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Maintaining the laminar flow on surfaces through active control is a significantly promising technique for reducing fuel burn and
alleviating environmental concerns in commercial aviation. However, there is a lack of systematic parameter studies for the hybrid
laminar flow control (HLFC) together with natural laminar flow (NLF). To address this need, we optimize the infinite swept wings
with different sweep angles and at various conditions, including different Mach numbers, Reynolds numbers, and lift coefficients.
The Reynolds-averaged Navier-Stokes (RANS) solver coupled with the linear stability theory is applied for the laminar-turbulent
transition prediction, and the traditional optimization method based on evolutionary algorithms is applied for laminar flow wing
optimization. The optimization results found that HLFC is required when the NLF fails at a larger sweep angle (35°) and Reynolds
number (20 × 106). The lower pressure peak with boundary-layer suction is found to delay the transition of the regional aviation
condition. Besides, the pressure distribution of HLFC is similar to NLF results at the lower Reynolds number (10 × 106) or sweep
angle (25°), i.e., a gentle negative pressure gradient near the leading edge and a small favorable pressure gradient behind it.
Clarifying the characteristics of laminar flow wings will advance the application of the laminar flow technique within its field.

1. Introduction

Facing the permanent goals to improve fuel economy and
reduce their impact on the environment, serious novel tech-
nologies have been proposed, such as composite material
structures [1], laminar flow wings [2], active aeroelastic
wings [3], and adaptive structures [4]. For a typical transport
aircraft, total friction drag can be up to 50%, so the laminar
flow wing is one of the most promising technologies for
reducing drag. Research has shown that the friction drag of
a transport aircraft is 18%, 4%, 3%, and 3% for the wing,
horizontal tail plane, fin, and nacelles, respectively [5]. If
the flow were laminar on 40% of the wing, horizontal tail
plane, fin, and nacelles, the total drag of the aircraft would
be reduced by 16%.

For the laminar techniques, the NLF and HLFC tech-
niques are widely used in maintaining laminar flow [6–10].
The NLF achieves laminar flow on wings via a suitable pro-
file, whereas the HLFC utilizes the suction before the front
spar in combination with a suitable shape of the wing box.

Also, thermal control on the natural laminar flow configura-
tion has been investigated [11–14], especially for the tran-
sonic shock-boundary layer interaction. Before we proceed
with the HLFC design, several phenomena that cause the
laminar-turbulent transition need to be involved. There are
several phenomena to be considered [15, 16], i.e. attachment
line transition, TS instabilities, CF instabilities, and bypass-
induced transition. In the laminar flow wing design, the
attachment line transition can be diverted with the help of
a “Gaster bump” [17]. CF instability is the second phenom-
enon that induces transition. If the CF velocity profile of the
boundary layer has an inflection point [18], the inviscid
instability will arise, which is amplified close to the leading
edge of a swept wing. When the sweep angle and Reynolds
number are increased, the CF instability is amplified signifi-
cantly and might induce transition very close to the leading
edge [19]. The third one, TS instability, can occur in two- or
three-dimensional flow. TS instability [15] starts with the
development of wave-like disturbances. The linear amplifi-
cation covers about 75–85% of the distance between the
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leading edge and the transition starting point. Whether it is
TS instability or CF instability, the linear stability theory can
capture the main disturbance. For the flow with high-level
turbulence, the bypass-induced transition [20, 21] is signifi-
cant and should also be considered. In this paper, since the
low-level turbulent flow is considered for aircraft aviation,
the bypass-induced transition is not discussed in detail in
the following paragraph.

The TS and CF instabilities are significantly affected by
the pressure gradient, so a considerable laminar region can
be obtained via the art of shape tailoring [22]. As we all
know, the negative pressure gradient amplifies the CF insta-
bilities but suppresses TS instabilities, but the positive pres-
sure gradient has the opposite effect [23]. Thus, a careful
balance is required for suppressing both TS and CF instabil-
ities when implementing shape optimization. A series of
wind-tunnel experiments and flight tests were performed
in Europe, and design guidelines were developed [5]. The
Reynolds number and sweep angle with different laminar
flow techniques are given and shown in Figure 1. We added
the corresponding points of business jet aircraft and short-
regional and long-regional airlines. It can be seen that when
the Reynolds number and sweep angle are increased, the
NLF fails to delay the transition and needs to be replaced
by the HLFC technique [24] .

The HLFC and NLF designs have been investigated for
several decades. The authors of [9] have designed the NLF
wing of a business jet (wing-body configuration) using the
rule of cosine. The Reynolds number is below 10 × 106, the
cruise Mach number is 0.75, and the lift coefficient is 0.5.
The optimized result gains a more-than-40% laminar region
and is verified by the wind-tunnel test at DNW-HST. Han
et al. [22] designed a laminar flow swept wing at a Mach
number of 0.75 and the Reynolds number of 20 × 106 with
Cl = 0:5. The sweep angle of the leading edge is 19°, and
the MAC (Mean Aerodynamic Chord) is 3.75m. After opti-
mization, a considerable laminar region, almost more than
60%, is obtained on the upper surface. Shi et al. [8] opti-

mized an infinite swept wing with a 25° sweep angle using
an adjoint-based optimization approach. The Mach number
is 0.78, and the Reynolds number is 10 × 10 ° . The opti-
mized geometry could gain a laminar region of 59.4% on
the upper surface. The balance of controlling TS and CF
instabilities in NLF optimization is explored, which shows
that a lower pressure peak and the following weak negative
pressure gradient correspond to a considerable laminar
region.

Besides the NLF optimization, the HLFC optimization
and its comparison with NLF have been investigated. Risse
et al. [25] applied the HLFC technique on the wing and tails
of long-range passenger aircraft. The design’s Mach number
ranges from 0.85 to 0.80, and the outboard wing leading
edge sweep angle varies from 34° to 28°. With the HLFC
technique, the outboard wing of long-range aircraft would
obtain a laminar region of more than 50%. As a result, a
net block fuel benefit of nearly 11% would be gained, which
motivates further investigation of the HLFC technique. Yang
et al. [26] have studied the HLFC technique on a wing-glove
vertical tail, and the HLFC helps to delay the transition. The
wing-glove configuration has a 35° sweep angle. The Mach
number is 0.75, and the Reynolds number based on the
MAC is 38:1 × 106. The designed configuration could delay
the transition of locations to the position around 25% of
the chord. Besides, the design wing with HLFC presents
good robustness with the variation of sideslip angles and
angles of attack. Sudhi et al. [27] researched the NLF and
HLFC applications for a swept wing with a 22.5° sweep angle
at Mach number 0.78 and Reynolds number of 30 × 106. The
HLFC optimization result gains a more-than-43% drag
reduction than NLF. From the investigation of the three-
dimensional laminar wing optimization using NLF and
HLFC techniques, what is missing is a comprehensive study
of how the key parameters, i.e., Reynolds number, lift coeffi-
cient, and sweep angle, affect the laminar flow design.

This paper contributes to the study of the effect of the key
parameters on the laminar flow design. The HLFC design
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Figure 1: The diagram of laminar-turbulent transition-dominant mechanisms and design guidelines for NLF and HLFC techniques.
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characteristics and their comparison with NLF will be summa-
rized in this paper. This paper contributes to systemically
studying the effects of these key parameters on the laminar
flow design. The HLFC design characteristics and their com-
parison with NLF will be summarized in this paper.

In this work, the eN method based on the linear stability
theory is used to predict the transition induced by TS and
CF instabilities, and the infinite-span swept wings under dif-
ferent flow conditions are optimized. This paper is organized
as follows. In Section 2, the complete coupled system, which
consists of the Reynolds-averaged Navier-Stokes code, a
laminar boundary-layer code, and a stability analysis code,
is introduced firstly. Meanwhile, the transition prediction
code is verified for both NLF and HLFC cases. The optimi-
zation method implemented in HLFC and NLF wing designs
is described in Section 3. In Section 4, two optimization
cases are done, and the aerodynamic characteristics of HLFC
wings and their comparison with those of NLF wings are
discussed. Finally, we summarize our work in Section 5.

2. Transition Prediction Method and Validation

In this section, the laminar-turbulent transition (LTT) predic-
tion method is introduced, including the RANS solver, lami-
nar boundary-layer (BL) code, linear stability theory, and eN

method. The transition module part is composed of the last
three methods. The RANS solver and LTTmodule are coupled
by external iteration computation using an intermittency
function. Note that the surface suction is simulated using a
continuous suction boundary-layer condition [28].

