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The joined-wing configuration has great technical appeal for the development of next-generation SensorCraft. Research based on
the simplified tandem airfoil system can improve understanding of the joined-wing configuration’s aerodynamic characteristics.
We combine the adjoint-based aerodynamic shape optimization and self-organizing map- (SOM-) based data mining
technology to reveal the flow interactions of tandem airfoils and aerodynamic characteristics from the perspective of the entire
aerodynamic design space. The SOM is used to explore the correlation between relative position parameters and aerodynamic
force coefficients of tandem airfoil systems. Results show that the drag coefficient at the defined range of lift coefficients has
obviously positive linear correlation and greatly dependents on the value of decalage. The tandem airfoils with negative
decalage around -2.7° have the smallest drag coefficients. Due to variations in the aerodynamic interaction strength, the drag
coefficient of each airfoil changes from a linear law to a nonlinear law as airfoils approach each other. We then perform single-
point aerodynamic shape optimization based on two sets of relative position parameters with different aerodynamic interaction
strengths, and 1.8% and 1.28% drag reductions are obtained, respectively. Based on optimized airfoils, the SOM is used to
reveal the distribution of drag variation in the design space constructed by relative position parameters. Results illustrate that
the aerodynamic interference strength between the front and rear airfoils significantly affects the drag reduction mechanism,
which results in the different distribution patterns of drag variation in design space.

1. Introduction

The SensorCraft concept was initiated by the Air Force
Research Lab (AFRL) to inspire innovation and cutting-
edge technology. The driving design objective is the integra-
tion of the sensing functionality into a high-altitude long-
endurance (HALE) unmanned aerial vehicle, which has the
capacity of a full 360° radar coverage and more than 30 hr
of endurance [1]. These technical requirements significantly
increase the design difficulty of unmanned aerial vehicles
(UAVs). Therefore, new configurations and novel technol-
ogy are needed. Compared to other potential configurations,
the joined-wing aircraft is considered exceedingly attractive
for SensorCraft [2].

Joined wing presents a structure with two wings having
approximately the same span. Generally, the front wing is
the main one and is located in a lower position than the rear
wing. The two wings are connected at their tips through a
vertical element or direct connection at the outer part of
the main wing. The layout characteristics of the joined wing
allow a full 360° coverage with sensors integrated into the
wing panels. Besides, it owns considerable locations for aero-
dynamic control surfaces on both the front and rear wings.
Another advantage is the potential reduction of wing struc-
ture weight and induced drag concerning wing-body-tail
configuration [2–4]. Due to its larger solar array area, the
joined-wing aircraft is a valid alternative for solar-powered
HALE vehicles [5–7]. Italian Aerospace Research Program
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(CIRA) has studied a joined-wing concept of a solar-
powered HALE UAV with an 80m span, which can fly 20
days at a cruise velocity of 33.3m/s [8].

The layout characteristic of joined wing presents a unique
flow physics phenomenon. Compared to the traditional
monoplane configuration, the joined wing has apparent and
complex aerodynamic coupling interference between the front
and rear wings. The flow around each wing is significantly
affected by the other wing. The presence of each wing causes
the other wing to be immersed in a distorted flow. Thus, the
design of joined wings must consider the induced flow. The
joined region plays the main role in those aerodynamic cou-
pling phenomena. However, away from the joined region, this
aerodynamic coupling effect degrades gradually as the spacing
between the front and rear wings increases. The system can be
simplified as a two-dimensional tandem airfoil with similar
coupling effects. Except for the shape of airfoils, the aerody-
namic interference heavily depends on the relative position.
Smith [9] referred to the aerodynamic coupling in terms of five
effects, including the slat effect, circulation effect, dumping
effect, off-the-surface pressure recovery, and fresh boundary-
layer effect.In general, the tandem airfoils [10] are used to
research the flow mechanism and reveal the influence law of
aerodynamic interference. Three main relative position
parameters, namely, stagger, gap, and decalage (details of
those parameters will be prescribed in Section 4.2, see in
Figure 1), affect the aerodynamic performance of the tandem
airfoil with the same airfoils and equal chords. The stagger
defines the longitudinal separation of the wings. The gap
describes the vertical distance between the wings. Both stagger
and gap are nondimensionalized by the chord of airfoils. The
decalage is the relative angle between the two airfoils.

Rokhsaz [11] studied the aerodynamic performance of
tandem airfoils based on the NACA 632-215 airfoil. The
result indicated that the most favorable configuration has a
stagger of 1.0, a gap of 0.26, and a decalage of -6°. Rhodes
and Selberg [12] carried out detailed parametric research
to determine the aerodynamic influence relationship of stag-
ger, gap, and decalage. They found that the positive-stagger
and negative-decalage configurations performed well. Wolk-
ovitch [1] discussed the effect of airfoil camber and found
that a small airfoil camber of the rear wing benefits drag
reduction. LeDoux et al. [13] have done similar work, and
the optimization supported the conclusions of Wolkovitch.
Moschetta and Thipyopas [14] performed wind tunnel tests
to investigate the aerodynamic performance of tandem
wings at a low Reynolds number. They revealed that the lift
coefficient was strongly affected by the gap but not so much
by the stagger. Jones et al. [15] also performed wind tunnel
tests and found optimal gaps for improving the lift coeffi-
cient at a fixed angle of attack.

