
Research Article
Suppressing Uncommanded Roll-Yaw Motion by Jet Flow Control
Based on Reinforcement Learning

Yizhang Dong ,1,2 Zhiwei Shi ,1 Kun Chen ,3 and Zhen Chen 1

1Key Laboratory of Unsteady Aerodynamics and Flow Control, Ministry of Industry and Information Technology,
Nanjing University of Aeronautics and Astronautics, Yudao Street 29, Nanjing, Jiangsu 210016, China
2The National Key Lab of Computational Mathematics & Experimental Physics, Nandahongmen Street 1, Beijing 100076, China
3National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu, China

Correspondence should be addressed to Kun Chen; 12016120@njust.edu.cn

Received 20 February 2023; Revised 11 April 2023; Accepted 24 April 2023; Published 8 May 2023

Academic Editor: Hao Chen

Copyright © 2023 Yizhang Dong et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The suppression of uncommanded motion of aircraft at high angles of attack (α) is a research topic of continuous concern in the
aviation field. Aiming at the suppression of uncommanded roll-yaw motion of a canard aircraft at high angles of attack, an
experimental method of virtual flight test based on reinforcement learning is proposed in this paper. In the virtual flight
experiment, the agent was trained to control the jet actuators, so as to suppress the uncommanded roll-yaw motion. Force
measurements were conducted to obtain the performance of the jet actuators in a low-speed wind tunnel. The results show
that when the spanwise jet actuator and the reverse jet actuator were working on the same side, their control effects were
suppressed by each other. Then, the stability augmentation control law was trained through virtual flight experiments based on
a reinforcement learning algorithm (TD3), and the uncommanded motion was successfully suppressed. The time histories of
the reinforcement learning agent’s action in tests were analyzed, showing that the agent can avoid the coupling relationship
between two kinds of jet actuators during tests.

1. Introduction

In the high maneuvering process, high-α flight, which results
in large-scale separation on the upper surface of the wing
and complex vortex structure, is almost inevitable. As a
result, the aircrafts are vulnerable to loss stability in that sit-
uation, which leads to a variety of uncommanded motions,
including the famous “wing rock.” The previous studies on
wing rock were carried out around the uncommanded roll-
ing motion, ignoring yawing motion which should also exist
and play an important role in real flight.

Walker and Ahmed [1] carried out free-to-roll, free-to-
yaw, and free-to-roll-and-yaw experiments on a 75-degree
swept delta wing, found that the uncommanded roll-yaw
motion diverged rapidly, and finally, maintained as the
constant-amplitude limit cycle oscillation. The results show
that compared with the two single-DOF motions, the ampli-
tude of the roll-yaw motion was smaller, and the average lift
was significantly reduced, which meant that for a slender

delta wing, the self-excited roll-yaw motion was more likely
to result in the stall than simple rolling oscillations. Lin et al.
[2] conducted a forced oscillation study on a fighter model
with side strips. The results show that the yaw-roll coupling
ratio (yaw angular velocity/roll angular velocity) has a strong
influence on the damping characteristics of rolling and yaw-
ing moments at high angles of attack. In terms of suppres-
sion of uncommanded roll-yaw motion, Pedreiro et al. [3]
set up the mathematical model of the roll-yaw motion of a
wing-body aircraft at high angles of attack and then sup-
pressed the motion by tangential blowing located on the
nose. However, in the design process of control law, Pedreiro
et al. introduced lots of human prior knowledge, which
made the design process depend on the accuracy of model-
ing. It is undeniable that uncommanded roll-yaw motion is
a very complex nonlinear motion. However, with the devel-
opment of artificial intelligence (AI) technology, people are
expected to use advanced AI algorithms to solve this prob-
lem without human knowledge.
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There are two difficulties in suppressing uncommanded
roll-yaw motion. One is that the control efficiency of the tra-
ditional rudders and ailerons is weak at high angles of attack,
and the other is that the dynamic system of this motion has
the characteristics of nonlinearity and strong coupling
among states, which makes it difficult to establish a mathe-
matical model. To deal with the above two difficulties, this
paper uses jet flow control to replace the traditional rudder
to realize attitude control and uses model-free deep rein-
forcement learning (MFDRL) algorithm [4] to train an agent
in the virtual flight test.

Deep reinforcement learning is dedicated primarily to
train machines to make sequential decisions. A survey of
DRL techniques [5] enumerated the successes of model-
free RL approaches from Alpha-Go games [6] to quadcopter
stabilization control [7]. However, several studies have
investigated the combination of DRL and aerospace science,
including target-missile-defender engagement [8],missile
terminal guidance [9], and UAV control. Xu et al. [10]
addressed the autonomous shape optimization problem of
intelligent morphing aircraft based on mission requirements
and flight status. The model dynamics were learned from
flight data collected from expert pilots and fit to a nonlinear
second-order ordinary differential equation (ODE). The
control policy was based on a linear quadratic regulator
feedback controller using a linear approximation to the
learned dynamics. Clarke and Hwang [11] proposed a
DRL-based controller to enable aerobatic maneuvering for
capable fixed-wing aircraft in a simulation environment.

