
Research Article
Controllability Analysis of Linear Time-Varying T-H
Equation with Matrix Sequence Method

Sihui Liu and Qingdao Huang

School of Mathematics, Jilin University, Changchun 130000, China

Correspondence should be addressed to Qingdao Huang; huangqd@jlu.edu.cn

Received 22 August 2022; Revised 18 April 2023; Accepted 12 July 2023; Published 8 August 2023

Academic Editor: Yue Wang

Copyright © 2023 Sihui Liu and Qingdao Huang. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work
is properly cited.

A satellite is considered to be moving relative to a nominal elliptical orbit, whose dynamics are usually described by the
Tschaunner-Hempel equation (T-H equation). In this paper, we propose to transform the second-order time-varying system
represented by the linear T-H equation with a second-order matrix form into a first-order time-varying system. Then, the
controllability of the first-order time-varying system is investigated with the matrix sequence method including e = 0.
Meanwhile, we study the observability of the first-order time-varying system with a specific form of measurement. The
advantages of the matrix sequence method for controllability and observability analysis are tested by numerical examples,
respectively. Dual theory is used to investigate the controllability and observability of the corresponding dual system of the
T-H equation. The corresponding conclusions are obtained.

1. Introduction

The paper focuses on the following second-order time-
varying linear satellite orbital system with measurement
based on the linearized T-H equation [1]

M tð Þ€q tð Þ +D tð Þ _q tð Þ + K tð Þq tð Þ = B tð Þu tð Þ,

ω tð Þ = C tð Þ
q tð Þ
_q tð Þ

" #
,

ð1Þ

where qðtÞ, uðtÞ, and ωðtÞ ∈ R3 are the state vector, control
vector, and output vector, respectively, and MðtÞ, DðtÞ, KðtÞ,
BðtÞ ∈ R3×3, and CðtÞ ∈ R3×6 are time-dependent matrices.

Since satellite appeared, the relative motion and attitude
control of satellite have taken great interest in astronautics.
Initially, the vector form of the complete relative dynamic
equation contained the perturbation force and the control
force of the space, which was a nonlinear time-varying sys-
tem. In order to make further analysis on engineering, the
linearization of the original motion equation with nonper-

turbed is necessary. Then, Clohessy and Wiltshire [2] pro-
posed the first linear mathematical model in 1960, which
was called the Clohessy-Wiltshire (C-W) equations. How-
ever, the C-W equations can only be applied to the descrip-
tion of the relative motion of satellites on a circular orbit,
and the satellite relative motion is on an elliptical orbit in
many practical situations [3, 4]. In 1964, Tschauner and
Hempel [5] proposed linearized equations of relative motion
for the elliptic reference orbit, that is, the Tschauner-Hempel
(T-H) equation. Later, Yamanaka and Ankersen [6] devel-
oped a solution to the linear T-H equations. However, they
studied only the case of an elliptical orbit; the solution of
Yamanaka and Ankersen fails when the orbit is parabolic:
e = 1.