It is quite clear that the aerodynamic performance of
tandem airfoils is dependent on the shape of the airfoils
and their relative position. Many studies have been imple-
mented to discuss aerodynamic interference and draw valu-
able conclusions. However, most of these works focus on
parameter study within a limited range of variation or shape
optimization with fixed relative positions. A comprehensive
consideration is required for a complex engineering system

in aircraft design. For joined-wing aircraft, the difference in
aircraft size and performance requirement results in signifi-
cant variations in layout parameters. Until now, deep
insights into the design space characteristics of tandem air-
foils remain unexplored. The coupling influence of relative
positions and the airfoil shape in detail is also significant
and required. In conclusion, there remain many works in
understanding the flow physics and the effect of flow inter-
ference of tandem airfoils from the perspective of the entire
aerodynamic design space.

A full understanding of an optimization problem’s
design space is the key to obtaining the best compromise
design for all objective functions. The emergence of data
mining [16] and deep learning [17] provides promising
technologies to help explore the whole design space [18],
guide the optimization, and understand the optimization
result. Data mining is the process of analyzing data and
transforming it into useful information [19–21]. Due to the
complexity of optimization problems, it is difficult for
designers to understand the inherent trade-offs and relations
between design variables and objectives. Data mining can
provide insight into the design of complex systems.

Researchers have introduced data mining into aerody-
namic optimization design. Chiba and Obayashi [22] used
three data mining techniques to successfully analyze the
result of aerodynamic design optimization of a two-stage-
to-orbit reusable launch vehicle flyback-booster wing.
Oyama et al. [23] used the data mining method based on
proper orthogonal decomposition to extract design informa-
tion from the Pareto optimal solutions of aerodynamic
shape optimization about airfoils. For the optimization
design of a high-pressure ratio centrifugal impeller, Guo
et al. [24] utilized a self-organizing map (SOM-) based data
mining on the Pareto optimal solutions to analyze the inter-
actions among objective functions and significant design
variables. By now, research about the application of data
mining in aerodynamic design optimization is still limited.
Besides, most of the research focuses on the analysis of the
Pareto optimal solutions [25], not understanding the whole
design space.

According to the above content, this paper contributes to
understanding the tandem airfoil aerodynamic interferences
and design space characteristics, aiming to improve the per-
formance of low-speed joined-wing UAVs. A high-fidelity
CFD-based aerodynamic optimization framework with the
adjoint-based approach [26] is used for tandem airfoil
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Figure 1: The definition of tandem airfoil relative position
parameters.
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optimizations, and the SOM-based [27] data mining method
is utilized to explore the whole aerodynamic design space
and reveal the influence law of aerodynamic interference.

The paper is organized as follows. Firstly, a brief overview
of the adopted CFD solver and adjoint-based optimization
frame is presented in Section 2. The basic theory of SOM is
subsequently introduced in Section 3. Then, optimization
design problems are defined, and SOM-based design space
exploration with relative position parameters as design vari-
ables is discussed to understand correlations among design
variables and aerodynamic performance in the whole design
space (Section 4). After this, aerodynamic shape optimizations
with the fixed relative positions are discussed to reveal the
effect of airfoil shapes on aerodynamic forces in the whole
design space (Section 5). Finally, we summarize our work.

2. CFD Solution and
Optimization Methodology

2.1. Flow Solution and Verification. The CFD solver used in
this work is the open-source solver (named ADflow) [28,
29]. ADflow is a second-order finite-volume CFD solver that
solves compressible flows and can handle structured multi-
block and overset meshes [30]. ADflow has several turbu-
lence models. In this paper, we use the Spalart-Allmaras
(SA) model [31].

We validate the computation solver against experimental
data of the low-speed airfoil E387 [32] at the Reynolds num-
ber of Re = 3:5 × 105. In the experiment, a zigzag boundary
layer trip was added on the top and bottom surfaces near
the leading edge to ensure the flow was fully turbulent. We
use the open-source pyhyp (https://github.com/mdolab/
pyhyp) to generate a simulation mesh [33]. The cell number
of the calculation mesh is 7:0 × 104, as shown in Figure 2.
Figure 3 compares the simulation results and experimental
data. Lift coefficients are well-matched in the linear region,
although the lift curve slope of the simulation is slightly
larger than the experimental data. The calculated drag polar
curve (Cd is the drag coefficient) also shows an excellent
agreement with the experimental data, especially in the
region of the lift coefficient Cl ∈ ½0:4, 1:2�, as shown in
Figure 3(b). Simulation results indicate that ADflow is reli-
able and robust in low-speed airfoil aerodynamic analysis
and can be used for optimization design research.

2.2. Adjoint-Based Optimization Approach. For aerodynamic
optimizations of the tandem airfoil system, we use the
MACH-Aero framework based on a discrete adjoint imple-
mentation [34–37], as shown in Figure 4. MACH framework
embeds different modules, including ADflow (flow) solver,
free form deformation (FFD) geometry parameterization,
and volume mesh deformation (IDW mesh wrapping) mod-
ule in the optimization loop. This framework provides an
efficient, accurate gradient computation and gradient-based
optimization [28].

