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The shortage of personnel and the high cost have become a major pain point in the current safety supervision work of the
inspectors. Aiming at the problem that the aircraft maintenance inspector could not visit the scene in person during the
epidemic, a remote safety supervision platform was built based on intelligent glasses and 5G network, and the real-time
monitoring of the aircraft skin rivet status was realized. And a method of aviation rivet classification and anomaly detection
based on deep learning algorithm was proposed. Firstly, according to the appearance of rivet head, the aviation rivet is
classified, the data set of aviation rivet is made, and the aviation rivet classification and anomaly detection model are
constructed. Evaluate the detection results from such indicators as confidence, precision, recall rate, and mAP and compare
the algorithm with the detection results of Yolox-s, Yolox-m, Yolov5-s, Yolov5-m, and Yolov4. The results show that (1) the
algorithm proposed in this paper can realize the classification of aviation rivets and the detection of abnormal conditions, the
confidence of the detection results is more than 90%, and the average precision, recall, and AP value are above 95%, 85%, and
88%, respectively. (2) The order of rivet classification and abnormal detection effect from good to bad is Philips screws, round
head rivets, flat head rivets, countersunk head rivets, blind rivets, and abnormal condition. (3) Compared with other algorithms,
the aviation rivet classification abnormal target detection based on deep learning has absolute advantages in accuracy and speed.

1. Introduction

The famous saying of the aviation industry is “strive to
reduce the weight of each gram” [1]. In order to reduce the
weight, engineers take great pains. Besides, the aircraft enve-
lope is very thin, and the welding process is very complex.
The welding materials will generate a lot of heat in flight,
and they are not suitable for use on the aircraft. Moreover,
the use of rivets can greatly reduce costs, and the small size
of rivets also has a certain effect on reducing resistance in
flight. Therefore, rivets are essential for aircraft. The com-
monly used connection methods in aircraft manufacturing
include riveting, bolting, gluing, and welding. With the con-
tinuous development of the aviation industry, the flight
speed and height have been continuously improved, espe-
cially after the high hardness aluminum alloy has become
the main material for aircraft manufacturing, the disadvan-
tages of aluminum alloy high temperature deformation and
mechanical property reduction have become increasingly

apparent, and the resonance and stress changes in flight
make the welded joints very easy to break. Therefore, rivet-
ing becomes the final choice for connecting aircraft compo-
nents. In aircraft manufacturing, the proportion of rivet
connection is far greater than that of welding. The main rea-
sons are as follows: (1) light materials such as composite
materials are not suitable for welding; (2) the weld technol-
ogy is prone to metal fatigue; (3) riveting is more reliable
and stable. Rivets are more stable than welding, making
the aircraft safer. Therefore, it can be seen that the efficient
connection mode of aviation rivets can strengthen the stabil-
ity of the structure and is closely related to flight safety.

On July 7th, 2022, during the flight of an aircraft of Air
China, the incident of the engine rivet falling off and loosen-
ing caused widespread concern from all walks of life. The
main material of modern large civil aviation airliner is alu-
minum alloy, and riveting technology is usually used to
reduce the weight of the aircraft. As the lightest fastener with
the best connection strength, rivets are naturally favored by
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major aircraft manufacturers. According to statistics, each
aircraft is equipped with millions of rivets, mainly including
solid rivets and special rivets [2]. The main cause of rivet
looseness is flight vibration. If the rivet falls on the runway
during takeoff and landing, it may be inhaled by the rear air-
craft as foreign object debris on the runway, resulting in tire
puncture, engine and fuselage damage, and even major avia-
tion accidents. Therefore, it is of great significance to
improve flight safety on how to quickly and accurately locate
the rivet position, identify the rivet classification, and
whether there is any abnormal situation.