The linearized T-H equation is suitable for describing the
relative motion between the chaser satellite and the target sat-
ellite when the target satellite moves along the elliptical orbit.
Recently, Fu et al. [1] represented the linear T-H equation as
a second-order matrix form compactly. Second-order systems,
which can better describe the dynamic properties of numerous
natural phenomena, have played an important role in many
technological advancements and have been widely applied in
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several engineering fields, for instance, aerospace, communi-
cations, automotive, and computer engineering. Then, con-
trollability analysis of the second-order time-varying system
represented by the linear T-H equation has attracted the atten-
tion of scholars [7–9]. In the beginning, the controllability of
second-order systems was studied under time-invariant sys-
tems [10, 11]. Losse andMehrmann [12] proposed a condition
for the second-order time-invariant system. Kalenova and
Morozov and Morozov and Kalenova [13, 14] presented a
new analytical approach to transforming a special second-
order time-varying system into a second-order time-invariant
system of larger dimensions, and Mahmudov [15–18] investi-
gated the controllability and observability of the second-order
time-invariant system. However, lots of real systems are obvi-
ous time-varying; serious error will appear if we use constant
models to describe them. It is well known that if the time-
invariant system is controllable, the original system is also con-
trollable. The uncontrollability of the time-invariant system
may not imply the uncontrollability of the original system. So
far, few results are given to study the second-order time-
varying systems directly. In addition, the controllability condi-
tion of a second-order time-varying linear system is equivalent
to that represented by a first-order time-varying linear system
completely. Since there are lots of results with respect to first-
order time-varying systems theory, many researchers study
the controllability and observability of second-order time-
varying systems by transforming them into first-order systems
[19, 20]. Duan and Hu analyzed sufficient conditions for
controllability and observability of second-order time-varying
linear systems based on the linear T-H equation with matrix
form. However, when e = 0, the target satellite moves along
the circular orbit, which becomes the C-W equation, the
proposed observability criterion will not be available for this
situation. Therefore, the controllability and observability of
the C-W equations should be investigated additionally. The
matrix sequence method has been widely used in the study of
controllability and observability in first-order linear time-
varying systems, owe to its easy calculation and practical engi-
neering significance [20]. Here, we propose the matrix
sequence method to analyze the controllability and observabil-
ity of second-order time-varying linear systems based on the
linear T-H equation for 0 ≤ e ≤ 1 by transforming them into
first-order systems. The matrix sequence method is used to
study the controllability and observability of the first-order sys-
tem, which are tested by numerical examples. Controllability
and observability of the corresponding dual system of the
T-H equation are also investigated based on dual theory,
which provides convenience for controllability and observ-
ability analysis of linear time-varying systems if the control
vector or the observe vector is unknown.

This paper is structured as follows. In Section 2, we
transform the second-order time-varying linear system rep-
resented by the linear T-H equation into a first-order time-
varying linear system. Section 3 studies the controllability
of the first-order linear system by the matrix sequence
method, and the controllability is tested by a numerical
example. In Section 4, observability analysis and numerical
simulation of a first-order linear system with measurement
are achieved by former transformations. In Section 5, dual

theory is used to investigate the controllability and observability
of the corresponding dual system of the T-H equation. We give
concluding remarks in the final section.

2. Reducibility of the T-H Equation

2.1. Linearized of the T-H Equation with Matrix Form. As we
know, the T-H equations [5] were derived after the lineariza-
tion of the original nonperturbed equation of motion as fol-
lows:

€x tð Þ = −kω3/2x tð Þ + 2ω _z tð Þ + _ωz tð Þ + ω2x tð Þ + ax,
€y tð Þ = −kω3/2y tð Þ + ay ,

€z tð Þ = 2kω3/2z tð Þ − 2ω _x tð Þ − _ωx tð Þ + ω2z tð Þ + az ,

ð2Þ

where ω is the angular velocity of the target orbit and _ω
is the angular acceleration of target orbit.

According to [1], the linearized Equations (2) were
transformed into the following linear second-order time-
varying systems with measurement

M tð Þ€q tð Þ +D tð Þ _q tð Þ + K tð Þq tð Þ = B tð Þu tð Þ,

ω tð Þ = C tð Þ
q tð Þ
_q tð Þ

" #
,

ð3Þ

where the state vector qðtÞ and the control vector uðtÞ are

q tð Þ =
x tð Þ
y tð Þ
z tð Þ

2
664

3
775, u tð Þ =

ax

ay

az

2
664

3
775, ð4Þ

and output vector ωðtÞ ∈ R3:
The corresponding coefficient matrices are [19].