In this work, the tandem airfoil system is parameterized
using FFD volumes with pyGeo (https://github.com/mdolab/
pygeo) [38, 39]. FFD control points move in the vertical direc-
tion to change airfoil shapes. Once airfoil shapes are deformed,

the volume mesh used for the CFD solver is updated using
IDwarp (https://github.com/mdolab/idwarp), which imple-
ments a mesh-warping algorithm [40, 41], with automatic dif-
ferentiation in forward and reverse mode. Finally, in the
MACH framework, the functions of interest and their gradi-
ents are provided to the gradient-based optimizer (https://
github.com/mdolab/pyoptsparse) [42].

3. Data Mining Based on SOM

In this paper, the data mining method based on SOM is
used. SOMs are neural networks that use unsupervised
learning to transform or map multidimensional data to a
regular low-dimensional grid with topological ordering
[27]. The characteristics of the SOM algorithm make it
mostly used for nonlinear projection of input data in high
dimensional space onto two-dimensional space, extracting
knowledge implicit in data, such as attributes and features.

For a data set consisting by n-dimensional vectors, every
neural in SOM networks is represented by a n-dimensional
weight vector w = ½w1,⋯,wn�, where n is equal to the dimen-
sion of the input vectors. Each neural connects to adjacent
neurons by a neighborhood relation, which dictates the map’s
topology. The SOM is trained iteratively. In each training step,
one vector x from the input data set is chosen randomly, and
the distances between it and all the weight vectors of the SOM
are computed using the distance measure. The neuron, whose
weight vector is closest to the vector x, is called the best-
matching unit (BMU), denoted by wc.

x −wck k =minj x −wj

�
�

�
�

� �
, ð1Þ

where k⋅k is the distance measure, typically Euclidean
distance.

After finding the BMU, the weight vectors of the SOM
are updated so that the BMU and its neighborhood move
closer to the input vector x in the input space. The weight
vectors update rule is

wi k + 1ð Þ =wi kð Þ + α kð Þhci kð Þ x kð Þ −wi kð Þ½ �, ð2Þ

where k denotes time, α is the learning rate, and hciðkÞ is
the neighborhood kernel around BMU. The neighborhood
kernel is a nonincreasing function of time and neural dis-
tance from the BMU, which defines the region of influence
that the input vector has on the SOM. The procedure of
updating weight vectors stretches the BMU and its topolog-
ical neighbors towards the input data set. Finally, the neu-
rons on the grid become ordered, indicating that the
neighboring neurons have similar weight vectors.

Figure 2: The calculation mesh of E387(e) airfoil.
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In this paper, we use the free software SOM Toolbox‖,
which is an implementation of SOM and its visualization.
In the SOM Toolbox, the topology of SOM can be shown
in two ways: local lattice structure and global map shape.
Among all local lattice structures, the hexagonal lattice
structure is one of the most commonly used, as shown in
Figure 5. This figure is the visualization of weights that con-
nect each input to each neuron. Similar connection patterns
of inputs illustrate the high correlation among these inputs.
In the global map, the neurons are represented by points,
and the adjacent neurons are connected by straight lines.
During the SOM training process, the global map is contin-
uously stretched to match the space of the input data set, as
shown in Figure 6. The neurons with close color have similar
weight vectors. In the global map, all points are colored into
several different groups. Each group represents one neuron
cluster obtained by SOM.

4. Design Space Exploration Using Data Mining

In this section, we utilize data mining in combination with
an optimization method to explore the entire design space,

with the relative position serving as the variable parameter.
Firstly, we conduct a mesh convergence study using the over-
set mesh. Next, we generate a sample with a capacity of six
hundred and discuss the characteristics and correlations
within the design space. It is important to note that the shape
of the airfoil remains constant during this stage. Using the
research conclusions on the design space characteristics, we
select two representative sets of relative position parameters
and optimize the airfoil shape using the adjoint-based optimi-
zation method.With the optimized airfoil, we again use SOM-
based data mining to uncover the design space characteristics.
We then compare our findings with different airfoils to exam-
ine the effects of airfoil shape on both the design space charac-
teristics and aerodynamic performance.

4.1. Mesh Convergence Study. To ensure sufficient mesh res-
olution for the ADflow solver, we computed the aerody-
namic forces of a tandem airfoil system using three overset
mesh levels (L0, L1, and L2). Among all three meshes, the
L0 mesh is the finest one. The first boundary layer cell height
is set to 1 × 10−6 m, which makes the value of y + below 1.
This results in a total of2:06 × 105 cells. Figure 7 shows the
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Figure 3: Aerodynamic calculation results for the E387 airfoil with experimental data of low speed at Re = 3:5 × 105.
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Figure 4: The framework of the adjoint-based aerodynamic optimization method.
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topology of overset mesh and the grid distribution in the
boundary layer. We coarsen L1 mesh from mesh L0 by
removing every second cell in all three directions. Similarly,
the mesh L2 is obtained by coarsening mesh L1.

Figure 8 shows the Cd of three-level meshes and the
Richardson extrapolation value. The simulation condition
is V∞ = 38m/s (free-stream velocity at infinity), Cl = 0:8,
and Re = 0:35 × 106. It is clear that the mesh L2 is very

0.0194

0.0177

0.0161

(a) Cl = 0:8

0.0165

0.0156

0.0147

(b) Cl = 0:6
0.0298

0.0242

0.0185

(c) Cl = 1:0

Figure 5: SOM map of Cd at three different Cl.
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coarse and yields a very different result. The Cd of mesh L0
and L1 is very close to the Richardson extrapolation value
[43]. The relative error of mesh L0 and L1 relative to the
Richardson extrapolation value is 2.3% and 4.2%, respec-
tively, which are acceptable for design optimization research.
In this work, we select the finest mesh L0.