2. Literature Review

At present, the research on inspection of aviation rivets at
home and abroad is still in its infancy, and the existing
achievements can be roughly divided into three categories.
(1) Based on magnetooptical imaging and pulsed eddy cur-
rent technology, the anomaly detection of aviation rivets is
realized. Among them, Zeng et al. [1] proposed a finite ele-
ment model for automatic inspection of aviation rivets, He
et al. [2] proposed a nondestructive inspection method for
riveting structural defects, and Gao et al. [3] and Uchanin
[4], respectively, realized the inspection of rivet surface crack
defects. (2) Based on optical technology, the detection of avi-
ation rivet anomalies is realized. Among them, Overton [5]
has carried out rapid detection of the three-dimensional
coordinates of aircraft rivets, and Li [6] proposed an adap-
tive local point cloud density calculation method to achieve
the detection of riveting quality; Bi et al. [7] developed a
cross line structured light visual inspection system to detect
the rivet hole orientation. (3) Aviation rivets recognition
based on computer vision, the main application scenarios
are as follows: (1) detection of rivet damage. Chen et al. [8]
and Yang et al. [9], respectively, used support vector
machines and noise resistant local binary mode coding algo-
rithms to detect rivet structural defects and rivet surface
defects; (2) check the rivet position. Xing et al. [10] proposed
a detection method based on machine vision, which realized
the detection of rivet position and rivet size. Yu et al. [11]
proposed a detection method based on monocular vision,
which solved the problem of rivet identification and posi-
tioning; (3) inspection of rivet holes. Tian et al. [12] pro-
posed a rivet hole machine vision recognition algorithm
based on scattered point cloud.

Target detection is a hot topic in the field of computer
vision. It has a wide range of applications in robot naviga-
tion, intelligent video surveillance, and aerospace [13–15].
Deep learning, a branch of machine learning, is a frontier
for artificial intelligence, aiming to be closer to its primary
goal-artificial intelligence. At present, there are two widely
used target detection algorithms based on deep learning:
two-stage detection based on candidate regions and single-
stage detection based on regression [16–20]. The former
includes R-CNN and faster R-CNN. The main problem of
these algorithms is that the detection time is too long to meet
the real-time requirements. The single-stage detection
methods based on regression include YOLO and SDD.
These algorithms directly regress the candidate frame and

category of the target in multiple positions of the image,
which is more real-time.

In fact, magnetooptic imaging is easily disturbed by
external factors, which will directly affect the effect of image
detection. Meanwhile, pulsed eddy current technology can-
not get rid of the impact of lift-off on the test results, the
equipment requirements are very high, and the test model
is not complete yet. To sum up, although the existing
research has made some achievements in the detection of
aviation rivets, there is still much space to improve the accu-
racy and speed of the detection results. In addition, the
research results of rapid identification and location of avia-
tion rivet classification and abnormal conditions have not
appeared. Therefore, the author first classified the aviation
rivets, proposed the aviation rivet classification and anomaly
detection algorithm based on deep learning, and realized the
target detection of rivet classification and anomaly in the
process of walkaround inspection, in order to help the main-
tenance engineers to locate various rivet-related failures and
ensure aviation operation safety.

3. Modeling

3.1. Classification of Aviation Rivets. According to the
national standards commonly used in aerospace, aviation
rivets include round head, 90° countersunk head, 120° coun-
tersunk head, pop rivet, and flat head rivet, and their codes
are, respectively, GB867, GB869, GB954, B12615, and
GB109. So in this paper, we will adopt the target detection
method based on deep learning, and the rivets will be reclas-
sified according to their appearance images (as shown in
Table 1): (1) countersunk head rivets, marked as “CHr,”
are mainly used for riveting seams on the aircraft surface
that need to be smooth and lightly loaded, which can effec-
tively reduce wind resistance; (2) flat head rivets, marked
as “FHr,” are mainly used for strengthening joints; (3) round
head rivets, marked as “RHr,” are mainly used for riveting
seams bearing large transverse loads to improve the strength
of the fuselage and maintain structural stability and are
widely used in fuselage and wings; (4) blind rivets, marked
as “Br,” are mainly used for single-sided riveting and are
applicable to parts of the fuselage that are not convenient
for double-sided riveting; (5) Phillips screws, marked as
“Ps,” are mainly used in the fuselage and its interior for fas-
tening; (6) abnormal, including loose or falling rivets,
marked as “Abn.”