M tð Þ = I3, B tð Þ = I3,

D tð Þ =
0 0 −2ω
0 0 0
2ω 0 0

2
664

3
775,

K tð Þ =
kω3/2 − ω2 0 − _ω

0 kω3/2 0
− _ω 0 −2kω3/2 − ω2

2
664

3
775,

C tð Þ =
1 0 0 0 0 0

sin t 2 0 0 0 0
3 cos t −1 0 0 0

2
664

3
775,

ð5Þ

where ω = k2ð1 + e cos θÞ2 is the true anomaly, θ is the
variable about time t, e is the eccentricity of target orbit, k
is a positive constant which is equivalent to μ/h3/2,μ is the
gravity constant, and h is the orbital angular momentum
of target orbit. xðtÞ, yðtÞ, and zðtÞ are the three chaser
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relative state vectors in the target orbital coordinate frame
and ax, ay , and az are the three accelerations produced by
the thrust in relevant directions.

2.2. Transformation of Second-Order Linear T-H Equation to
a First-Order Form. So far, few theories are proposed to
study second-order time-varying systems directly. The
matrix sequence method is one of the most significant
methods in modern control theory for controllability and
observability analysis of first-order time-varying linear sys-
tems. In this part, we transform the second-order time-
varying system (1) into a first-order system to investigate
the controllability and observability of the second-order
time-varying linear T-H equation based on the matrix
sequence method.

Theorem 1. The second-order linear system (1) is reduced to
first-order time-varying linear system as follows:

~q tð Þ = ~A tð Þ~q tð Þ + ~B tð Þu tð Þ,
ω tð Þ = C tð Þ~q tð Þ,

ð6Þ

where ~qðtÞ ∈ R6 , ωðtÞ ∈ R3, and uðtÞ ∈ R3 show the state
variable, the output variable, and the control variable, respec-
tively, the coefficient matrices are

~A tð Þ =
0 I

−M−1 tð ÞK tð Þ −M−1 tð ÞD tð Þ

" #

=

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−kω3/2 + ω2 0 _ω 0 0 2ω

0 −kω3/2 0 0 0 0

_ω 0 2kω3/2 + ω2 −2ω 0 0

2
66666666666664

3
77777777777775
,

~B tð Þ =
0

M−1 tð ÞB tð Þ

" #

=

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

2
66666666666664

3
77777777777775
,

C tð Þ =
1 0 0 0 0 0

sin t 2 0 0 0 0

3 cos t −1 0 0 0

2
664

3
775: ð7Þ

Proof. Because of MðtÞ = I3, matrix MðtÞ is nonsingular for
all t ≥ 0: Then, Equation (1) is equivalent to the following
equation:

€q tð Þ +M−1 tð ÞD tð Þ _q tð Þ +M tð Þ−1K tð Þq tð Þ =M tð Þ−1B tð Þu tð Þ,

ω tð Þ = C tð Þ
q tð Þ
_q tð Þ

" #
:

ð8Þ

Sorting out Equation (8), we have

_q tð Þ
€q tð Þ

" #
=

0 I

−M−1 tð ÞK tð Þ −M−1 tð ÞD tð Þ

" #
q tð Þ
_q tð Þ

" #

+
0

M−1 tð ÞB tð Þ

" #
u tð Þ,

ω tð Þ = C tð Þ
q tð Þ
_q tð Þ

" #
: ð9Þ

Let

~q tð Þ =
q tð Þ
_q tð Þ

" #
, ð10Þ

then, the second-order linear system (1) is reduced to first-
order time-varying linear system (6).

3. Controllability of the Linear T-H Equation

3.1. Controllability Analysis. In order to investigate the con-
trollability of system (6), we present matrix sequence
method for the general first-order system

_x tð Þ = A tð Þx tð Þ + B tð Þu tð Þ,
y tð Þ = C tð Þx tð Þ,

ð11Þ

where xðtÞ ∈ Rn, uðtÞ ∈ Rm, and yðtÞ ∈ Rr are the state
vector, control vector, and output vector, respectively. The
coefficient matrices AðtÞ ∈ Rn×n, ðtÞ ∈ Rn×m, and CðtÞ ∈ Rr×n

are time-dependent.
The definition and main theorem of controllability of

linear time-varying system (11) can be found in [21].