4.2. Design Space Characteristics with Relative Positions as
Design Parameters

4.2.1. Sample Generation. For tandem airfoils, relative posi-
tion parameters directly affecting the aerodynamic perfor-
mance are stagger, gap, and decalage. Those three
parameters are defined in Figure 1. The stagger S describes
the horizontal separation of the two airfoils, which is mea-
sured between the leading edges of the airfoils, and its value
is always positive. The gap G defines the vertical distance
between airfoils, which is also measured between the leading
edges of the airfoils. The gap is positive when the front airfoil
is above the rear airfoil. Both the stagger and gap are dimen-
sionless by the chord of the airfoil. In this paper, the chord of
both airfoils is equal. Decalage D is the relative angle
between the two airfoils, and the value is positive when the
front airfoil is at a higher angle of incidence. The θ1 and θ2
are the incidence angle of the front airfoil and rear airfoil,
respectively, as shown in Figure 1, all of which rotate around
the corresponding leading edge.

To generate a sample with ADflow, we change the front
airfoil position in longitudinal and horizontal directions
with the rear airfoil position fixed. As for the decalage, we
change the angle of incidence of the two airfoils separately
to vary the decalage. Table 1 shows the parameter space
and the corresponding variation range of relative position
parameters.

The simulation conditions and different lift coefficients
are listed in Table 2. We choose three typical lift coefficients

(0.6, 0.8, and 1.0) (The Cl target is reached by changing the
angle of attack while keeping decalage constant.) of low-
speed HALE UAVs. The cruise velocity is 38m/s. We simu-
late the aerodynamic performance of tandem airfoil systems
and extract the aerodynamic force coefficients of both the
front and rear airfoils.

The uniform Latin hypercube method [44] is used to
generate a sample with a capacity of six hundred. Among
these sample points, the simulation of 8 sample points failed
because of the geometrical position overlap of the two air-
foils. Those invalid points are removed from the sample.
For the optimization problem with four parameters, the
valid sample capacity of 592 is large enough to cover the
whole defined design space.

4.2.2. Correlation among Drag Coefficients at Different Lift
Coefficients. Figure 5 shows the neuron clusters and color
trends obtained by the SOM. The drag coefficients of the
whole tandem airfoils system at three different lift coeffi-
cients show similar neuron clusters and color trends.
Although the lift coefficients are different, drag coefficients
have positive correlations. The region with low drag coeffi-
cients is located at the right-bottom of the maps.

Figure 6 shows scatter plots and global SOM maps,
including all pairwise plots of total drag coefficients in a
matrix format. The upper-right part of the matrix is the scat-
ter plot, and the lower-left part is the global SOM map. In
the figure, Cd1, Cd2, and Cd3 correspond to the conditions
of Cl = 0:8, Cl = 0:6, and Cl = 1:0, respectively. The result
indicates a strong positive correlation among the total drag
coefficients at the three selected Cl. Thus, the drag coeffi-
cients at three different lift coefficients are not in an obvious
trade-off relation. The correlation clearly shows linear, espe-
cially in the low drag region.

4.2.3. Correlation between Relative Positions and Drag
Coefficients. Correlations among drag coefficients at different
lift coefficients indicate that from the perspective of explor-
ing the low drag design space, the design space characteris-
tics of any of the three simulation conditions can reflect
the overall design trend in the given lift coefficients range.
In this section, we investigate the design space characteristics
of drag coefficients at Cl = 0:8 to discuss the correlation
between relative position parameters and drag coefficients.

Figure 9 shows scatter plots and global SOM maps at
Cl = 0:8. This figure shows the correlation between drag
coefficients and relative position parameters, as well as the

Figure 7: The overset mesh of a tandem airfoil system.
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Figure 8: Richardson extrapolation about Cd at Cl = 0:8 and V∞
= 38m/s for the grid convergence.

Table 1: Sample space range definition.

Range Stagger Gap Decalage (°) θ1 (
°) θ2 (

°)

Lower limit 0.0 -3.0 -6 -3 -3

Upper limit 6.0 2.0 6 3 3

Table 2: Simulation conditions for sample generation.

Parameters V∞ (m/s) Re (×106) Cl1 Cl2 Cl3
Value 38 0.35 0.8 0.6 1.0
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relative position parameters. Besides, the SOM method
divided all points into several clusters and colored different
colors, which helps to understand the distribution of sample
points in the design space. The result in Figure 9 shows that
the low drag configuration concentrates in the region with
negative decalage (shown in Figures 9(i) and 9(l)). Com-
pared to decalage, the effect of the other two parameters
(stagger and gap) on the total drag coefficient seems not
apparent (shown in Figures 9(c) and 9(f)). The decalage
and the total drag coefficient maintain a significant quadratic
nonlinear relationship, as shown by the scatter plot and
global SOM map in Figures 9(i) and 9(l). No matter what
the values of stagger and gap are, the configuration with
the lowest drag coefficients locates in the range of decalage
around -2.5° (Figures 9(i) and 9(l)). With negative decalages,
a small stagger, and a positive gap benefit to reduce the drag
of the whole tandem airfoil system, as shown in Figures 9(c)
and 9(f). The configuration with the lowest drag coefficient
at Cl = 0:8 in the sample is a stagger of 0.924, a gap of
0.238, and a decalage of -2.69°.