Through trial-and-error simulations, the controller explored
the full range of nonlinear flight envelopes and learned an
aerobatic maneuver in a matter of hours by itself and with-
out human input.

Few historical studies combine DRL and the canard-
configuration aircraft with high-α control, especially based
on real-world experiments. Based on our previous work on
the roll oscillations of canard-configuration aircraft [12], this
paper utilizes the DRL algorithm in the real-flight test envi-
ronment to train an agent to suppress the uncommanded
roll-yaw motion so as to avoid the complex modeling of
the nonlinear dynamics.

2. Introduction of the Model

The schematic of the canard configuration model used in
this paper is shown in Figure 1. The whole model includes
the nose, canard wings, streak wings, main wings, and V-
shaped vertical tails. The main wing root chord length (Cw
) and canard wing root chord length (Cc) are 186mm and
68mm, respectively, and the wingspan (s) is 330mm. The
sweep angles of the main wing, canard wing, and streak wing
are 50°, 50°, and 65°, respectively. The root chord length of
the main wing is used as a reference value to realize the non-
dimensionalization of measured aerodynamic data. The
moment of inertia around the roll and yaw axes of the model
are 0.002 kgm2 and 0.016 kgm2, respectively. To provide
control moments of rolling and yawing, the leading-edge
spanwise jets and reverse jets were designed. As shown in
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Figure 1: The schematic of the canard configuration aircraft model.
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Figure 1, the exit direction of the leading-edge spanwise jets
was in the same vertical plane as the leading-edge direction
at an angle of 15°. The cross-sectional diameter of the slots
was 2.5mm. According to previous research [13], the main
principle of this jet configuration’s control effect for rolling
is to increase the local lift by delaying leading-edge vortex
breakdown. The design of the reverse jet actuator is based
on the research results of Zhu et al. [14]. However, unlike
the previous research which applied the reverse jet actuator
at small angles of attack, this paper applied it to the more
complex situation at high angles of attack to provide a yaw-
ing moment for the aircraft.

3. Results and Analysis

Figure 2 shows the time histories of roll and yaw angles
in the free-to-roll-and-yaw experiments at a nominal
angle of attack of 35° (the angle of attack when the roll
angle and yaw angle are both zero). It can be seen from
the figure that the amplitudes of the rolling and yawing
motions are large, and the frequencies of the motions
around the two axes are almost the same, which indicates
that the uncommanded roll-yaw motion is strongly
coupled among states.

The control effect of the single jet was investigated by
static force measurements. Figure 3 shows the effects of
the reverse jet actuator on yawing moment coefficient
and the spanwise jet actuator on the rolling moment coef-
ficient. As seen in this figure, when α = 35 ° , the model is
lateral static instable (Clβ > 0 near zero sideslip) and direc-
tional static stable (Cnβ>0 near zero sideslip). From the
perspective of the leading-edge spanwise jet actuator, the
right spanwise jet will reduce the rolling moment coeffi-
cient, and the control effect has a positive relationship
with its blowing momentum coefficient (Cμs). A positive
sideslip angle represents that the right wing is on the
windward side, with a larger actual angle of attack than

that of the left wing, leading to a more severe vortex
breakdown. Since the control principle of the leading-
edge spanwise jet is to control the vortex breakdown, the
jet on the right side has a more significant control effect
on the rolling moment coefficient with a large sideslip
angle. On the other hand, the reverse jet on the right side
increases the yawing moment, so it can be inferred that
the local resistance of the right wing of the model
increases when the right reverse jet is working. It can also
be seen from the figure that there is an obvious “dead
zone” in the control effect of the reverse jet on the yawing
moment at most tested angles of attack, which shows that
when the momentum coefficient of the reverse jet is small,
its influence on the yawing moment of the model is very weak,
and after increasing the blowing momentum coefficient of the
reverse jet, the yawing moment of the model begins to be sig-
nificantly affected. From the above analysis, it can be con-
cluded that the single reverse jet and single leading-edge
spanwise jet can significantly affect the yawing moment and
rolling moment of the model, respectively, and thus provide
control moments. However, the control effect has a certain
nonlinearity.