Definition 2. System (11) is called controllable on ½t0, t f � if
for given any initial x0 = xðt0Þ and desired final state value
x1 at t = t f , there exists a continuous control uðtÞ defined
on ½t0, t f � such that the corresponding solution of (11) sat-
isfies xðt f Þ = x1.

Proposition 3. If AðtÞ ∈ Rn×n is a differentiable matrix func-
tion of k-2 order and BðtÞ ∈ Rn×m is a differentiable matrix
function of k-1 order when t ≥ t0, then we can define a matrix
sequence fMjðtÞg ∈ Rn×m satisfying
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M0 tð Þ = B tð Þ,

Mj+1 tð Þ = −A tð ÞMj tð Þ +
d
dt

Mj tð Þ,
ð12Þ

where j = 0, 1,⋯, k − 2, k ≥ 2:

Theorem 4. If AðtÞ has k − 2 derivatives, BðtÞ has k − 1 deriva-
tives when t ≥ t0, there exists t ∈ ½t0, t1� for every t1 > t0satisfying

rank M0 tð Þ,M1 tð Þ,⋯,Mk−1 tð Þ½ � = n, ð13Þ

then system (11) is controllable.

Based on the matrix sequence method of first-order
time-varying linear systems, we analyze the controllability
of system (6) and we can get the following results.

Definition 5. System (6) is called controllable on ½t0, t f � if for
given any initial ~q0 = ~qðt0Þ and desired final state value ~q1
at t = t f , there exists a continuous control uðtÞ defined on
½t0, t f � such that the corresponding solution of (6) satisfies
~qðt f Þ = ~q1.

Proposition 6. If ~AðtÞ ∈ R6×6 is a differentiable matrix func-
tion of k-2 order and ~BðtÞ ∈ R6×3 is a differentiable matrix
function of k-1 order when t ≥ t0, then we can define a matrix
sequence fMjðtÞg ∈ R6×3 satisfying

M0 tð Þ = ~B tð Þ,

Mj+1 tð Þ = −~A tð ÞMj tð Þ +
d
dt

Mj tð Þ,
ð14Þ

where j = 0, 1,⋯, k − 2, k ≥ 2:

Theorem 7. If ~AðtÞ has k − 2 derivatives, ~BðtÞ has k − 1 deriv-
atives when t ≥ t0, there exists t ∈ ½t0, t1� for every t1 > t0
satisfying

rank M0 tð Þ,M1 tð Þ,⋯,Mk−1 tð Þ½ � = 6, ð15Þ

then system (6) is controllable.

Proof. To system (6), we can get the following matrix
sequence:

M0 tð Þ = ~B tð Þ =
0

M−1 tð ÞB tð Þ

" #
=

0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

2
666666666664

3
777777777775
, d
dt

M0 tð Þ =O6×3,

~A tð Þ =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

−kω3/2 + ω2 0 _ω 0 0 2ω
0 −kω3/2 0 0 0 0
_ω 0 2kω3/2 + ω2 −2ω 0 0

2
666666666664

3
777777777775
,

M1 tð Þ = −~A tð ÞM0 tð Þ + d
dt

M0 tð Þ =

−1 0 0
0 −1 0
0 0 −1
0 0 −2ω
0 0 0
2ω 0 0

2
666666666664

3
777777777775
,

ð16Þ

then

det M0 tð Þ,M1 tð Þð Þ = 1 ≠ 0, ð17Þ

that is,

rank M0 tð Þ,M1 tð Þ½ � = 6: ð18Þ

Therefore, according to Theorem 4, system (6) is con-
trollable.