4.2.4. Correlation between Relative Positions and Drag
Coefficients of Each Airfoil of Tandem Airfoils. In this sec-
tion, we study the relationship between relative positions
and drag coefficients of each part of the tandem airfoils sys-
tem to explore the design space characteristics and reveal the
effect of flow interactions in-depth. Like the previous sec-
tion, the research is based on the aerodynamic performance
at Cl = 0:8.

Interestingly, the drag coefficient of the front airfoil and
rear airfoil has similar neuron clusters and negative color
trends, as shown in Figure 10. Figure 11 shows the scatter

plot and global SOM map of relative parameters and the
front drag coefficient (CdFW1) at Cl = 0:8. Figure 12 illus-
trates the scatter and global SOM plot of aerodynamic per-
formance, including that of the front airfoil (ClFW1 and
CdFW1) and rear airfoil (ClRW1 and CdRW1) at Cl = 0:8. The
phenomenon shown in Figure 10 illustrates that based on
the same airfoil, reducing the drag of one airfoil by changing
relative position parameters causes the drag increase of the
other airfoil simultaneously. The corresponding scatter plots
and global SOM maps in Figures 12(e) and 12(h) clearly
illustrate the strong approximate negative linear correlation
between the drag of the front and rear airfoils. The rear air-
foil drag coefficient is always positive. However, due to aero-
dynamic interference, the front airfoil drag coefficient is
negative in a specific relative position parameter range
(Figure 12(a)), which is the result of the circulation effect
from the rear airfoil. This phenomenon is similar to the mul-
tielement airfoils, as described in the reference [9], and the
details will be described in the next subsection.

The scatter plot and global SOM map of front airfoil
drag coefficients CdFW and parameter stagger S in
Figures 11(c) and 11(j) show a bifurcation pattern in the
sample space. As the stagger decreases from 6 to about 2,
the drag coefficient of the front airfoil reduces in an approx-
imately linear law. However, as the stagger further decreases,
the variation of the front airfoil drag coefficients shows a
strong nonlinearity with respect to the stagger. The scatter
plot and global SOM map appear bifurcation, forming two
branches with opposite trends. As the stagger decreases,
the total variation trend of the front airfoil drag coefficient
on the upper branch is drag increment, but on the lower
branch, the trend is drag reduction. All sample points with
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negative CdFW are on the lower branch. Because of the
approximate linear negative correlation between the drag
of the front and rear airfoil, the scatter plot and global
SOM map of the rear airfoil drag coefficient and parameter
stagger would show a similar bifurcation pattern with oppo-
site trends.

Aerodynamic interference mechanism changes are the
reason for the appearance of the bifurcation pattern. When
the value of the stagger is larger than 2.0, the aerodynamic
interference between the front and rear airfoil is small
because of a long horizontal distance. As a result, no matter
what the value of the parameter gap is, the drag variation of
each airfoil is limited. However, when the stagger is lower
than 2.0, the effect of the other two parameters is gradually

magnified, as shown in Figures 11(f), 11(i), 11(k), and
11(l) (the rose-red color).

Most sample points on the lower branch with negative
CdFW1 concentrated on the region of parameter stagger S
lower than 2.0 and parameter gap Gnear 0.0. These sample
points are colored by rose red, as shown in Figures 11(c)
and 11(j). This region has two main features. Firstly, the
two airfoils are close in spatial position, which causes a
strong aerodynamic interference. Due to close coupling,
induced upwash airflow from the rear airfoil to the front air-
foil is more prominent in such a region. As for the front air-
foil, the existence of upwash airflow increases the pressure
peak on the upper surface, which causes the lift coefficient
to increase and the pressure drag to decrease. Secondly, the
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Figure 10: SOM map of Cd of front and rear airfoils at Cl = 0:8.
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two airfoils have almost the same angle of incidence, or the
rear airfoil has a higher angle of incidence. This feature
ensures that the lift increase of the front airfoil is mainly
due to the favorable flow interference between the two air-
foils. Thus, although the lift coefficient of the front airfoil
is increased, the drag coefficient is still significantly reduced.
Due to the negative linear correlation, the drag coefficient of
the rear airfoil has an opposite variation law compared to the
front airfoil.

The sample points with large drag coefficients Cd1 are
colored by dark purple and blue, as shown in Figures 12(c)
and 12(j). In Figures 9(i) and 12(c), we can find that among
these sample points, the lift coefficients of the front airfoil
ClFW1 are significantly higher than that of the rear airfoil
ClRW (ClFW is almost larger than 0.6), and the decalage is
larger than 2.0° (Figure 9(i)). For the tandem airfoil, increas-
ing the decalage and utilizing aerodynamic interference are
two main ways to increase the lift coefficient of the front air-
foil. With the definition of the decalage, a large decalage
means that the angle of incidence of the front airfoil is much
larger than that of the rear airfoil, which is one of the main
factors increasing ClFW. The increment in the lift coefficient
caused by a large decalage leads to an increase in the drag
coefficient Cd1. However, if the main reason causing the
increment of ClFW is aerodynamic interference between the
front and rear airfoils, not a large decalage, the result is dif-
ferent. For the sample point with the lowest drag coefficient,
the value of ClFW is more than twice the value of ClRW
(Figure 12(c)). The value of decalage corresponding to the
lowest drag coefficient is -2.69° (Figure 9(i)).