2.1. Linear Stability Theory and eN Method. The LTT begins
when the boundary-layer flow is disturbed by a set of pertur-
bations (noise, external turbulence, surface roughness, and
wall suctioning/blowing) transformed through a process
called receptivity into a set of small perturbations which
grow or decay in the form of normal modes. For the linear
stability theory, a small sinusoidal disturbance q′ (velocity,
pressure, density, or temperature) is introduced into the
Navier-Stokes equations and defined as

q′ x, y, z, tð Þ = q̂ yð Þei αx+βz−ωtð Þ, ð1Þ

where x, y, z is an orthogonal coordinate system, with y
being normal to the surface wall. Since the fluctuating quan-
tities are very small, the quadratic terms of the perturbations
can be neglected in the N-S (Navier-Stokes) equations. It is
also assumed that the mean flow quantities do not vary sig-
nificantly over a wavelength of the disturbances. The result
of the parallel flow approximations is that the complex
amplitude functions q̂ depend on y only.

By applying all the assumptions and submitting the
mean flow q and q′ into N-S equations, we obtain a local
linear system of ordinary differential equations for three-
dimensional compressible flows:

d2

dy2
q̂A α, βð Þ d

dy
q̂ + B α, βð Þq̂ = ωCq̂, ð2Þ

where A, B, and C are complex coefficient matrices that are
determined by mean flow values and the wave numbers α
and β. This equation represents a generalized eigenvalue
problem for temporal stability analysis, described as

Kq̂ = ωMq̂, ð3Þ

where K and M can be computed by A, B, and C. For the
temporal stability analysis, α and β are the real wavenum-
bers, while ω is the complex frequency, i.e. ω = ωi + iωr . This
generalized eigenvalue equation is solved using the Rayleigh
quotient method.

After that, we obtain the temporal growth ωi. The ωi is
transformed into a spatial growth ratio αi through Gaster’s
equation [29]. However, it is not clear in advance which
amount of wave amplification finally leads to the transition,
so the wave amplifications cannot directly yield a transition
location. This missing boundary is introduced by the eN

method, and the amplification factor N is defined as

N =
ðx1
x0

− αids, ð4Þ

where s is the arc length from the leading edge. N factor is the
envelope of all curves at different frequencies or wavelengths
at every chordwise station x. The transition location is finally
obtained at the x position at which the local N first exceeds
the critical amplification factor Ncr.

2.2. Suction Boundary-Layer Condition for HLFC. We simu-
late the HLFC by setting a steady suction velocity normal to
the wall surface [25, 27, 28, 30]. The HLFC technique is real-
ized through a large number of discrete suction holes close
to the leading edge. For industrial applications, the continu-
ous surface suction condition is used instead of the hole
velocity. The surface continuous velocity vs is expressed as

vs =
_m
ρS

, ð5Þ

where _m is the mass flow rate that is obtained using the flow
meter [28], ρ is the density, and S is the suction surface area.
There exists a transformation between the hole velocity and
the surface velocity, which is

vh =
vs
σ
, ð6Þ

where vh denotes the hole suction velocity. The porosity σ is
defined as

σ =
πd2

4S1
, ð7Þ

where d is the hole diameter and S1 is the area formed by the
adjacent four suction holes. The pressure drop determines
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the hole velocity through the perforated panel, and this rela-
tionship can be described as

Pout − Pin = 0:5aρv2h + 32bμ
t
d
vh, ð8Þ

where Pout and Pin are the outer and inner pressure values of
the perforated surface, respectively. In Equation (8), t is the
surface skin thickness, and a and b are the coefficients that
are determined by the properties of the perforated surface.
Generally, the experiments are designed to calibrate the
undetermined coefficients [30].

In this work, we use the continuous surface suction con-
dition for the HLFC optimization. The suction condition is
set for the laminar BL code, and the nondimensional surface
velocity coefficient Cq is set as

Cq =
vs
U∞

, ð9Þ

where U∞ is the freestream velocity. We consider the influ-
ence of wall suctioning on the steady base flow. The dis-
torted base flow is the input for the linear stability theory.

2.3. Transition Prediction Framework. A laminar boundary-
layer code and the RANS solver are required for the transi-
tion prediction with surface wall suction, except for the lin-
ear stability analysis and boundary-layer condition. We use
the conical approximation (quasi-3D) in the laminar BL
code, which is a simple and efficient method. The quasi-3D
code is accurate for the configuration with a high aspect
ratio. The laminar BL equations are nonlinear, and Newton’s
method is applied to solving the equations. The input of this
code is the section geometry coordinates (x) and pressure
coefficient (Cp) distribution, which is provided by the con-
verged solution of the RANS solver.

The RANS solver solves the equations with a finite vol-
ume method in both steady and unsteady states for the
multiblock-structured overset mesh. It uses cell-centered
finite volume formulation, and the inviscid fluxes are discre-
tized with artificially dissipated central differencing, while
the viscous fluxes use standard central differencing. An
approximate Newton-Krylov (ANK) algorithm or a fully
coupled Newton-Krylov (FCNK) method is applied to solve
the mean flow and turbulence equations. The steady prob-
lem can start using time-marching schemes (DDADI or
RK4) or ANK and then switch to FNCK or use ANK in
the whole convergence process [31]. Note that we choose
the Spalart-Allmaras (SA) turbulence model in this paper.

We start the transition prediction from the RANS solver
with fixed transition locations or a fully turbulent condition.
The converged RANS solver solution (εA < 10−10) would pro-
vide the Cp at different sections along the spanwise direction
for the BL code. With the stability analysis and eN , the pre-
dicted transition locations and lengths are obtained; then,
the fixed transition results are updated according to the new
results and an iteration relaxation factor. The fixed transition
results are returned to the RANS solver through an intermit-
tency function [7], which is computed by interpolating the
transition locations and lengths for the whole surface. The
RANS solver would continue with the updated transition
results, and the iteration stops when both transition results
and flow field solution converge (εL < 10−6, εA < 10−10). The
whole transition prediction framework is shown in Figure 2.

2.4. Validation. In this work, three test cases, the NLF(2)-
0415 swept wing, TLFTRM01, and SLFTRM01, are selected
to validate the CFD code. These three experiments contain
TS and CF instability-induced transitions, which are signifi-
cant in the following optimization work. The TLFTRM01
and SLFTRM01 models are tested with the HLFC control.

Begin

RANS solver

Flow solution

No

Yes

End

Transition
locations

eN method

Stability
analysis

Laminar BL
code

Transition module

Is converged?

Figure 2: Transition prediction framework.

4 International Journal of Aerospace Engineering



2.4.1. NLF(2)-0415. The transition experiment of the
NLF(2)-0415 infinite swept wing with 45° sweep angle has
been implemented by Saric et al. [32]. This model is
designed to explore the transition induced by CF instabil-
ities. The test angle is set as −4° to generate a negative pres-
sure gradient (Figure 3) that amplifies the CF instabilities.
The periodic boundary-layer condition is applied in the
spanwise direction. The turbulence intensity is 0.0005, and
critical amplification factors for TS and CF instabilities are
9.0 and 6.5, respectively.

We have implemented a grid convergence study here.
The geometry and the periodic plane for L0.5, L1, and L1.5
grids are shown in Figure 4. The grid size, drag coefficients,
and predicted transition location on the upper surface are
illustrated in Table 1. The test condition is M = 0:151 and
Re = 2:37 × 106.

We show the pressure coefficient comparison between
the simulation and the experimental data at Re = 2:37 × 106
in Figure 3.

The comparison indicates that the pressure coefficient
distribution is well simulated for different grid sizes. From
the transition prediction framework (Section 2.3), we know
that the transition location is determined by the conditions,
geometry, and section pressure coefficient.

As the conditions and geometry are unchanged in the
prediction iteration, the transition locations would be close
if the pressure coefficient distributions almost coincide.
The results of transition locations verify this statement,
and the transition location value on the upper surface
(0.554) of L1 is almost equal to that of L0.5 (0.553)
(Table 1). The good match between Cp and the laminar
region determines that the drag coefficient difference would
be small. From Table 1, the drag difference between L0.5 and
L1 is lower than 0.403 counts, which is very close. Thus, L0.5
has enough accuracy as the increment of grid size would not

cause an obvious drag coefficient and transition location
change. We use the L0.5 mesh in the following research.