3.2. Target Detection Process of Aviation Rivet. In the poste-
pidemic period, repeated regional epidemics and inconsis-
tent standards of epidemic prevention measures of foreign
airlines have brought great difficulties to the on-site supervi-
sion and review of civil aviation. How to implement the
supervision and review procedures and timely grasp the
safety information on the basis of ensuring the epidemic pre-
vention safety of personnel is the key problem to be solved
urgently in the civil aviation safety supervision work after
the epidemic. At the same time, the continuous development
of 5G-based communication technology, remote video
transmission technology, intelligent glasses visual synthesis,
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and interaction technology has created a technical founda-
tion for the construction of a remote and intelligent safety
supervision and interaction platform for civil aviation, with
a view to effectively improving the safety and efficiency of
civil aviation safety supervision during the “epidemic pre-
vention normalization” period. Therefore, based on intelli-
gent glasses and 5G network, this paper has built a remote
safety supervision platform for maintenance inspectors to
achieve real-time detection of skin rivet classification and
abnormal targets in the walkaround inspection, thus imple-
menting remote real-time supervision and guidance of prob-
lems, and the flow chart of aviation rivet target detection is
shown in Figure 1.

The maintenance engineer collects videos and pictures of
rivets at specific positions of the fuselage with Google smart
glasses and, at the same time, connects with the computer
terminal through 5G network to transmit and save videos
and images in real-time and then extracts the video frame
by frame and save it as an image file, and carries out data
enhancement processing on the image data of aviation rivet
image data, including mosaic data enhancement and mixed
data enhancement. And then, the rivet samples are divided
and labeled, and the rivet samples are trained by using the
learning method combining migration and freezing training,
so as to build the classification and anomaly detection model
of aviation rivets. Finally, experts can realize remote moni-
toring and guidance of aircraft status according to the detec-

tion results, improve the efficiency of maintenance, and
ensure aviation operation safety.

3.3. Target Detection Algorithm of Aviation Rivet. As an
excellent target detection algorithm at present, Yolox algo-
rithm has the advantage that the type and speed of target
detection have been greatly improved [17–20]. The aviation
rivet classification and anomaly detection algorithm based
on deep learning are improved on the basis of Yolox algo-
rithm. Its network structure, loss function, and reasoning
process are described as follows.

3.3.1. Network Structure. The network structure of the algo-
rithm proposed in this paper is shallower than that of Yolox
algorithm. By reducing the parameters involved in the oper-
ation, the network reasoning speed is improved. The net-
work structure (Figure 2) still takes the DarkNet-53
structure as the baseline and consists of the backbone net-
work, neck, and decoupling detector head, including the
focus layer, cross stage partial layer, spatial pyramid pooling
module, upper sampling layer, connection layer, and decou-
pling detector head. Among them, the focus layer plays a
downsampling role and reduces the loss of feature informa-
tion by slice splicing. The cross stage partial layer is designed
based on the baseline of the residual block, which not only
deepens the network’s ability to extract feature information
better but also solves the problems of gradient disappearance
and gradient explosion through layer hopping connection.
The spatial pyramid pooling module is composed of two
convolutional layers and parallel maximum pooling layers
of different sizes. By increasing the receptive field through
the parallel maximum pooling layer, the feature information
of objects with different sizes can be better extracted.

3.3.2. Loss Function. As IoU and GIoU may make the train-
ing process difficult to converge when they are used as loss
functions, in this paper, we will consider the distance, over-
lap rate, scale, and penalty term between the target box and
the prediction box, that is, CIoU is used as the loss function
(Formula (1)), so the prediction box can better approach the
position of the target box, making the prediction results
more accurate.