Figure 4(a) shows the effect of the leading-edge span-
wise jet on the yawing moment at α = 35 ° . It can be seen
that when the reverse jet is working, the leading-edge
spanwise jet with a small blowing momentum coefficient
has a weak influence on the yawing moment, while the
leading-edge spanwise jet with a large blowing momentum
coefficient will reduce the yawing moment of the model.
In other words, when the spanwise jet and the reverse
jet on the same side are working concurrently, the span-
wise jet will suppress the control effect of the reverse jet.
Figure 4(b) shows the effect of the reverse jet on the roll-
ing moment coefficient when the leading-edge spanwise jet
is working. In the presence of the right leading-edge span-
wise jet, the right reverse jet will increase the rolling
moment of the model. It can be inferred that the reverse
jet reduces the local lift of the right wing, and this effect
is more significant in the case of a negative sideslip. This
may be due to the fact that at a negative sideslip, the right
wing is on the leeward side, and its vortex lift is more sig-
nificant, so the damage to the vortex lift by the reverse jet
is more obvious.

Through the above results, we have completed the design
and characteristic analysis of the spanwise jet and reverse jet
actuators. At high angles of attack, the leading-edge span-
wise jet and reverse jet can have significant effects on the
rolling moment and yawing moment of the model, respec-
tively, but there is an obvious mutual suppression between
the two kinds of the jet. In particular, when the jets on the
same side are working at the same time, one kind of jet will
suppress the control effect of the other kind. The coupling of
the control instruments increases the difficulty of the control
law design of the stabilization control system. To this end,
we introduce the method of reinforcement learning virtual
flight experiment to complete the control law design of the
suppression of roll-yaw motion. Figure 5 shows the experi-
mental architecture of the reinforcement learning virtual
flight experiments, which is very similar to the architecture
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Figure 2: The time histories of the roll/yaw angles during the free-
to-roll-and-yaw test at α0 = 35 ° .
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utilized in our previous work [15]. During the experiments,
the air supply system provides a stable and clean air source
to the electromagnetic proportional valve (PVQ-31), and
then the electromagnetic proportional valve injects com-
pressed air to generate jets to provide a rolling/yawing
moment. The main program receives the attitude data
(including roll/yaw angle and angular velocity) sent from

the attitude sensor and drives the electromagnetic propor-
tional valve to work by sending the serial port signal
(action), which affects the motion of the model. The
single-step iteration frequency of the whole experiment
was set to be 100Hz (determined by the frequency of the
sensor), and the single episode time is set to 10 s,
(ts = 0:01s, t f = 10s). The action of the reinforcement
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learning agent is the control voltage of four electromagnetic
proportional valves.

The reinforcement learning experiments used TD3 [16]
(twin-delayed deep deterministic policy gradient algorithm)
algorithm, which is an algorithm based on actor-critic archi-
tecture [17]. TD3 sets up two groups of Q networks to eval-
uate the value of the agent’s actions, thereby avoiding the
problem of action value’s overestimating of the DDPG algo-
rithm [18]; at the same time, it adopts the method of policy
gradient ascent to improve the agent’s strategy. During the
experiments, three kinds of exploration noise (0.2, 0.4, and
0.8) were set for this algorithm. The agent receives the roll
angle/angular velocity and yaw angle/angular velocity data
given by the attitude sensor to construct the observation vec-
tor and calculates the reward value. The hyperparameter set-
tings of the algorithm are shown in Table. 1.

Due to the sensitivity of aerodynamics to sideslip at high
angles of attack, the actions were considered independently
without introducing symmetries. In order to overcome the
non-Markovian property in the real experiment, a certain
memory mechanism was added to the experiment, and the

Table 1: TD3 hyperparameters.

Parameter Value

Optimizer Adam [19]

Number of hidden layers (all networks) 2

Number of hidden units per layer 256

Critic learning rate 1e − 3
Actor learning rate 3e − 4
Discount factor (γ) 0.99

Exploration noise 0.1

Policy noise 0.2

Range to clip policy noise 0.5

Target smoothing coefficient (τ) 0.005

Number of samples per minibatch 256

Policy update frequency 2

Activation function
ReLU (rectified
linear unit) [20]
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time step of the observation vector was set to 3. The mathe-
matical expression of the observation vector of the agent is
as follows:

�
Φt , _Φt ,Ψt , _Ψt , a1,t , a2,t , a3,t , a4,t ,Φt−1, _Φt−1,Ψt−1,
_Ψt−1, a1,t−1, a2,t−1, a3,t−1, a4,t−1,Φt−2, _Φt−2,Ψt−2,
_Ψt−2, a1,t−2, a2,t−2, a3,t−2, a4,t−2

�
:

ð1Þ

The following formula gives the reward function of
this experiment. It can be seen from the formula that a

very simple form of reward function is set in this experi-
ment. Four precision levels (20°, 10°, 5°, and 2°) are set
for both the roll angle and the yaw angle. When the atti-
tude angle of the model is controlled within a certain pre-
cision level, the agent will receive a corresponding reward.
Therefore, the highest reward that a reinforcement learn-
ing agent can get in a single episode is 10. It should be
noted that in the process of training and testing, to ensure
the generalization ability of the control strategy to the ini-
tial state of the model, random jets were performed for 5
seconds before each episode of training or testing to gen-
erate a random initial state.