The simulation and experimental condition for verifica-
tion is shown in Table 2. Figure 5 shows the transition loca-
tions/regions for the various experimental approaches and
simulations. The transition locations via simulation agree
well with experimental data. The transition location moves
upstream as the Reynolds number increases. As the transi-
tion is induced by CF instabilities except for the case of Re
= 1:92 × 106 [33], it verifies the accuracy of the established
code for the NLF transition dominated by CF instabilities.
In the case of Re = 1:92 × 106, the transition is induced by
laminar separation, which is the point where the BL code
stops. This agrees with the results by Grabe et al. [33].

2.4.2. TLFTRM01. A wind-tunnel experiment at the tran-
sonic regime is implemented for the HLFC study [34]. The
experimental model TLFTRM01 is shown in Figure 6. In
the middle of the spanwise direction, an interchangeable
panel is laid out close to the leading edge for the NLF and
HLFC study. When the panel is perforated, it is used for
HLFC research; otherwise, the solid panel is applied for the
NLF. The test Reynolds number is around 6:5 × 106, and
the turbulent intensity is approximately 0.1%. Various
angles of attack and three Mach numbers were tested, and
we chose the Mach number of 0.7 and angle of attack of
−3.34° for validation.

Under the condition of Re = 6:5 × 106, M = 0:7, and
AoA=−3.34°, three mass flow rates _m are included in the
experiment, i.e., _me = 5:94, 6.45, and 7.27 g/s, and they are
measured by the flow meter in the experimental process.
The inner pressure Pin is measured in the suction chamber.
Subsequently, the coefficients a and b in Equation (8) were
calibrated as 1.289 and 0.185, respectively [28]. The hole
velocity vh is then computed using Equation (8), and the
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Figure 3: The pressure distribution comparison between experimental data and simulation results (different grid levels) of the upper surface
at Re = 2:37 × 106.
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surface suction velocity vs is obtained via Equation (6). Note
that σ is 0.005454. By integrating the calculated vh in the
suction area, the mass flow rates _m are obtained, and they
are 6.11, 6.35, and 7.35 g/s. The simulated mass flow rates
are close to the experimental data ( _me = 5:94, 6.45, and
7.27 g/s).

Before we verified our CFD results with experimental
transition data, we performed grid convergence. The
different-level (L0.5, L1, and L1.5) grids are shown in
Figure 7. We chose two suction mass ratios ( _m = 0 g/s and
_m = 6:35 g/s) at the condition of AoA=−3.34°, Re = 6:5 ×
106, and M = 0:7. The pressure coefficient comparisons with
_m = 0 g/s are compared in Figure 7(d), and the Cp almost
coincides with each other. The mesh sizes, drag coefficients,
and transition locations are shown in Table 3. We can see

that the differences in drag coefficient between L0.5 and L1
are within 0.8 counts for both the case of _m = 0 g/s and the
case of _m = 6:35 g/s. Thus, L0.5 has enough accuracy in pre-
dicting the drag forces. The transition locations for those
two cases almost coincide at different grid levels (Table 3).
Therefore, we used the L0.5 mesh for research in the follow-
ing part.

Figure 8 shows the calibrated surface suction velocity.
The critical amplification factors NTScr and NCFcr are 8.7
and 7.0, respectively. The vs is set as the input of the
boundary-layer code, and the corresponding CF and TS
amplification results are obtained in Figure 9. When the

X

Y

Z

(c) L1.5 mesh: 0.22M cells

Figure 4: The varying grid sizes of NLF(2)-0415.

Table 1: Grid convergence study of the NLF(2)-0415 infinite swept
wing at M = 0:151 and Re = 2:37 × 106.

Mesh level Mesh size Cd x tru (x/c upper)
L0.5 1,751,040 91.651 0.553

L1 798,720 92.054 0.554

L1.5 218,880 94.841 0.559

Table 2: The experiment conditions of NLF(2)-0415.

Turbulence intensity (%) M Attack angle (°)
Reynolds
numbers

0.05 0.123 -4.0 1:92 × 106

0.05 0.140 -4.0 2:19 × 106

0.05 0.151 -4.0 2:37 × 106

0.05 0.174 -4.0 2:73 × 106

0.05 0.209 -4.0 3:27 × 106
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Figure 5: The comparison of the simulation and experimental
results of NLF(2)-0415.
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mass flow rate increases, the CF instabilities are sup-
pressed, and the transition is delayed. From the instability
analysis (Figure 9), the transition is induced by CF instabil-
ities. The experimental infrared (IR) images of temperature
are shown in Figure 10. The temperature gap (the darker to
the bright region in the clean region, except for the premature
transition caused by the steps, gaps, and hot film sensors) in
Figure 10 indicates the laminar-to-turbulent transition line.
The bold yellow line represents the transition with suction,
and the bold red line on the right side indicates the transition
without suction for comparison. The exact experimental tran-
sition locations are defined as the middle between the lowest
and highest temperatures in the transition region and are
extracted from the IR images. The simulated and experimental
transition locations are compared in Figure 9(a).

The results show that the transition locations agree well
with experimental data for cases where the CF instabilities
dominate the transition for the NLF and HLFC.

2.4.3. SLFTRM01. A laminar flow wing-glove model, shown
in Figure 11, is designed to demonstrate the HLFC technique
through flight experiments. The model consists of the test
section (marked in red color), two fairings (marked in blue
color), and the main wing. The sweep angle of the leading
edge is 5°, which indicates that the TS instabilities dominate

the transition for this flight experiment. The porous panel
close to the leading edge is used for the boundary-layer suc-
tion, delaying the transition.

This flight experiment includes several flight conditions;
here, we choose the condition of M = 0:46, H = 7:0 km, Re
= 12:20 × 106, and AoA=2.2° with different suction mass
flow rates for validation (Figure 12). For the porous panel,
there are four suction chambers. The continuous surface
suction coefficient is determined by the approach introduced
in Section 2.4.2. The suction coefficient distributions at the
“Sec2” position are shown in Figure 12. These two cases dif-
fer mainly in the region close to the leading edge. The differ-
ent cases are named as “case 1” and “case 2.” We choose to
use “case 1” as the grid convergence case. The simulation
grid convergence study and the pressure distributions are
shown in Figure 13. The pressure coefficient distributions
with different grid levels almost coincide with each other,
and they match well with the experimental data
(Figure 13(d)). The drag coefficients and transition locations
are shown in Table 4. The results shows that the L0.5 grid
has good accuracy for predicting the drag coefficients and
transition locations.

The IR images from flight tests are shown in Figure 14,
and the transition line is the location where the temperature
increases sharply. The bright color represents the laminar

Table 3: Grid convergence study of the wind-tunnel model.

Mesh level Mesh size Cd ( _m = 0 g/s) xtru (x/c upper, _m = 0 g/s) Cd ( _m = 6:35 g/s) xtru (x/c upper, _m = 0 g/s)
L0.5 27,438,520 127.906 0.112 119.553 0.433

L1 13,115,976 128.651 0.112 120.298 0.434

L1.5 3,450,720 131.823 0.113 122.971 0.435

2.0

–1.5

C
q
 (×

10
–3

)

–5.0
0.00 0.05 0.10

x/c
0.15 0.20

Cq = 0.0

m = 6.11 g/s

m = 6.35 g/s

m = 7.35 g/s

Figure 8: The calibrated contiguous surface suction coefficient distribution along the streamwise direction at various mass flow rates.
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region, while the darker region is turbulent. With the
boundary-layer suction condition, the transition prediction
is implemented, and the TS amplification factor is com-
puted, as shown in Figure 15. The critical TS amplification
factor is 9.0, calibrated by Yang et al. [35]. As the stream-
wise pressure taps trigger (dotted white lines in Figure 11)
premature transition in the turbulent wedge-shaped area,
the outside clean area is focused on the transition phe-
nomenon detection. Therefore, we choose the outside
“Sec2” position for the validation comparison. As shown
in Figure 14, the white square point represents the simu-
lated transition location, which agrees well with the results
in the IR Images. The comparison results demonstrate that
the established transaction prediction tool with HLFC

influence is able to handle the transition phenomena
induced by TS instabilities.