4.3. Aerodynamic Shape Optimization and Discussion. In this
section, we introduce the airfoil shape optimization of the
tandem airfoil with two sets of relative position parameters
and discuss airfoil shape effects on design space characteris-
tics and aerodynamic performance.
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Figure 12: The scatter and global SOM plot of aerodynamic characteristics at Cl = 0:8.

Airfoil
FFD control points

Figure 13: FFD boxes for tandem airfoils.

Table 3: Tandem airfoil relative positions of the two aerodynamic
shape optimization cases.

Cases Stagger Gap Decalage (°) θ1 (
°) θ2 (

°)

Case1 0.924 0.238 -2.694 -1.726 0.968

Case2 5.174 1.259 -1.217 0.494 1.711

9International Journal of Aerospace Engineering



4.3.1. Design Optimization Problem. We select the configura-
tion used in Section 4.2 as the initial geometry. The two FFD
boxes are used to parameterize the tandem airfoil, as shown
in Figure 13. Each FFD box has 14 control points chordwise
and two control points in the normal direction.We fix the first
and last row of control points chordwise to eliminate twist
deformations caused by the movement of FFD control points.
Thus, the optimization design problem has 48 geometrical
design variables. These are control points that define the shape
design variables (x). The thickness t constraints on both air-
foils ensure enough volume and structure integrity. Besides,
nose-down pitching moment (CMy) coefficients are consid-
ered. The optimization problem can be expressed as

minimizeCd

With respect to X

subject to t ≥ tinit,
CMy
�
�

�
� ≤ CMyinit,

ð3Þ

where tinit is the initial thickness, and CMyinit is the initial
nose-down pitching moment (longitudinal moment).The
main object of this paper is to research the tandem airfoil aero-
dynamic interferences with low drag coefficients, exploring
design space characteristics. Exploring the effects of the airfoil
shape on the aerodynamic drag coefficient and space charac-
teristics is necessary. We selected two different sets of tandem
airfoil relative positions to perform aerodynamic shape opti-
mization. The shape optimization Case1 uses the relative posi-
tions of the tandem airfoil system with the lowest drag
coefficient in Section 4.2. For Case1, the stagger is 0.924, show-
ing that the front and rear airfoils have close-coupled interfer-
ence. To consider the effect of far-coupled interference on
shape design, we performed the shape optimization Case2
with a stagger around 5.174. The exact value of relative posi-
tions is determined by choosing parameters of the sample
point with a low drag coefficient in the selected small region

of the sample. Table 3 shows the value of stagger, gap, and
decalage of the two aerodynamic shape optimization cases.

Since drag coefficients among Cl = 0:6, 0.8, and 1.0 have
strong positive correlations, for simplicity, a single-point
optimization at Cl = 0:8 is used other than a multipoint
design problem to explore the effect of airfoil shape on
design space characteristics.

4.3.2. Optimization Results. Figure 14 illustrates the conver-
gence history of both optimization cases. In this figure, the
merit function is the combination of scaled objective func-
tion value Cd and constraint feasibility. More specifically,
the merit function comprises the augmented Lagrangian,
coupled with a quadratic penalty term for any constraint
violations. Consequently, when all constraints are fulfilled
towards the end of the optimization process, the merit
function value becomes equivalent to the scaled objective
value. Due to the small order of magnitude of the drag
coefficient, the scaled coefficient of Cd component in the
merit function is 10000. In detail, the merit function is
defined as the augmented Lagrangian plus a quadratic
penalty term for constraint violations and is used during
line search to find an appropriate step length. When all
constraints are satisfied towards the end of the optimiza-
tion process, the merit function value is equal to the scaled
objective function value (Cd).

Table 4 shows the improvement obtained by the optimi-
zation. Case1 and Case2 achieved about 1.8% and 1.28%
drag reduction, respectively. In Table 4, Cdp is the pressure
drag, and

Cdf is the friction drag. The drag reduction mainly ben-
efits from the decrease of pressure drag. From the aerody-
namic force coefficients of each airfoil in a tandem airfoil
system, we can study the change in aerodynamic character-
istics more in-depth. After optimization, the drag of the
front airfoil decreases, but the drag of the rear airfoil
increases for Case1. However, the drag reduction of the front
airfoil is larger than the drag increment of the rear airfoil.
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Figure 14: Convergence history for Case1 and Case2.
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For Case2, the results are different, and the drag coefficients
of the front and rear airfoil decrease.

From the comparison of airfoils in Case1 (shown in
Figure 15), we can conclude that the camber increases and
the leading edge radius decrease for the front and rear air-
foils. The change in airfoils results in a decrease in the suc-
tion peaks of the pressure coefficient, and the pressure load
at the rear part of the airfoils increases. The airfoil and pres-
sure coefficient of Case2 has a similar but smaller change
compared with Case1 (shown in Figure 16).

Figures 17 and 18 show Cp (pressure coefficient) contour
plots of Case1 and Case2. For Case1, although the angle of
attack of the front airfoil (-1.726°) is much smaller than
that of the rear airfoil, the effective angle of attack is large.