3.2. Numerical Calculation. In [19], Duan and Hu proposed
that system (1) is controllable whenMðtÞ and BðtÞ are nonsin-
gular for all t ≥ 0, which holds obviously under Equation (5).
However, for some situations, coefficient matrix BðtÞ is not
always nonsingular; then, the proposed theory cannot be used
to study the controllability. At these moments, the matrix
sequence method can still analyze the controllability of the
second-order time-varying system by transforming it into a
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first-order time-varying system. According to Theorem 7,

det M0 tð Þ,M1 tð Þð Þ = det

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

1 0 0 0 0 −2ω

0 1 0 0 0 0

0 0 1 2ω 0 0

2
66666666666664

3
77777777777775

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

= 1 ≠ 0:
ð19Þ

In fact, det ðM0ðtÞ,M1ðtÞÞ = 1 ≠ 0 for arbitrary ω, that is,
rank ½M0ðtÞ,M1ðtÞ� = 6: Therefore, system (6) is controllable.
Based on system (6) is equal to system (1) when det MðtÞ ≠ 0:

Particularly, when e = 0, the controllability criterion
proposed in [19] is not available. Whereas, our results will
still apply.

Specifically, if e = 0, then ω = 1 and the time-varying
system (1) can be reduced to the following second-order
time-invariant system:

A0€x tð Þ + A1 _x tð Þ + A2x tð Þ = B0u tð Þ, ð20Þ

and the coefficient matrices are constant as follows:

A0 = I3, B0 = I3,

A1 =
0 0 −2
0 0 0
2 0 0

2
664

3
775,

A2 =
k − 1 0 0
0 k 0
0 0 −2k − 1

2
664

3
775,

ð21Þ

where k = 2:267 × 10−2s−1/2 [1].
For the controllability of system (20), it is necessary and

sufficient that the condition [11]

rank A0λ
2 + A1λ + A2, B0

Â Ã
= 3 ð22Þ

is satisfied for any eigenvalue λ, that is, det ðA0λ
2 +

A1λ + A2Þ = 0:
Substituting (21), we get

det A0λ
2 + A1λ + A2

À Á
= det

λ2 + k − 1 0 −2λ

0 λ2 + k 0

2λ 0 λ2 − 2k − 1

2
6664

3
7775

0
BBB@

1
CCCA

= λ2 + k
À Á

λ4 + 2 − kð Þλ2 + −2k2 + k + 1
À ÁÀ Á

= 0,
ð23Þ

the solutions of Equation (23) are λ =
ffiffiffi
k

p
i, −

ffiffiffi
k

p
i, and λ

^2 = ðk − 2+√ð8k − 9k^2 Þ iÞ/2, ðk − 2−√ð8k − 9k^2 Þ iÞ/2,
respectively. Here, we choose λ =

ffiffiffi
k

p
i and other solutions

can calculate similarly.

rank A0λ
2 + A1λ + A2, B0

Â Ã

= rank

−1 0 −2
ffiffiffi
k

p
i 1 0 0

0 0 0 0 1 0

2
ffiffiffi
k

p
i 0 −3k − 1 0 0 1

2
6664

3
7775

2
6664

3
7775

= 3:

ð24Þ

Therefore, system (20) is controllable, which means that
the time-varying system (1) is controllable when e = 0: As we
can see, the computing of λ is a very complex process,
whereas our controllable condition can be used directly
and verified easily.

4. Observability of the Linear T-H Equation

4.1. Observability Analysis. In order to investigate the
observability of system (6), we also present matrix sequence
method for general of first-order time-varying linear system
(11). The definition and main theorem of observability for
linear time-varying system (11) can be found in [20].

Definition 8. System (11) is called observable on ½t0, t f � if for
given any continuous control uðtÞ defined on ½t0, t f �, initial
state x0 = xðt0Þ can be determined from the output yðtÞ
uniquely.

Proposition 9. If AðtÞ ∈ Rn×n is a differentiable matrix func-
tion of k-2 order and CðtÞ ∈ Rr×n is a differentiable matrix
function of k-1 order when t ≥ t0, then we can define a matrix
sequence fNjðtÞg ∈ Rr×n satisfying

N0 tð Þ = C tð Þ,

Nj+1 tð Þ = d
dt

N j tð Þ +Nj tð ÞA tð Þ,
ð25Þ

where j = 0, 1,⋯, k − 2, k ≥ 2:

Theorem 10. If AðtÞ has k − 2 derivatives, CðtÞ has k − 1
derivatives when t ≥ t0, there exists a t ∈ ½t0, t1� for every
t1 > t0 satisfying

rank NT
0 tð Þ,NT

1 tð Þ,⋯,NT
k−1 tð ÞÂ Ã

= n, ð26Þ

then system (11) is observable.