3. Optimization Framework

The design method for HLFC wings is the traditional opti-
mization method based on evolutionary algorithms. The
multiblock free form deformation (FFD) [36] approach is
applied for geometric parameterization in this work, provid-
ing consistent parameterization across disciplines. Mesh
deformation is realized via the radial basis function (RBF)
dynamic mesh approach, which is based on the compact
support radial basis function [37]. We adopt the differential
evolution (DE) algorithm [38] to find the optimal solution.
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Figure 9: The amplification factor distribution at various mass flow rates.
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All optimization cases are implemented for infinite-span
wings. Infinite-span wings are classified as one kind of 2.5D
wings [39]. The whole wing is formed by a single airfoil, and
the wingspan is set as infinite. Besides, the infinite-span wing
might have a given sweep angle. With a large enough sweep
angle, CF instabilities dominate the boundary-layer flow.
Infinite swept wings are simplified models of real wings.
Many factors are beyond our focus and are therefore not
taken into account, such as twist angles, lifting devices, and
the installed nacelles. This simplicity makes infinite swept
wings more appropriate for the research and exploration of

the HLFC wing design. We use the CFD solver built in Sec-
tion 2 to predict the transition locations and aerodynamic
forces. A periodic boundary condition in the spanwise direc-
tion is set to simulate infinite swept wings.

3.1. FFD Parameterization Method. The FFD approach
enables smoothly deforming geometric profiles of any
type or degree, including curves, surfaces, and three-
dimensional geometry. It embeds models into a lattice of
control points and builds a mapping relationship between
the physical and parametric spaces. The physical space

m0 = 5.94 g/s m0 = 6.45 g/s m0 = 7.27 g/s

Figure 10: IR images of temperature for predicting transition with various mass flow rates.
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Figure 11: The wing-glove model for the flight experiment.
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describes the objective models and lattice control points in
physical coordinates. The parametric space presents objec-
tive models in the local coordinate defined by the lattice. By
modifying the shape of the lattice, a deformation is passed
to objective models. Here, the Bernstein polynomial is used
to set up the mapping relationship. The deformed position
P of an arbitrary point on object models is defined as

P = 〠
l

i=0
〠
m

j=0
〠
n

k=0
Qi,j,kBi,l sð ÞBj,m tð ÞBk,n uð Þ,

Bi,l sð Þ =
l!

i! l − 1ð Þ! s
i 1 − sð Þl−i,

Bj,m tð Þ = m!

j! m − 1ð Þ! t
i 1 − tð Þm−j,

Bk,n uð Þ = n!
k! n − 1ð Þ! u

k 1 − uð Þn−k,

ð10Þ

where P is the physical coordinates of objective models.Qi,j is
the physical coordinates of lattice control points; s and u are
the local coordinates of objective models; and Bi,lðsÞ, Bj,mðtÞ,
and Bk,nðuÞ are, respectively, the l-th-,m-th-, and n-th-degree
Bernstein polynomials. The deformation of objective models
can be obtained by changing the physical coordinates Qi,j,k of
lattice control points.

Theoretically, the distribution of lattice control points
could affect the deformation ability of the FFD parameteri-
zation method. The region with densely distributed control
points has a better deformation ability than other regions.
As the CF instability is sensitive to pressure distributions at
the leading edge, the distribution of FFD control points is

denser near the leading edge, as shown in Figure 16. The first
and last lines of lattice control points are fixed to make sure
that the leading edge and trailing edge are not changed. All
the optimization cases are implemented based on this
infinite-span wing and FFD control points. The infinite-
span wing is formed by a single airfoil, so the two side move-
ments of FFD points at the same chordwise position should
be consistent. As a result, the number of the total design var-
iables is 14 in the optimization.

3.2. RBF Dynamic Mesh Approach. RBF dynamic mesh
approach realizes the mesh movement through the interpo-
lating technique based on the radial basis function. The tra-
ditional RBF dynamic mesh method directly sets up the
mapping relationship about the displacement increment
between all the nonsurface and surface mesh points through
radial basis functions. This feature ensures that the RBF
interpolation does not require the connectivity information
of mesh points. Thus, the calculation process of interpola-
tion is very easy and robust. However, this feature also
makes the coefficient matrix of the interpolating equation a
dense matrix, which reduces the computational efficiency,
especially when the number of mesh points is huge.

This paper uses the RBF dynamicmesh approach based on
the radial basis function with compact support. The value of
the radial basis function with compact support decreases con-
tinuously as the Euclidean distance to the basis point increases.
As long as the Euclidean distance is larger than the defined
support radius, the function value is set as zero. In such a
way, the coefficient matrix of the interpolating equation is a
sparse band matrix, which improves computational efficiency
to some extent. The details of the RBF dynamic mesh method
based on the radial basis function with compact support are
shown by Kady and Takahashi [40].
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Figure 12: The surface suction distribution along the streamwise direction at the position of “Sec2” with different volume suction rates.
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The interpolating function of the RBF dynamic mesh
method based on the compact support radial basis function
is described as

s xð Þ = 〠
N

i=1
αiϕ x − xik kð Þ,

ϕ x − xik kð Þ = 1 − x − xik k
r

� �2
,

ð11Þ

where sðxÞ is the interpolated value of the displacement for a
volume mesh point located at x, N is the number of RBF

points, ϕ is the radial basis function, kx − xik is the Euclid-
ean distance between mesh point x and RBF points xi, αi is
the interpolating coefficient that is needed to be solved,
and r is the support radial. According to the definition, when
kx − xik > r, the function value of ϕðkx − xikÞ is zero. Once
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Figure 13: The different grid sizes of SLFTRM01.

Table 4: Grid convergence study of the wind-tunnel model.

Mesh level Mesh size Cd xtru (x/c upper)
L0.5 28,604,330 217.233 0.441

L1 13,891,648 217.951 0.442

L1.5 3,721,176 222.478 0.445
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the interpolating coefficient is solved, the displacement
increment could be obtained through the interpolating for-
mula

Δx = 〠
N

i=1
αxi ϕ x − xik kð Þ,

Δy = 〠
N

i=1
αyi ϕ x − xik kð Þ,

Δz = 〠
N

i=1
αzi ϕ x − xik kð Þ:

ð12Þ

3.3. DE Algorithm. Differential evolution (DE) is one kind of
evolutionary algorithms. Similar to the Genetic Algorithm
(GA), mutation, crossover, and selection are the three main
operators of DE. A detailed description of the DE algorithm
can be found in Yang et al.’s work [35]. The mutation oper-
ator is defined as

v n+1ð Þ
i = x nð Þ

r1 + F x nð Þ
r2 − x nð Þ

r3

� �
: ð13Þ

The constant F is used to control the mutation ratio. The
crossover operator is

u nð Þ
i,j =

v nð Þ
i,j , if r j

À Á
≤ CR:or:j = jrand,

x nð Þ
i,j , otherwise:

8<
: ð14Þ

The vector vðnÞi = ðvðnÞi,1 , v
ðnÞ
i,2 ,⋯, vðnÞi,D Þ is the result of muta-

tion. r j is a randomly generated variable (0 ≤ r j ≤ 1), and CR
is a parameter that describes the crossover ratio. The selec-
tion operator is defined as

x n+1ð Þ
i,j =

x nð Þ
i,j , if f u nð Þ

i

� �
< f x nð Þ

i

� �� �
,

x nð Þ
i , otherwise:

8<
: ð15Þ

where xðnÞi = ðxðnÞi,1 , x
ðnÞ
i,2 ,⋯, xðnÞi,D Þ is the i-th individual of the n

-th population and D is the dimension of the problem.

The vector uðnÞi = ðuðnÞi,1 , u
ðnÞ
i,2 ,⋯, uðnÞi,D Þ is the result of the

crossover. We define the function value f ðxðnÞi Þ, which uses

xðnÞi as the input parameters.

Laminar
fow

Pressure
taps

Turbulence

0.1
–0.2
–0.7
–1.1
–1.6
–2.0
–2.5
–3.0
–3.4
–3.9
–4.4

–5.4
–4.8

45%c 40%c 35%c 30%c 25%c 15%c 5%c20%c

(a) Case 1

Laminar
fow

0.1
–0.2
–0.7
–1.1
–1.6
–2.0
–2.5
–3.0
–3.4
–3.9
–4.4

–5.4
–4.8

Pressure
taps

Turbulence

45%c 40%c 35%c 30%c 25%c 15%c 5%c20%c

(b) Case 2

Figure 14: The IR images and predicted transition locations at the position of “Sec2.”.