This phenomenon is induced by the strong aerodynamic
interference between the front and rear airfoil. The position
of stagnation points can reflect it (Figure 17). For Case2,
because of a relatively weak aerodynamic interference, the
location of the stagnation point of the front and rear airfoil
has no significant difference.

Figures 19 and 20 illustrate the pressure drag coefficient
Ce
dp at each surface mesh cell of airfoils, which directly reflect

the pressure drag contribution of each part. For Case1, the
pressure drag coefficient Ce

dp on the lower surface of both
front and rear optimized airfoils decreases to some extent.
On the upper surface, because of the decrease in pressure
peak, Ce

dp increases near the leading edge. Once leaving the
leading edge area, Ce

dp decreases significantly. For the rear
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Figure 15: Airfoils and pressure coefficient distribution optimization results of Case1. (FW: front airfoil; RW: rear airfoil.)

Table 4: Comparisons of optimization results.

Case Initial Case1 optimized Delta Initial Case2 optimized Delta

Tandem airfoil

Cd 0.0161 0.0158 -1.80% 0.0164 0.0162 -1.28%

Cdp 0.0049 0.0045 -7.82% 0.0052 0.0049 -6.30%

Cdf 0.0112 0.0114 0.98% 0.0112 0.0113 0.99%

Front airfoil

Cl 0.545 0.529 -2.86% 0.406 0.413 1.60%

Cd -0.0117 -0.0129 -10.26% 0.0039 0.0038 -2.56%

Cdp -0.0175 -0.0189 -7.71% -0.0017 -0.0019 -9.88%

Cdf 0.0058 0.0059 2.24% 0.0056 0.0057 0.89%

Rear airfoil

Cl 0.255 0.271 6.24% 0.394 0.388 -1.60%

Cd 0.0278 0.0287 3.24% 0.0125 0.0124 -0.80%

Cdp 0.0224 0.0233 4.34% 0.0070 0.0068 -2.30%

Cdf 0.0054 0.0054 -0.37% 0.0055 0.0056 1.08%
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Figure 16: Airfoils and pressure coefficient distribution optimization results of Case2. (FW: front airfoil; RW: rear airfoil.)
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airfoil, Ce
dp increases near the trailing edge. The C

e
dp variation

of optimized airfoils of Case2 has a similar trend as the front
airfoil of Case1, as shown in Figure 20.

4.3.3. Design Space Variation Analysis. Based on the same
sample space generated in Section 4.2, we recalculate the
aerodynamic performance of each sample point and obtain
two updated sample sets. The updated two sample sets are
from the optimized tandem airfoils of Case1 and Case2.
We then use the SOM method to deal with the two sample
sets to reveal the effects of the airfoil shape on aerodynamic
performance and design space characteristics.

Figures 21 and 22 are the scatter and global SOM maps
of Case1. Figure 21 shows the relationship among relative
position parameters and the change of Cd1 after optimiza-
tion (represented by ΔCd1). Figures 21(c), 21(f), and 21(i)
clearly illustrate that the drag coefficient (Cd1) of most sam-
ple points is reduced (a negative value). Sample points col-

ored yellow and light brown corresponds to the points
with the largest drag reduction. In contrast, the sample
points colored blue and dark purple have the smallest drag
reduction, and the Cd1 of some sample points even increases
significantly.Figures 21(a), 21(b), and 21(e) show the distri-
bution of sample points in two-dimensional planes in the
design space. In Figures 21(c), 21(f), and 21(i), we can find
that the drag reduction value after optimization mainly
depends on parameters decalage D. Sample points with
positive decalage have more drag reduction than points
with negative decalage. Among sample points with positive
decalage, sample points distribute in the range of S ∈ ½0, 2:5�
and G ∈ ½0, 2� (yellow and light brown color) have the larg-
est drag reduction. The parameter space constructed by S
∈ ½0, 2:5� and G ∈ ½0, 2� has a similar aerodynamic close-
coupled interference as the optimized result in Case1,
which is the main reason that the sample points located
in such parameter space have a large drag reduction.
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Figure 20: Comparisons for the Cdp distribution of Case2. (FW: front airfoil; RW: rear airfoil.)
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Figure 22 shows the relationship among relative position
parameters and the change ofCdFW1 after optimization.
The distribution of CdFW1 in the sample space is very sim-
ilar with the distribution of Cd1.

Figures 23 and 24 are the scatter and global SOM maps
based on optimal airfoils for Case2. Figure 23 illustrates the
relationship among relative position parameters and the
change of Cd1 after optimization (represented by ΔCd1). In

0 0.5

0.5

0

1

1 0 2 4 6

5

0

–5
0 2 4 6

10

0

–10
0 2 4 6

1
⨯10–3

–3

–1

0 0.5

0.5

1

0
10 2 4 6

–5

0

5 10

0

–10
–3 –1 1 2

1

–3

–1

⨯10–3

–3 –1 1 2

0 2 4 6

10

0

–10

0.5

0

110

0

–10
–3 –1 1 2 0 0.5 1

⨯10–3

–8 –4 0 4 8

1

–3

–1

0 2 4 6

⨯10–3

1

–3
–1

1
⨯10–3

–3
–1

–3 –1 1 2

0.5

0

1

–8 –4 0 4 8

⨯10–3

0 0.5 1

1

–3

–1

(a) Scatter plot stagger vs. gap (b) Scatter plot stagger vs. decalage

(e) Scatter plot gap vs. decalage(d) SOM map stagger vs. gap

(g) SOM map stagger vs. decalage (h) SOM map gap vs. decalage

(c) Scatter plot stagger vs. 𝛥CdFW1

(f) Scatter plot gap vs. 𝛥CdFW1

(i) Scatter plot decalage vs. 𝛥CdFW1

(l) SOM map decalage vs. 𝛥CdFW1(k) SOM map gap vs. 𝛥CdFW1(j) SOM map stagger vs. 𝛥CdFW1
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Figures 23(c), 23(f), and 23(i), we can see that most sample
points obtain drag reduction, which has the same trend as
Case1. However, the distribution of drag reduction is not obvi-