LCIoU = 1 − IoU +
ρ2 b, bgt
À Á
c2

+ αv, ð1Þ

where b and bgt represent the center point of anchor box and
target box; ρ represents the European distance between two
center points; c represents the diagonal distance of the min-
imum rectangle covering the anchor box and the target box;
α is a parameter used for trade off; v is a parameter used to
measure the consistency of aspect ratio.

3.3.3. Reasoning Process. The reasoning process of aviation
rivet classification and anomaly detection algorithm based
on deep learning can be summarized into three stages: fea-
ture extraction stage, feature information collection and pro-
cessing stage, and prediction stage. First, the input size of the
input terminal is 416 × 416 × 3. The focus layer is cut,
spliced, and convolved to get 208 × 208 × 24. After layer by

Table 1: Rivet classification.

Classification
Data

annotations
Legends

Countersunk head rivets CHr

Flat head rivets FHr

Blind rivets Br

Round head rivets RHr

Phillips screws Ps

Slotted pan head tapping screws SPHTS

Abnormal Abn
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layer reasoning of convolution layer, cross stage partial layer,
and spatial pyramid pooling module, the size of 52 × 52 × 96,
26 × 26 × 192, and 13 × 13 × 384 feature map can be obtained
in themiddle, lower, and lower layers of the backbone network
and then participate in network neck feature fusion. Then, the
network neck adopts the structure of feature pyramid net-

works and path aggregation network to fuse three shallow
semantic features and deeper semantic features, so that the
overall network can better extract target feature information.
Finally, the feature information is input to the decoupled
detector head for reasoning, and then, the prediction prospect,
category, and position of the target can be obtained.
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Figure 1: Flow chart of aviation rivet target detection.
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Figure 2: Network structure of aviation rivet classification and anomaly detection algorithm based on deep learning.
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3.4. Methodology. Step S1: the maintenance engineer wears
smart glasses (or other video capture devices) to perform
walkaround inspection, collect video and pictures of rivets
at specific positions on the fuselage, and at the same time,
connect with computer terminals through 5G network to
transmit and save video and images in real-time. It is worth
noting that the captured aerial rivet pictures should be taken
from different angles, different distances, and different
brightness, and the video data can also be used to extract
appropriate samples by frame

Step S2: sort out the collected aviation rivet data, mark
the category target frame, and divide the data set. Use the
labeling tool to label various types of data. The target box
categories are CHr, FHr, Br, RHr, Ps, and Abn. Divide the
labeled image data into training set, verification set, and test
set according to the ratio of 7 : 1 : 2. After the annotation is
completed, the target data set is enhanced by mosaic data
enhancement and mix up data enhancement

Step S3: the method of migration training and freezing
training is used to train the aviation rivet classification and
anomaly detection model. Carry out pretraining based on
VOC data set, get the pretraining weight, and automatically
end the training when the loss value does not fall for many
times. At the same time, freeze some common pretraining
weights, such as backbone network, and put more resources
on the calculation of network parameters in the later part of
the training, which can effectively reduce the training dura-
tion and greatly improve the resource utilization. When
the loss value does not decrease for many times, the freezing
training will be automatically ended, and then, the thawing
training will be started, and then, all layers of the model will
be trained together

Step S4: Based on the weight of aviation rivet classifica-
tion obtained after training in step S3, the aviation rivet
data is classified, and abnormal recognition is carried
out. The inference process of convolution neural network
can be summarized into three stages: feature extraction
stage, feature information collection and processing stage,
and prediction stage. Use the convolution neural network
based on the DarkNet-53 structure as the backbone net-
work to extract features for neural network calculation
and use the focus layer, cross stage partial (CSP), spatial
pyramid pooling (SPP), upper sampling layer, and connec-
tion layer as the neck network to perform feature fusion
and finally use the decoupling detection head to generate
detection data

Step S5: In order to verify the effectiveness of the
proposed algorithm in target detection, the recall rate,
accuracy rate, AP (average precision) value, and average
precision value (mAP) are used to evaluate the detection
results

