distribution, the root mean square of navigation parameter
estimation error of LRF algorithm is significantly smaller
than that of the UKF algorithm, which indicates that the
LRF algorithm has smaller estimation error, higher accu-
racy, and more stable when the navigation system noise
does not meet the Gaussian distribution.

4.2.3. System Model Inconsistency and Navigation Parameter
Error under Non-Gaussian Distribution. Figures 15–23 show
the simulation analysis carried out on the basis that the nav-
igation system noise obeys the non-Gaussian distribution
and in combination with the actual flight environment of
aerospace vehicles, which is prone to lead to inconsistency
between the navigation system model and the filter model.
Firstly, because the system noise still obeys the non-
Gaussian distribution, the navigation parameter error esti-
mated by the UKF algorithm is greater than that estimated
by the LRF algorithm. Secondly, because of the inconsistency
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Figure 4: Gyroscope noise.
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Figure 5: Accelerator noise.

Table 2: Random noise error distribution.

Mean Variance Skewness Kurtosis

Gyroscope −6:3 × 10−7 4:8 × 10−7 1.1 5.3

Accelerometer −1:9 × 10−4 9:8 × 10−4 1 5
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Figure 9: X-axis position error contrast curves.
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Figure 10: Y-axis position error contrast curves
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Figure 11: Z-axis position error contrast curves
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Table 3: Root mean square of navigation parameter estimation
error.

UKF LRF

Roll angle/(arc-second) 8.8373 8.1344

Pitch angle/(arc-second) 8.5071 7.6470

Yaw angle/(arc-second) 10.4908 8.9204

X-axis position/(m) 13.2418 6.7898

Y-axis position/(m) 11.8534 7.9474

Z-axis position/(m) 20.2492 5.2763

X-axis velocity/(m/s) 2.1154 0.7314

Y-axis velocity/(m/s) 1.7584 1.0181

Z-axis velocity/(m/s) 2.9909 0.5263
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Figure 16: Pitch angle error contrast curves.
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Figure 17: Yaw angle error contrast curves.
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Figure 20: Z-axis position error contrast curves
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Figure 21: X-axis velocity error contrast curves
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Figure 22: Y-axis velocity error contrast curves

13International Journal of Aerospace Engineering



between the system model and the filter model, the size of the
system noise will also change, resulting in the decline of the esti-
mation accuracy of the algorithm. From the curve of estimation
error, the estimation accuracy of LRF algorithm is significantly
better than that of the UKF algorithm. Its filtering error is
smaller, and the error curve is more stable. This is also verified
by the statistical results of the estimated mean square error in
Table 4. Since the inconsistency between the navigation system
model and the filter model is increased, it can be seen by com-
paring the data in Tables 3 and 4 that the data in Table 4 are
larger than those in Table 3, indicating that the system is more
unstable. However, it can be seen from the root mean square of
navigation parameter estimation error in Table 4 that the LRF
algorithm proposed in this paper has a smaller root mean
square of navigation parameter estimation error and higher
estimation accuracy when the system noise does not meet the
Gaussian distribution and the inconsistency between the navi-
gation system model and the filter model, and it can adapt to
more complex flight environment and has better robustness.

5. Conclusions

As a new type of aircraft, aerospace vehicle has become research
hotspot because of its advantages such as repeatable take-off

and landing and large-range flight. In order to meet the high-
precision and reliable flight requirements of aerospace vehicles,
it is necessary to research the corresponding navigation algo-
rithms based on their high dynamic and high-speed flight char-
acteristics. Unlike the near ground vehicle, the aerospace vehicle
can fly at both the aviation level and space level. Therefore, the
traditional navigation algorithm based on the geographic coor-
dinate system for the near ground vehicle is difficult to meet the
accuracy requirements of the aerospace vehicle navigation sys-
tem. Based on the previous research, this paper analyses the
influence of accurate gravity model on the accuracy of aero-
space vehicle navigation system. At the same time, it analyses
the main factors that affect the modelling accuracy when con-
verting from inertial coordinate system to earth fixed coordi-
nate system, improves the accuracy of system modelling, and
then provides high-precision system model and error model
for subsequent filtering algorithms.

On this basis, considering that the complex flight environ-
ment will bring unpredictability to the aerospace vehicle nav-
igation system, at this time, the system error model is often
inconsistent with the preset filter error model. So, the rank fil-
ter algorithm is adopted, the weight is determined by using the
rank statistics correlation principle, and the sampling points
are calculated; then, the nonlinear propagation is carried out
through the transfer matrix. Finally, the predicted values of
state variables and measurement variables and the covariance
matrix are estimated accurately. In turn, it effectively simulates
the probability distribution of system states.

In this paper, the model and algorithm of aerospace
vehicle navigation system are analysed based on the actual
flight characteristics of aerospace vehicle. The experimental
results show that the probability distribution of the actual
system can be simulated to the greatest extent by using rank
filter based on the accurate model, to improve the accuracy
of the integrated navigation system and improve the reliabil-
ity of the navigation system ultimately. In the future, the fol-
lowing research can be carried out on the basis of this paper.
First, a more accurate navigation system model can be estab-
lished. In addition to estimating and compensating the zero-
bias error of the inertial navigation system, its installation
error and scale coefficient error will also cause the inaccu-
racy of the system model. Therefore, it is necessary to further
model the above errors to improve the accuracy of the sys-
tem modelling. On this basis, the reasons for the inconsis-
tency between the navigation system model and the
filtering model are need to be analysed deeply, and the nav-
igation error compensation rules are needed to be refined to
improve the accuracy of the navigation system. In addition,
for the case that the system noise does not obey the Gaussian
distribution, the noise distribution can be analysed, and then
the sampling points can be optimized based on the LRF
algorithm proposed in this paper to improve the adaptability
of the algorithm. This will also lay a foundation for the sub-
sequent application and promotion of aerospace vehicles.

Data Availability
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able from the corresponding author upon request.
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Figure 23: Z-axis velocity error contrast curves

Table 4: Root mean square of navigation parameter estimation
error.

UKF LRF

Roll angle/(arc-second) 16.2178 8.4622

Pitch angle/(arc-second) 15.1352 10.9661

Yaw angle/(arc-second) 14.8615 11.7413

X-axis position/(m) 75.6310 16.4053

Y-axis position/(m) 53.0356 33.4729

Z-axis position/(m) 53.3201 24.4474

X-axis velocity/(m/s) 12.2498 2.9631

Y-axis velocity/(m/s) 8.8291 5.9694

Z-axis velocity/(m/s) 8.4688 4.3937
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