By analogy way in controllability, based on the matrix
sequence method of first-order time-varying linear systems,
we analyze the observability of system (6) and we can get
the following results.
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Proposition 11. If ~AðtÞ ∈ R6×6 is a differentiable matrix func-
tion of k-2 order and CðtÞ ∈ R3×6 in system (6) is a differentia-
ble matrix function of k-1 order when t ≥ t0, then we can
define a matrix sequencefNjðtÞg ∈ R3×6satisfying

N0 tð Þ = C tð Þ,

Nj+1 tð Þ = d
dt

N j tð Þ +Nj tð Þ~A tð Þ,
ð27Þ

where j = 0, 1,⋯, k − 2, k ≥ 2:

Theorem 12. If ~AðtÞ ∈ R6×6 is a differentiable matrix function
of k-2 order and CðtÞ in system (6) has k − 1 derivatives when
t ≥ t0, there exists t ∈ ½t0, t1� for every t1 > t0 satisfying

rank NT
0 tð Þ,NT

1 tð Þ,⋯,NT
k−1 tð ÞÂ Ã

= 6, ð28Þ

then system (6) is observable.

Proof. To system (6), we can get the followingmatrix sequence

N0 tð Þ = C tð Þ =
1 0 0 0 0 0

sin t 2 0 0 0 0
3 cos t −1 0 0 0

2
664

3
775,

N1 tð Þ = d
dt

N0 tð Þ +N0 tð Þ~A tð Þ

=

0 0 0 1 0 0

cos t 0 0 sin t 2 0

0 −sin t 0 3 cos t −1

2
6664

3
7775,

N2 tð Þ = d
dt

N1 tð Þ +N1 tð Þ~A tð Þ

=

a11 0 a13 0 0 a16

a21 a22 a23 a24 0 a26

a31 a32 a33 a34 a35 a36

2
6664

3
7775,

ð29Þ

where

a11 = ω2 − kω3/2, a13 = _ω, a16 = 2ω,
a21 = − kω3/2 − ω2 + 1

À Á
, a22 = −2ω3/2,

a23 = _ω sin t, a24 = 2 cos t, a26 = 2ω sin t,
a31 = 3ω2 − 3kω3/2 − _ω,
a32 = − cos t − kkω3/2 cos t,
a33 = 3 _ω − 2kω3/2 − ω2,
a34 = 2ω, a35 = −2 sin t, a36 = 6ω,
det NT

0 tð Þ,NT
1 tð ÞÀ Á

= 4 ≠ 0,

ð30Þ

then

rank NT
0 tð Þ,NT

1 tð ÞÂ Ã
= 6: ð31Þ

Therefore, according to Theorem 10, system (6) is
observable.

4.2. Numerical Calculation. In [19], Duan and Hu proposed
that system (6) is observable when 1 + e cos θ ≠ 3/2 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/4 + 4/3e2

p
,with

C tð Þ =
0 0 0 1 0 0
0 0 0 sin t 2 0
0 0 0 3 cos t −1

2
664

3
775: ð32Þ

In this situation, substituting e = 0:73074, k = 2:267 × 1
0−2s−1/2 [1], we have ω = 1:385 × 10−4rad/s: According to
Theorem 12,