15International Journal of Aerospace Engineering



In each generation, we operate each individual from the

parent population XðnÞ = ½xðnÞTi , xðnÞTi ,⋯, xðnÞTi,N �Tbased on the
following:

(1) Each time, select three different random individuals

ðxðnÞr1 , x
ðnÞ
r2 , x

ðnÞ
r3 Þ from the parent population XðnÞ,

and use the mutation operator to generate new indi-

viduals V ðnÞ = ½vðnÞTi , vðnÞTi ,⋯, vðnÞTi,N �T

(2) Obtain new individuals from U ðnÞ = ½uðnÞTi , uðnÞTi ,⋯,
uðnÞTi,N �T by utilizing the crossover operator

(3) Compare U ðnÞ with XðnÞ and generate the next pop-
ulation Xðn+1Þ through the selection operator

For HLFC wing design problems with 14 design vari-
ables, each generation has 65 individuals. The optimization
terminates after 75 generations.

4. Optimization and Analysis of Laminar
Flow Wings

We continue to research the HLFC technique based on infinite
swept wings using the established transition prediction frame-
work in Section 2 and the optimization tool in Section 3. The
HLFC wings have two sweep angles and are designed with dif-
ferent Mach numbers, Reynolds numbers, and lift coefficients.
Under the same conditions, we optimize the NLF wings and
compare them with the results of the HLFC wings.

4.1. Benchmark Wings. For a conventional transonic trans-
port aircraft, such as the A320 and B787, the Mach number
range is basically from 0.78 to 0.85, and the sweep angle var-
ies from 25° to 35°. In this work, the sweep angles of infinite-
span wings are accordingly selected as 25° and 35°. The
Mach number of the wings with 25° sweep angle is 0.78,
while the wings with 35° correspond to the Mach number
of 0.85.

NLF wings usually have a lift coefficient of around 0.5
[41, 42]. We select two lift coefficients for each kind of
wing to discuss the influence of lift coefficients and
explore the difference between supercritical wings and
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Figure 15: The surface suction distribution along the streamwise direction for different volume suction rates.

Figure 16: The control frame of FFD.

Table 5: The design parameters.

Sweep
angle (°)

Relative
thickness

Mach
number

Cl Reynolds number
Cl1

Cl2
Re1 Re2

25 0.125 0.78 0.5 0.59 10 × 106 20 × 106

35 0.114 0.85 0.45 0.53 10 × 106 20 × 106
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transonic laminar flow wings. One is a smaller lift coeffi-
cient, close to the lift coefficient of the NLF wings. The
other one is a larger lift coefficient, which corresponds to
that of supercritical wings.

Referring to UW-5006, a transonic natural laminar flow
wing [9], the small lift coefficient is set as 0.5 for the wing

with a 25° sweep angle, while the larger lift coefficient is
0.59. For the case with the 25° sweep angle, the relative thick-
ness of the wing profile is set as 0.125. As for the wings at
35°, the Mach number, lift coefficients, and relative thickness
of the airfoil are determined through simple sweep theory
[43] and the parameters of wings with a 25° sweep angle.
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Figure 17: Comparison of the two kinds of original infinite swept wings.
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The sweep theory establishes relationships about the Mach
number, relative thickness of the airfoil, and lift coefficients
between two-dimension airfoils and three-dimension wings,
especially infinite swept wings. It is described as

M2D =M3D cos Λð Þ,

�t2D =
�t3D

cos Λð Þ ,

Cl2D =
kCl3D
cos2 Λð Þ ,

ð16Þ

where M, �t, and Cl are the Mach number, the relative thick-
ness, and the lift coefficient of two-dimension airfoils and
2.5D infinite-span wings, respectively. The coefficient Λ is
the sweep angle of the selected reference line on the wing
surface. k is a correction factor with different values for dif-
ferent wings.

Using the simple sweep theory, we transform the Mach
number, lift coefficient, and relative thickness of the airfoil
from the wing with the 25° sweep angle to a two-
dimensional airfoil. For the case of the 25° sweep angle,
the Mach number of the airfoil is 0.706, the relative thick-
ness is 0.138, the smaller design lift coefficient is 0.608,
and the larger one is 0.718. In the same way, the parame-
ters of wings with the 35° sweep angle can be obtained
inversely with these design parameters of the two-
dimensional airfoil. For the wings with the 35° sweep

angle, the Mach number is computed as 0.85, the relative
thickness is 0.114, and the smaller and larger lift coeffi-
cients are 0.45 and 0.53, respectively.

We select two Reynolds numbers for both infinite swept
wings. The first one is 10 × 106, which is similar to the flight
Reynolds number of NLF aircraft, and the other one is 20
× 106, which is close to the flight Reynolds number for
regional aircraft. In this way, the wings with two different
sweep angles have similar design parameters to some extent,
so the design results can be compared together. Although
there are some differences, the discussion about the influ-
ence of sweep angles is still meaningful. The design parame-
ters are given in Table 5. Figure 17 shows a comparison of
wings with different sweep angles, which are set as the orig-
inal models for all the following optimization cases.

4.2. Optimizations for Wings with 25° Sweep Angle. The
influences of the Reynolds number, design lift coefficients,
and suction coefficients (Cq) on HLFC and NLF are studied
for wings with a sweep angle of 25°. According to the previ-
ous discussion, eight different design conditions are deter-
mined for wings with the sweep angle of 25°, as shown in
Table 6. The Re1 and Re2 denote the Reynolds numbers of
10 × 106 and 20 × 106, respectively. The “Low” represents
the lower lift coefficient, while the “High” corresponds to
the higher lift coefficient.

The computational conditions of the original model are
listed in Table 7. The optimization objective is to minimize
the drag coefficient. We have the aerodynamic constraint
that the nose-down pitching moment coefficient Cm is larger
than −0.1 and −0.105 (Cml) for the lower and higher lift
coefficients, respectively. The geometric constraint is no
reduction in airfoil relative thickness. Thus, the mathemati-
cal model of the optimization problem is defined as

min Cd ,

s:t: Cl = Cldesign,

Cq = Cqdesign,

Cm > Cml,
t
c
≥ 0:125:

ð17Þ

Tables 8 and 9 show the force and transition location
information of both original and optimized geometries,
and it also provides as comparison the pressure drag coeffi-
cient (Cdp) and friction drag coefficient (Cdv). No matter
what the lift coefficient and the Reynolds number are, the
drag coefficients of HLFC wings are all reduced, as shown
in Tables 8 and 9. After optimization, the total drag is
reduced at all conditions. Figures 18–21 show the compari-
son of the airfoil geometry and pressure distributions
between the original models and optimization results.

Figures 22 and 23 plot the envelope curves (N factor) of
disturbance amplification curves of TS and CF instabilities
on upper and lower surfaces.

Table 6: Design conditions of laminar flow wings with 25° sweep
angle.

Design condition Cq Cl Reynolds numbers ( × 106)
NLF-Opt-Re1-Low 0.0 0.5 10

HLFC-Opt-Re1-Low 0.0003 0.5 10

NLF-Opt-Re2-Low 0.0 0.5 20

HLFC-Opt-Re2-Low 0.0003 0.5 20

NLF-Opt-Re1-High 0.0 0.59 10

HLFC-Opt-Re1-High 0.0003 0.59 10

NLF-Opt-Re2-High 0.0 0.59 20

HLFC-Opt-Re2-High 0.0003 0.59 20

Table 7: Computational conditions of original models with 25°

sweep angle.

Initial condition
Sweep
angle (°)

Cq Cl
Reynolds

numbers ( × 106)
NLF-Ori-Re1-Low 25 0.0 0.5 10

HLFC-Ori-Re1-Low 25 −0.0003 0.5 20

NLF-Ori-Re2-Low 25 0.0 0.5 10

HLFC-Ori-Re2-Low 25 −0.0003 0.5 20

NLF-Ori-Re1-High 25 0.0 0.59 10

HLFC-Ori-Re1-High 25 −0.0003 0.59 20

NLF-Ori-Re2-High 25 0.0 0.59 10

HLFC-Ori-Re2-High 25 −0.0003 0.59 20
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We now move on to the results of the lower lift coeffi-
cient and lower Reynolds number. When the Reynolds num-
ber is 10 × 106 and the lift coefficient is 0.5, i.e., “NLF-Opt-
Re1-Low” and “HLFC-Opt-Re1-Low,” the NLF and HLFC
optimization results of pressure distributions are similar
(Figure 19(a)). On the upper surface, after the negative pres-
sure peak at the leading edge, the pressure distribution has a
small adverse pressure gradient, followed by a gentle favor-
able pressure gradient, as shown in Figure 19(a). Such char-
acteristics of pressure distribution could efficiently control
the development of CF and TS instabilities. As a result, the
optimized results (“NLF-Opt-Re1-Low” and “HLFC-Opt-
Re1-Low”) gain lower pressure drag and friction drag. Com-
pared with the original model, the total drag of “NLF-Opt-
Re1-Low” and “HLFC-Opt-Re1-Low” is reduced by 35.7%
and 34.1%, respectively. The HLFC geometry gains a longer
laminar region on both the upper and lower surfaces than
the optimized NLF geometry, which results in a lower fric-
tion drag (Table 8).