Figure 6 shows the episode reward curve during training
with different exploration noise settings. It can be seen from
the figure that when the exploration noise was set too small,
the training episode reward grows slowly, and after reaching
a certain high value, the reward curve begins to decline. This

may be due to the fact that the algorithm takes longer to
jump out of the local optimum when the exploration noise
is small; after adjusting the exploration noise to 0.4, the per-
formance of the algorithm is much better. Through explora-
tion, the agent quickly finds a more perfect control strategy,
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and then the episode reward has been maintained at a high
level; when the exploration noise is increased to 0.8, the per-
formance of the agent is poor at the beginning, because the
parameters of the policy are still far from the optimal param-
eters, and the exploration noise of the agent is large. At this
time, the agent is in a relatively random exploration. After-
wards, the reward for subsequent training suddenly
increases, but due to the larger exploration noise, the reward
in this situation is generally lower than that when the explo-
ration noise is 0.4.

Figure 7 shows the test results of an agent when the
exploration noise is 0.4. The final roll and yaw angles of
the agent are not completely controlled at 0°. The lower
boundary of the roll angle in the steady state is Φmin = −
1:15 ° , and the upper boundary of the yaw angle is Ψmax =
1:25 ° . But in terms of the reward function, the agent has
already got the highest single-step reward. The cumulative
reward for the full-episode test is 9.12. Such test result shows
that the agent has almost obtained the optimal policy.

Figure 8 shows the time histories of the agent’s actions
during the test. It can be seen that when the roll angle and
yaw angle are far from zero at the beginning, the agent
chooses not to activate the leading-edge spanwise jet actua-
tors on both sides but turns on the reverse jet actuator on
the left first, so that the model can obtain a negative yawing
moment increment (see Figure 3). With the effect of the
reverse jet, the yaw angle of the model continues to deviate
to a larger absolute value and then starts to rebound. At this
time, the agent chooses to reverse the working state of the
reverse jet actuators on both sides, the left reverse jet stops

working, and the right reverse jet starts to work. The model
obtains a positive yawing moment increment, accelerating
the recovery of the model yaw angle. At the same time, the
leading-edge spanwise jet actuator on the left side also starts
to work, so that the model obtains a positive rolling moment
increment, and the roll angle also begins to accelerate the
recovery. Then, when the roll and yaw angles of the model
overshoot, the directions of the two kinds of jets are
reversed, so that both the roll and yaw angles of the model
return to around 0°. Finally, the jet actuators work alter-
nately, making the roll and yaw angles of the model stabi-
lized around 0°. In addition, it is worth noting that, based
on the above analysis (see Figure 4), when the reverse jet
and the leading-edge spanwise jet located on the same side
are working together, the control effect of the reverse jet
on the yawing moment will be suppressed by spanwise jet,
and the control effect of the spanwise jet on the rolling
moment is also suppressed by the reverse jet. In the agent’s
strategy, it consciously avoids the situation where the two
jets on the same side work together. Figure 9 shows the anal-
ysis of the agent’s actions on the left side. It can be seen from
the figure that when the action value of the reverse jet on the
left reaches the peak, the spanwise jet is not working. The
two actuators work alternately, cleverly avoiding the prob-
lem of control coupling.

4. Conclusion

In conclusion, this paper explores the characteristics of the
uncommanded roll-yaw motion of a canard-configuration
model at a high nominal angle of attack through a free-to-
roll-and-yaw experiment. Experiments show that this
uncommanded motion has a large amplitude and obvious
state coupling. To provide lateral/directional control
moment to the model, spanwise jet and reverse jet actuators
were designed, respectively. Through force measurement
experiments, it is found that the control effects of the two
actuators have the characteristics of nonlinear and strong
coupling. In the wind tunnel virtual flight experiments, the
deep reinforcement learning algorithm (TD3) was used to
train the stability augmentation control law of the model,
which successfully suppressed this uncommanded roll-yaw
motion. The action of the reinforcement learning agent dur-
ing testing is analyzed, and it is found that the agent avoids
the coupling relationship between the two kinds of jet actu-
ators. The results of this paper can provide some technical
support for the design of complex control law and the devel-
opment of intelligent aircraft.
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