det NT
0 tð Þ,NT

1 tð ÞÀ Á
= det

0 0 0 −kω3/2 + ω2 sin t −kω3/2 + ω2À Á
3 −kω3/2 + ω2À Á

− _ω

0 0 0 0 −2 − kω3/2 −2k − kω3/2

0 0 0 _ω _ω sin t 3 _ω − 2kω3/2 + ω2À Á
1 sin t 3 0 cos t 2ω

0 2 cos t 0 0 −sin t

0 0 −1 2ω 2 sin tω 6ω

2
666666666666664

3
777777777777775

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

= det

0 0 0 −1:777 × 10−8 −1:777 × 10−8 sin t −5:331 × 10−8

0 0 0 0 −5:695 × 10−8 −4:534 × 10−2 − 3:695 × 10−8

0 0 0 0 0 −18:377 × 10−8

1 sin t 3 0 cos t 2:77 × 10−4

0 2 cos t 0 0 −sin t

0 0 −1 2:77 × 10−4 2:77 × 10−4 sin t 8:31 × 10−4

2
66666666666664

3
77777777777775

= 3:7195 × 10−22 ≠ 0,

ð33Þ
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which is equal to rank ðNT
0 ðtÞ,NT

1 ðtÞÞ = 6: Therefore,
system (6) is observable even if at 1 + e cos θ = 3/2 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1/4 + 4/3e2

p
: By analogy, the observability of system (6)

with

C tð Þ =
1 0 0 0 0 0

sin t 2 0 0 0 0
3 cos t −1 0 0 0

2
664

3
775, ð34Þ

can be analyzed by

det NT
0 tð Þ,NT

1 tð ÞÀ Á
= det

1 sin t 3 0 cos t 0

0 2 cos t 0 0 −sin t

0 0 −1 0 0 0

0 0 0 1 sin t 3

0 0 0 0 2 cos t

0 0 0 0 0 −1

2
66666666666664

3
77777777777775

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

= 4 ≠ 0:
ð35Þ

The results are consistent with Duan and Hu.
Particularly, when e = 0, the matrix KðtÞ will be singular

on the entire time domain, and the observability criterion
proposed in [19] is not available. Here, we choose (34) and
the other situation can calculate similarly. At this moment,
we can represent the measurement matrix in the following
form

C tð Þ = α1C1 + α2C2 + α3C3, ð36Þ

where

α1 = 1, α2 = sin t, α3 = cos t,

C1 =
1 0 0 0 0 0
0 2 0 0 0 0
3 0 −1 0 0 0

2
664

3
775,

C2 =
0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0

2
664

3
775,

C3 =
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0

2
664

3
775: ð37Þ

Introducing αT = ½α1, α2, α3� = ½1, sin t, cos t� and using
transformation zðtÞ = ζðtÞxðtÞ, ζðtÞ = α ⊗ E3: (The symbol
⊗ denotes the Kronecker matrix product.) Then, system
(20) with measurement (34) can be reduced into the higher
order time-invariant system

~A0€z tð Þ + ~A1 _z tð Þ + ~A2z tð Þ = ~B0u tð Þ,
δ tð Þ = Γz tð Þ,

ð38Þ

where

~A0 =
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0

2
664

3
775,

~A1 =
0 0 −2 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0

2
664

3
775,

~A2 =
k − 1 0 0 0 0 0 0 0 0
0 k 0 0 0 0 0 0 0
0 0 −2k − 1 0 0 0 0 0 0

2
664

3
775,

Γ =
1 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0
3 0 −1 0 0 0 0 1 0

2
664

3
775:

ð39Þ

However, the observability condition in [13] is appropriate
for time-independent systems with square matrix coefficients,
which cannot be utilized in analyzing the observability of
system (38) with (34). In addition, this transformation and
the change of variables extend the state space, which may
cause calculation complexity increase. Therefore, our matrix
sequence method is more effective on a broader scale.

5. Dual Principle of the Linear T-H Equation

In this section, we present dual system of first-order linear
T-H equation (6). Then, we can get the controllability and
observability of the corresponding dual system. The follow-
ing lemma reveals the relation between the dual system
and first-order linear T-H equation.