For the original models (“NLF-Ori-Re1-Low” and
“HLFC-Ori-Re1-Low”), Figures 19(a), 22(a), and 22(b) show
that the adverse pressure gradient on the upper surface

Table 8: The initial and optimization results at Cl = 0:5.

NLF-Ori-Re1 HLFC-Ori-Re1 NLF-Opt-Re1 HLFC-Opt-Re1
Cd 70.289 66.678 50.602 49.404

Cdp 32.676 30.734 22.460 21.718

Cdv 37.613 35.943 28.142 27.686

xtr/c (upper surface) 0.273 0.321 0.508 0.517

xtr/c (lower surface) 0.512 0.520 0.594 0.594

NLF-Ori-Re2 HLFC-Ori-Re2 NLF-Opt-Re2 HLFC-Opt-Re2
Cd 87.649 86.600 78.216 34.405

Cdp 41.362 40.836 37.012 13.770

Cdv 46.288 45.763 41.204 20.635

xtr/c (upper surface) 0.007 0.029 0.008 0.563

xtr/c (lower surface) 0.266 0.069 0.493 0.360

Table 9: The initial and optimization results at Cl = 0:59.

NLF-Ori-Re1 HLFC-Ori-Re1 NLF-Opt-Re1 HLFC-Opt-Re1
Cd 75.578 71.152 48.561 46.924

Cdp 37.631 35.040 24.097 24.088

Cdv 37.947 36.113 24.464 22.836

xtr/c (upper surface) 0.323 0.379 0.507 0.543

xtr/c (lower surface) 0.425 0.434 0.623 0.652

NLF-Ori-Re2 HLFC-Ori-Re2 NLF-Opt-Re2 HLFC-Opt-Re2
Cd 104.091 103.261 94.779 41.908

Cdp 54.088 53.293 47.703 19.545

Cdv 50.003 49.634 47.076 22.363

xtr/c (upper surface) 0.007 0.020 0.006 0.535

xtr/c (lower surface) 0.037 0.027 0.173 0.242
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Figure 18: The comparison of airfoils at Cl = 0:5.
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increases the TS instabilities sharply around 25% of the
chord. As a result, the TS instabilities induce the transition.
However, the NLF optimization result (“NLF-Opt-Re1-
Low”) indicates that the favorable pressure gradient after

the position of adverse pressure gradients suppresses the
TS instabilities. Besides, the suitable adverse pressure gradi-
ents on the upper surface, which are just behind the negative
pressure peak, would reduce the CF instabilities. Thus, we
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can conclude that shape optimization successfully delays the
transition even without suction control. Note that for cases
“NLF-Opt-Re1-Low” and “HLFC-Opt-Re1-Low,” the transi-
tion on the upper surface is induced by laminar separation
[44, 45] since both TS and CF amplification factors do not
exceed the critical values before the separation point
(Figures 22(a) and 22(b)). The pressure gradient effects on
transition have been investigated by Sengupta and Tucker
[44, 45]. The results of “NLF-Opt-Re1-Low” demonstrate the
suitable adverse pressure gradient just after the leading edge,
and then, a gentle favorable pressure gradient could balance
the development of TS and CF instabilities. This is an effective
approach in delaying the transition to the NLF design.

Subsequently, we focus on the lower surface without
suction. Compared with “NLF-Ori-Re1-Low,” “NLF-Opt-
Re1-Low” presents a larger negative pressure gradient close
to the leading edge, and then, a weak adverse pressure gra-
dient and a smaller favorable pressure gradient follow,
which stabilize the CF instabilities. The pressure distribu-
tion characteristics of “NLF-Opt-Re1-Low” result in a
larger CF amplification close to the leading edge and then
smaller values for the remaining region compared with the
original case, i.e., “NLF-Ori-Re1-Low” (Figure 22(d)).
Compared with “NLF-Ori-Re1-Low,” the smaller negative
pressure gradient in the middle region (“NLF-Opt-Re1-
Low”) increases TS instabilities (Figure 22(c)), but does
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not exceed the TS critical value. For the “HLFC-Opt-Re1-
Low,” the almost similar negative pressure gradient distribu-
tion results in much smaller CF instabilities compared with
that of “HLFC-Ori-Re1-Low” (Figure 22(c)). Compared with
“NLF-Opt-Re1-Low,” “HLFC-Ori-Re1-Low” has lower pres-
sure recovery due to a smaller negative pressure gradient in
the middle region, which results in a longer laminar region.
It can be concluded that for the lower Reynolds number and
lift coefficient, both the NLF and HLFC optimized results
could gain a considerable laminar flow region.

When the Reynolds number increases (“NLF-Ori-Re2-
Low”), the transition of the NLF-optimized geometry occurs
close to the leading edge of the upper surface (“NLF-Opt-
Re2-Low”), as shown in Table 8. The results indicate that
the NLF optimization fails to gain more laminar regions
on the upper surface, whereas a considerable laminar region
is obtained on the lower surface via optimization. Figure 22
shows that when the Reynolds number is high, the CF and
TS instabilities are much higher, especially the CF instabil-
ities close to the leading edge. The fact proves that the
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Figure 22: Envelope curves of CF and TS disturbance amplification curve at Cl = 0:5.
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Figure 23: Envelope curves of CF and TS disturbance amplification curve at Cl = 0:59.

Table 10: Nose-down pitching moment coefficients of wings at Cl = 0:5.

Case Low limitation Cm Case Low limitation Cm

NLF-Ori-Re1 — −0.089 NLF-Opt-Re1 −0.100 -0.089

HLFC-Ori-Re1 — −0.091 HLFC-Opt-Re1 −0.100 -0.094

NLF-Ori-Re2 — −0.080 NLF-Opt-Re2 −0.100 -0.087

HLFC-Ori-Re2 — −0.081 HLFC-Opt-Re2 −0.100 -0.100
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development of instabilities is indeed susceptible to the
Reynolds number.

So if we want to delay the transition when the Reynolds
number is high, a suction control technology is needed. By
coupling the suction control and shape optimization, the
CF instabilities are successfully suppressed (Figure 22(b)).
After the leading edge, the favorable pressure gradient is first
reduced a lot and then changed to an adverse pressure gradi-
ent distribution, which is aimed at suppressing the CF insta-
bilities. Then, a favorable pressure gradient after the position
of adverse pressure decreases the TS instabilities. Finally, the
optimization of HLFC delays the transition location from
2:9%c to 56:3%c on the upper surface and 26:9%c to 36:0%
c on the lower surface. The pressure drag coefficient and fric-
tion drag coefficient are reduced significantly, as shown in
Table 8.

In general, when nose-down pitching moments are set as
design constraints; higher design lift coefficients mean a
higher negative pressure peak at the leading edge. This will
increase the difficulty of delaying the transition, especially
when the Reynolds number is also high. The phenomenon
can be observed by comparing Figures 19 and 21. We take

the result of “HLFC-Opt-Re2-High” to testify to this conclu-
sion. Although the suction control technology has been
used, a good pressure distribution is still required to effec-
tively suppress the CF and TS instability development. It
can be seen that on the upper surface, the CF instabilities
almost reach the critical value of the N factor (NCFcr in
Figure 22(b)) just after the leading edge. On the lower sur-
face, the development of CF instabilities maintains a growth
trend, as shown in Figure 23(d), and the transition is not
pushed aft a lot. For “HLFC-Opt-Re2-High,” it is up to the
limitation of the pitching moment coefficient to maintain a
reasonable laminar region.

We then focus on the lower lift and Reynolds number to
explain the effects of the nose-down pitching moment on
laminar wing design. Figures 19 and 22 show that both
shock waves of the NLF wing (“NLF-Opt-Re1-Low”) and
the HLFC wing (“HLFC-Opt-Re1-Low”) dominate the tran-
sition on upper surfaces. Just before and close to the shock
wave, TS instabilities present a sharp increase and reach
the critical value immediately. If the TS amplification factor
is not up to the critical value, the laminar separation is
assumed to induce the transition. A downstream movement

Table 11: Nose-down pitching moment coefficients of wings at Cl = 0:59.