ously dependent on the decalage D. In other words, the drag
reduction range of sample points with different decalages does
not vary much. This phenomenon is different from the
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Figure 23: The scatter plot and global SOM map of relative position parameters and optimized Cd1 of Case2.
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situation of Case1. Figures 23(c) and 23(f) also show the sim-
ilar phenomenon. The main reason that causes such a phe-
nomenon is the difference in aerodynamic interference
strength between the front airfoil and the rear airfoil. For
Case1, the tandem airfoil has a strong aerodynamic coupling
interference. However, because of a larger stagger, the aerody-
namic coupling interference of Case2 is weak. For Case2, the
decrease of Cd1 is mainly due to the reduction of airfoil profile
drag. As a result, the airfoil, pressure distribution, and lift coef-
ficient of both the front airfoil and rear airfoil are similar after
optimization, as shown in Figure 16 and Table 4.

Figure 24 shows the relationship among relative position
parameters and the change of CdFW1after optimization. We
can see that the distribution of ΔCdFW1 in the sample space
is similar to the distribution of ΔCd1. The ΔCdFW1 is also
independent on the decalage D. By comparing ΔCdFW1 of
Case1 (Figure 22) and Case2 (Figure 24) in the whole sample
space, it can be seen that most sample points of Case1 have a
reduction in CdFW1. However, there is a region where the
CdFW1 increases sharply for Case2. In Figures 24(c), 24(f),
and 24(i), CdFW1 of the sample points colored by brown
and light brown increase significantly. These sample points
concentrate in the region of S ∈ ½0, 2:5� and G ∈ ½−1:0, 1:0�,
where the aerodynamic interference between the front and
rear airfoils is significant. The difference in aerodynamic
coupling interference is the main reason that causes a signif-
icant increase of CdFW1 in such a region.

5. Conclusions

This paper presents the adjoint-based aerodynamic optimi-
zation and data mining-based analysis for the tandem airfoil.
The design space influenced by relative parameters and drag
reduction mechanisms of the tandem airfoil system is
explored.

Date mining technology based on the SOM method has
been used to explore the design space and reveal the correla-
tion between relative position parameters and aerodynamic
force coefficients of the tandem airfoil systems. Results show
that the drag coefficients at three selected lift coefficients
have obvious positive linear correlations. The drag coeffi-
cient of the front airfoil CdFW and the rear airfoilCdRW has
a strong linear negative correlation. In the design space con-
structed by relative position parameters, the drag of the
whole tandem airfoil system significantly depends on the
decalage D in an approximate quadratic relationship. Tan-
dem airfoils with negative decalage around -2.5° have the
smallest drag coefficient.

Different from the total drag Cd , the stagger S and gap G
have an important impact on the drag coefficients of both
the front airfoil (CdFW) and the rear airfoil(CdRW). As front
and rear airfoils approach gradually, CdFW and CdRW change
from an approximate linear variation to a nonlinear varia-
tion. In the range of S ∈ ½0, 2:5� and G ∈ ½−1:0, 1:0�, the distri-
bution of CdFW and CdRW in design space splits into two
branches with the opposite trend. The variation of aerody-
namic interferences between the front and rear airfoils is
the main reason causing such phenomena.

We then performed two aerodynamic shape optimiza-
tions to study the optimal airfoil shape under different aero-
dynamic interferences between the front and rear airfoils.
About 1.8% and 1.28% total drag reduction were obtained
for Case1 and Case2, respectively. Because of a relatively
strong aerodynamic interference of Case1, the camber of
the optimized rear airfoil increased is larger than that of
the front airfoil. For Case2, the large stagger determines that
the aerodynamic interference is weak. As a result, the airfoil
shapes and pressure distributions of the front airfoil and rear
airfoil were very close.

Finally, we apply the data mining techniques to investi-
gate the change of aerodynamic characteristics using the
optimized aerodynamic shape in the design space con-
structed by relative position parameters. After the adoption
of optimized airfoils of Case1, the region with large drag
reduction in both Cd and CdFW locates in the range
ofS ∈ ½0, 2:5�, G ∈ ½−1:0, 1:0�, and D ∈ ½−6, 0�. This region
has strong aerodynamic interferences, similar to the optimi-
zation condition of Case1. In comparison, the drag reduc-
tion distribution in the whole design space is relatively
more uniform with the optimized airfoils for Case2. This
can be explained that most of the drag reduction of Case2
comes from the decrease of the airfoil profile drag. The sum-
marized conclusion would guide the aerodynamic design of
the joint-wing configuration. Furthermore, the established
methods and the analysis approaches would be used to
reveal the design space for aerodynamic design in the future.
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