Definition 13 (see [19]). For the general first-order time-
varying linear system (11), let us introduce the following
dual system”

_x∗ tð Þ = −AT tð Þx∗ tð Þ + CT tð Þv tð Þ,
h tð Þ = BT tð Þx∗ tð Þ,

ð40Þ

where x∗ðtÞ ∈ Rn, vðtÞ ∈ Rm, and hðtÞ ∈ Rr are the state
vector, the control vector, and the output vector of system.

The following lemma reveals the relation between a sys-
tem and its dual system.

Lemma 14 (see [22]).
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(1) System (11) is controllable at t0 if and only if system
(40) is observable at t0

(2) System (11) is observable at t0 if and only if system
(40) is controllable at t0.

According to Definition 13, we get the dual system of
system (6) as follows:

~q∗ tð Þ = −~AT
tð Þ~q∗ tð Þ + CT tð Þv tð Þ,

h tð Þ = ~B
T
tð Þ~q∗ tð Þ:

ð41Þ

Then, to system (41), we can get the following matrices
based on matrix sequence method:

M0 tð Þ = CT tð Þ =

1 sin t 3
0 2 cos t
0 0 −1
0 0 0
0 0 0
0 0 0

2
666666666664

3
777777777775
,

~A
T
tð Þ =

0 0 0 −kω3/2 + ω2 0 _ω

0 0 0 0 −kω3/2 0
0 0 0 _ω 0 2kω3/2 + ω2

1 0 0 0 0 −2ω
0 1 0 0 0 0
0 0 1 2ω 0 0

2
666666666664

3
777777777775
,

M1 tð Þ = ~A
T
tð ÞM0 tð Þ + d

dt
M0 tð Þ =

0 cos t 0
0 0 −sin t

0 0 0
1 sin t 3
0 2 cos t
0 0 −1

2
666666666664

3
777777777775
,

det M0 tð Þ,M1 tð Þð Þ = 4 ≠ 0,
ð42Þ

then

rank M0 tð Þ,M1 tð Þ½ � = 6: ð43Þ

Therefore, according to Theorem 4, system (41) is con-
trollable, and then system (6) is observable, based on Lemma
14. In the same way, we can prove the controllability of sys-
tem (6) by proving its dual system (41) is observable. To sys-

tem (6), we can also get the following matrix sequence:

N0 tð Þ = BT tð Þ =
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

2
664

3
775,

N1 tð Þ = d
dt

N0 tð Þ −N0 tð Þ~AT
tð Þ

=

−1 0 0 0 0 2ω

0 −1 0 0 0 0

0 0 −1 −2ω 0 0

2
6664

3
7775,

det NT
0 tð Þ,NT

1 tð ÞÀ Á
= 1 ≠ 0, ð44Þ

then

rank NT
0 tð Þ,NT

1 tð ÞÂ Ã
= 6: ð45Þ

By analyzing the controllability and observability of the
dual system of the first-order linear system (6), we can also
obtain the controllability and observability of linear T-H
equation (1).

6. Conclusion

In this paper, the second-order time-varying system with a
second-order matrix form represented by the linear T-H equa-
tion is transformed into a first-order time-varying system.
Then, the matrix sequence method is presented to analyze the
controllability and observability of reduced T-H equations.
The controllability of the first-order time-varying system is
investigated with the matrix sequence method including e = 0:
Meanwhile, we study the observability of the first-order time-
varying linear system converted by the second-order time-
varying system with measurement. The controllability and
observability of the corresponding dual system of the T-H equa-
tion are also investigated based on dual theory, which provides
convenience for the controllability and observability analysis of
linear time-varying systems if the control vector or measure-
ment is unknown. Research results and numerical calculations
show that transforming second-order time-varying systems into
first-order systems is superior, and utilizing thematrix sequence
method for first-order time-varying linear system is simple and
effective. At the same time, the available range of the matrix
sequence method is more widely, which is free from complex
computation and extension of state space. In the future, we
recommend applying the matrix sequence method in analyzing
the controllability and observability of many other systems in
engineering fields, such as mechanics, communications, and
geographic measurement.
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