Case Low limitation Cm Case Low limitation Cm

NLF-Ori-Re1 — −0.088 NLF-Opt-Re1 −0.105 -0.087

HLFC-Ori- Re1 — −0.091 HLFC-Opt-Re1 −0.105 -0.094

NLF-Ori-Re2 — −0.075 NLF-Opt-Re2 −0.105 -0.064

HLFC-Ori-Re2 — −0.075 HLFC-Opt-Re2 −0.105 -0.105
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Figure 24: The comparison of friction drag coefficients in different cases.
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of the shock wave enables more laminar flow, but this would
cause a nose-down pitching moment increase. As shown in
Tables 10 and 11, almost all the optimized results have larger
pitching moment coefficients than those of the original
values, except for “NLF-Opt-Re2-High.” Besides this, a larger
nose-down pitching moment means a bigger trim drag.
Therefore, for transonic laminar flow wings, nose-down
pitching moment constraints and the locations of shock
waves significantly affect the design results of laminar flow
wings. If the nose-down pitching moment constraint is set
too small, laminar flow wings need a higher negative pres-
sure peak at the leading edge to trim the nose-down pitching
moment. As we have discussed above, this is harmful to
maintaining laminar flow. The conclusions mentioned above
are also valid for the wings with Cl = 0:59 as shown in
Figures 21 and 23 and Table 11.

Finally, we plot the skin friction drag (Cf ) distribution as
shown in Figure 24. For brevity, we plot the comparison of
the original case and optimized result at Cl = 0:5 and Re =
10 × 106 in Figure 24(a) and the results at different Reynolds
numbers in Figure 24(b). The comparison of original and
optimized results in Figure 24(a) shows that the friction
drag of laminar flows is much lower than that of turbulent
flows. Note that the transition start point is defined as the
position where the Cf grows sharply. Figure 24(b) is
aimed at comparing the friction drag at different Reynolds
numbers, such as “NLF-Ori-Re1-Low” and “NLF-Ori-Re2-
Low” and “HLFC-Opt-Re1-Low” and “HLFC-Opt-Re2-
Low.” The friction drag coefficient at the higher Reynolds
number is much smaller than that at the lower Reynolds
number with the same flow station (laminar or turbulent),
because the Cf is inversely proportional to the Reynolds
number. This kind of phenomenon is much more pro-
nounced in comparison to the turbulent region. This
explains why the friction drag of “HLFC-Opt-Re2-Low”
is much lower than that of “HLFC-Opt-Re1-Low.” Even
the transition maintenance of the higher Reynolds number
is much more difficult than that of the lower Reynolds
number; a higher Reynolds number with a considerable
laminar region could gain lower skin friction.

We also plot the boundary-layer thickness to elaborate
on why the pressure drag is also reduced significantly when
the transition is delayed. Figure 25(a) indicates that HLFC
cases have thinner boundary-layer thickness than NLF
results. Besides, Figure 25(b) shows original and optimized
HLFC results at different Reynolds numbers. It can be seen
that the boundary-layer displacement thickness of the higher
Reynolds number (Re2) is much smaller than that of the

Table 12: Design conditions of laminar flow wings with 35° sweep
angle.

Design condition Cq Cl Reynolds numbers ( × 106)
NLF-Opt-Re1-Low 0.0 0.45 10

HLFC-Opt-Re1-Low 0.00045 0.45 10

NLF-Opt-Re2-Low 0.0 0.45 20

HLFC-Opt-Re2-Low 0.00045 0.45 20

NLF-Opt-Re1-High 0.0 0.53 10

HLFC-Opt-Re1-High 0.00045 0.53 10

NLF-Opt-Re2-High 0.0 0.53 20

HLFC-Opt-Re2-High 0.00045 0.53 20
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Figure 25: The comparison of the boundary-layer thickness of upper wings.
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lower Reynolds number (Re1). Smaller displacement thick-
ness means lower pressure drag, and this can be testified to
by the results of “HLFC-Opt-Re1-Low” and “HLFC-Opt-
Re2-Low” and “HLFC-Opt-Re1-High” and “HLFC-Opt-
Re2-High.”

The characteristics of laminar flows could significantly
reduce the friction and the pressure drag, as shown in
Tables 8 and 9. Meanwhile, we can summarize that when
the laminar region is considerable for both lower and higher
Reynolds numbers, the higher Reynolds number corre-
sponds to the smaller friction drag and pressure drag. A
higher Reynolds number means a smaller boundary-layer
thickness, as shown in Figure 25.

4.3. Optimization for Wings with 35° Sweep Angle. In the case
of the large sweep angle, we focus on the lift coefficients of
Cl = 0:45 and Cl = 0:53. The Reynolds numbers are Re = 10
× 106 and Re = 20 × 106. The corresponding design condi-
tions of 35° infinite-span wings are listed in Table 12. The
suction coefficient (Cq) is increased to −0.00045. The origi-
nal cases are similar to those of 25° (Table 12). The optimi-
zation design objective is to reduce the drag coefficient. We

have the aerodynamic constraint that the nose-down pitch-
ing moment coefficient Cm is larger than −0.125 and
−0.165 (Cml) at the lower and higher lift coefficients, respec-
tively. The geometric constraint is no reduction in airfoil rel-
ative thickness. The mathematical model of the optimization
problem is

min Cd ,

s:t: Cl = Cldesign,

Cq = Cqdesign,

Cm > Cml,
t
c
≥ 0:114:

ð18Þ

All the optimization processes converge when they reach
the given maximal generation.

The force coefficient results and transition locations are
shown in Tables 13 and 14. The airfoil and pressure coefficient
(Cp) distribution comparisons are shown in Figures 26–29

Table 13: The initial and optimization results at Cl = 0:45.

NLF-Ori-Re1 HLFC-Ori-Re1 NLF-Opt-Re1 HLFC-Opt-Re1
Cd 90.649 67.801 76.276 46.078

Cdp 43.661 28.967 33.544 16.766

Cdv 46.987 38.834 42.732 29.312

xtr/c (upper surface) 0.016 0.305 0.068 0.602

xtr/c (lower surface) 0.311 0.372 0.259 0.320

NLF-Ori-Re2 HLFC-Ori-Re2 NLF-Opt-Re2 HLFC-Opt-Re2
Cd 88.419 88.158 52.034 35.934

Cdp 39.230 39.077 21.052 14.189

Cdv 49.189 49.081 30.982 21.745

xtr/c (upper surface) 0.004 0.012 0.004 0.573

xtr/c (lower surface) 0.010 0.010 0.176 0.265

Table 14: The initial and optimization results at Cl = 0:53.

NLF-Ori-Re1 HLFC-Ori-Re1 NLF-Opt-Re1 HLFC-Opt-Re1
Cd 116.477 88.453 76.545 50.876

Cdp 68.616 46.061 35.279 20.525

Cdv 47.861 42.393 41.266 30.351

xtr/c (upper surface) 0.014 0.290 0.014 0.465

xtr/c (lower surface) 0.207 0.234 0.358 0.405

NLF-Ori-Re2 HLFC-Ori-Re2 NLF-Opt-Re2 HLFC-Opt-Re2
Cd 108.566 108.191 54.611 50.620

Cdp 60.852 60.600 22.553 22.263

Cdv 47.714 47.591 32.058 28.357

xtr/c (upper surface) 0.004 0.011 0.004 0.286

xtr/c (lower surface) 0.013 0.013 0.010 0.010
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The corresponding amplification factor results are shown in
Figures 30 and 31. It can be summarized that the drag coeffi-
cients of optimization results are also much lower than those
of the original models, whether it is a low Reynolds number
or a high Reynolds number. The NLF cases, i.e., “NLF-Opt-
Re1-Low,” “NLF-Opt-Re2-Low,” “NLF-Opt-Re1-High,” and

“NLF-Opt-Re2-High” fail to maintain a considerable laminar
region on the upper surface.

The drag coefficient reduction of these optimized NLF
cases is owed to the weaker shock wave, which indicates a
lower pressure drag and a longer laminar region on the
lower surface (Figures 30 and 31). The NLF optimization
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Figure 27: The comparison of pressure distribution at Cl = 0:45.
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results are different from the results of the sweep angle of
25°. Even at the lower Reynolds number (Re = 10 × 106),
the transition occurs close to the leading edge due to CF
instabilities (Figure 30(b)), demonstrating that the larger
sweep angle increases the design difficulty of maintaining
laminar flow.

Next, an active flow control technique is required. Com-
pared with the NLF results, the HLFC results (both original
and optimized cases) gain a lower drag coefficient. In the
matter of the HLFC optimization at the lower Reynolds
number and lower lift coefficient (“HLFC-Opt-Re1-Low”),
the transition on the upper surface is successfully delayed
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Figure 29: The comparison of pressure distribution at Cl = 0:53.
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from xtr/c = 0:305 to xtr/c = 0:602, which is up to the pres-
sure recovery region. The drag is reduced by 32.04%, and
both the pressure and fraction drag values are reduced.
The CF instabilities (Figure 30(b)) on the upper surface are
suppressed and do not exceed to the critical value, and the
TS N factor is also not up to the critical value
(Figure 30(a)). As a result, the transition is assumed to be
caused by the laminar separation. On the lower surface,
32% laminar region is gained. Similar to the case of
“HLFC-Opt-Re1-Low,” the coupling of the boundary-layer

suction and shape optimization ensures the considerable
laminar region for “HLFC-Opt-Re2-Low” and “HLFC-Opt-
Re1-High.” Except for the leading edge, the weak negative
pressure gradient distributions (“HLFC-Opt-Re1-Low,”
“HLFC-Opt-Re2-Low,” and “HLFC-Opt-Re1-Highlight”)
are similar to the cases of the 25° sweep angle. A higher
Reynolds number and higher lift coefficient (“HLFC-Opt-
Re2-High”) require a larger negative pressure gradient
aimed at suppressing the TS instabilities (Figure 31(a)).
The lowered pressure peak is trying to lower the CF
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Figure 30: Envelope curves of the CF and TS disturbance amplification curve at Cl = 0:45.
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Figure 31: Envelope curves of the CF and TS disturbance amplification curve at Cl = 0:53.

Table 15: Nose-down pitching moment coefficients of wings at Cl = 0:45.

Case Low limitation Cm Case Low limitation Cm

NLF-Ori-Re1 — −0.115 NLF-Opt-Re1 −0.125 −0.096
HLFC-Ori-Re1 — −0.116 HLFC-Opt-Re1 −0.125 −0.117
NLF-Ori-Re2 — −0.116 NLF-Opt-Re2 −0.125 −0.113
HLFC-Ori-Re2 — −0.116 HLFC-Opt-Re2 −0.125 −0.125
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instabilities close to the leading edge, and the suction con-
trol in the first 20% of the chord could suppress the CF insta-
bilities (Figure 31(b)), which are amplified by the negative
pressure gradient. Finally, we obtain a 28.6% chord laminar
region on the upper surface. However, the transition occurs
at the leading edge on the lower surface. For commercial air-
craft, there is no considerable laminar region on the lower
surface due to the obstacles formed by the high lift system
pylon and nacelle pylon. Thus, the main effort should be
made to delay the transition on the upper surface.

For the “HLFC-Opt-Re2-High,” we only obtain a 28.6%
laminar region even with suction control, which indicates
the difficulty in maintaining the laminar flow when the
Reynolds number, sweep angle, and lift coefficient are
increased.

Note that for “HLFC-Opt-Re2-Low” and “HLFC-Opt-
Re2-High,” it almost reaches the limitation of the nose-
down pitching moment (Tables 15 and 16). Similar to the
results mentioned before (Section 4.2), the larger lift coeffi-
cients mean more effort to delay the transition. The nose-
down pitching moment coefficient (a constraint condition)
is also one of the most important factors that could limit
the further extension of laminar flows. As shown in
Figure 29 and Table 14, to maintain considerable laminar
flow and reduce drag, the pressure peak is reduced a lot to
ensure that the CF instabilities are not amplified sharply
close to the leading edge (“HLFC-Opt-Re2-High”).

As a result, the pitching moment is greatly increased and
up to the limitation. Besides, the larger sweep exacerbates
this phenomenon. We can also summarize that the CF and
TS instabilities on wings with a 35° sweep angle are much
more difficult to control than those on wings with a 25°

sweep angle. At the higher lift coefficient and Reynolds num-
ber, a large suction strength is required, or the limitation of
the nose-down pitching moment needs to be relaxed.

Similar to the sweep angle of 25°, the higher Reynolds
number results in a lower pressure and friction drag. Taking
“NLF-Opt-Re1-Low” and “NLF-Opt-Re2-Low” as examples,
the “NLF-Opt-Re2” has a short laminar region but has a
lower friction drag (Table 9, 33.544 counts and 30.982
counts, respectively). For “HLFC-Opt-Re1-Low” and
“HLFC-Opt-Re2-Low,” the “HLFC-Opt-Re1-Low” has a
larger pressure drag (16.766 counts), and “HLFC-Opt-Re2-
Low” has a stronger pressure recovery (14.189 counts).

5. Conclusions

This paper uses optimization and CFD tools to research
HLFC and NLF wing designs. The influences of sweep

angles, Reynolds number, pressure distributions, and design
lift coefficients on drag reduction and transition delay are
studied by comparing the design results of HLFC and NLF
wings. Two different lift coefficients are chosen to study
and explore the difference between supercritical and tran-
sonic laminar flow wings. The flight Reynolds number of
NLF aircraft is the lower Re = 10 × 106, while the higher Re
= 20 × 106 corresponds to regional aircraft.

We establish the laminar-to-turbulent transition by cou-
pling the RANS solver and the transition prediction module.
The laminar boundary-layer code, linear stability theory,
and eN method make up the transition module. The
established transition prediction method is verified via the
wind tunnel and flight tests. The results indicate that the TS
and CF instability-induced transition with or without
boundary-layer suction can be accurately captured and is
appropriate for the laminar flow configuration optimizations
of infinite-span swept wings.

The optimization system consists of the FFD parameter-
ization, RBF dynamic mesh approach, and DE algorithm.
NLF and HLFC have both been optimized for comparison.
The results show that the HLFC optimization could gain
considerable laminar regions under different conditions,
but the NLF optimization only succeeds under the condition
of a lower Reynolds number and lower sweep angle.

The pressure gradient distribution has a significant effect
on delaying the laminar-turbulent transition. For the NLF
wings, the pressure distributions with the maximum laminar
flow length may have a low negative pressure peak and a
gently adverse pressure gradient close to the leading edge,
aimed at controlling CF instabilities. Then, behind the
adverse pressure gradient, a small favorable pressure gradi-
ent is used to suppress the development of TS instabilities.
This kind of distribution succeeds in controlling both TS
and CF instabilities at the lower Reynolds number and
sweep angle, which would be used for future business jet air-
craft using the laminar flow technique.

For the lower Reynolds number and sweep angle, the
HLFC-optimized Cp is similar to that of the NLF distribu-
tion. For the higher Reynolds number at different condi-
tions, the HLFC-optimized Cp has a much lower pressure
peak, together with the suction control in order to suppress
the CF instabilities close to the leading edge. A negative pres-
sure gradient is then distributed to suppress the TS instabil-
ities. The lower pressure peak increases the pitching moment
up to the limit, especially at the higher Reynolds number and
lift coefficient. Thus, the pitching moment limit is an essen-
tial constraint for laminar flow wing design. The HLFC
could maintain a long laminar region at the lower Reynolds

Table 16: Nose-down pitching moment coefficients of wings at Cl = 0:53.

Case Low limitation Cm Case Low limitation Cm

NLF-Ori-Re1 — −0.119 NLF-Opt-Re1 −0.165 −0.144
HLFC-Ori-Re1 — −0.120 HLFC-Opt-Re1 −0.165 −0.146
NLF-Ori-Re2 — −0.122 NLF-Opt-Re2 −0.165 −0.159
HLFC-Ori-Re2 — −0.122 HLFC-Opt-Re2 −0.165 −0.165
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number without significantly increasing the pitching
moment. Compared with NLF, HLFC could maintain a con-
siderable laminar region on the upper surface in most cases
and is able to obtain a 28.6% chord laminar region for the
condition of commercial aircraft. After comparison, the
larger sweep angle cases are similar to those of the lower
sweep angle to some extent. Still, it is much more challeng-
ing to control both CF and TS instabilities, which are the
main obstacle to applying the laminar flow technique on
commercial aircraft.

In summary, this paper emphasizes the importance of
applying HLFC for the condition of a high Reynolds num-
ber, high sweep angle, and high lift coefficient. The pressure
distribution characteristics at different conditions are
explored. The CFD prediction approach, laminar flow opti-
mization tool, and optimization analysis in this paper would
be beneficial for the drag reduction of business jet aircraft
and short-range and long-range airlines.
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