3.5. Evaluation Criteria. In order to verify the effectiveness
of the algorithm proposed in this paper in target detec-
tion, recall rate, accuracy rate, AP value, and average pre-
cision value are used for evaluation. In the following
formula, TP (true positive) is the number of correctly
detected targets to be detected, FN (false positive) is the
number of undetected targets to be detected, and FP

(false negative) is the number of incorrectly detected tar-
gets to be detected.

r =
TP

TP + FN
,

p =
TP

TP + FP
:

ð2Þ

Among them, the recall rate r refers to the probability
of being detected correctly among all detected targets,
and the accuracy rate p refers to the probability of actu-
ally being the correct target among all detected targets.

Both the AP value and the mAP value are used to mea-
sure the overall performance of the model. The AP value
does not refer to the average accuracy value of all detected
targets of a single category, but the figure area value is
enclosed by the P-R curve with recall as the abscissa axis
and accuracy as the ordinate axis. In actual calculation, the
integration method can be used to obtain this value, as
shown in Formula (3). The average value of all kinds of tar-
get AP values can be used to measure the overall detection
performance of the model, that is, the mAP value.

AP =
ð1
0
psmooth rð Þdr: ð3Þ

4. Example and Discussion

4.1. Construction of Aviation Rivet Data Set. In this paper,
we take the fuselage rivets of Boeing series aircraft as the
research object, collect rivet data, store it in the terminal
equipment, label the data set with the labeling tool, and
obtain 3000 corresponding PASCAL VOC format data sets
in total (Figure 3). Among them, there are many samples
of countersunk rivets, flat head rivets, round head rivets,
and Phillips screw rivets, and the difference is very small.
There are few samples of abnormal conditions and blind
rivets, about 5000 and 3000, respectively. The image marked
according to the appearance of rivet head is shown in the
following figure.

4.2. Training Process of Data Set. The algorithm proposed in
this paper is implemented on the open source framework
TensorFlow. The computer configuration is as follows: Intel
i7 12700H processor, 16G memory, and independent
graphics card NVIDIA GeForce RTX3070. Set the freezing
of the first 100 layers of networks according to the actual
training situation, and the score threshold is 0.5, batch size
is 10, max box value is 20, the model image size is 640 ×
640, and the initial learning rate is 0.001. Then, load the pre-
training weight to start training. When the loss value does
not decrease, unfreeze the training and set the batch size to
8; the learning rate is 0.0001, and the other parameters
remain unchanged. Among them, migration training refers
to training on a large benchmark data set to obtain the pre-
training weight and then fine-tuning the pretraining weight
parameters, which can significantly improve the learning
efficiency of the model. Freezing training is to freeze the
weight of backbone network in the pretraining weight on
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the basis of migration training and then adjust the remain-
ing parameters through training. After a period of training,
unfreeze all networks for fine-tuning to obtain the final
weight. Before the training of input sample pictures, the data
enhancement unit uses mosaic and mix up data enhance-
ment functions to enrich the data set samples by randomly
scaling, clipping, arranging pictures, and copying and past-
ing sample data on this basis.

The change of the loss value of the training set and the
verification set with the training times in the training process
is shown in Figure 4. The abscissa and ordinate are the
epoch and loss values, respectively. Before the generation
120, because the learning rate is relatively high, the loss value
of the training set and the verification set decreased rapidly,
so that the model can quickly reach the fitting. In order to
prevent the overfitting of the model, the learning rate will
decrease with the advance of the times. After 120 times,
the decline rate of the loss value of the model will slow down.
Finally, after 300 generations of training, the loss value of the
verification set gradually converges to 2, and the loss value of
the training set gradually converges to 2.3. In the training pro-
cess, train loss is positively correlated with val loss, which indi-
cates that the training of the model is normal, and there are no
problems such as overfitting of the network, unreasonable
structure of the network, and poor quality of the data set.

4.3. Prediction Result Analysis. After the network training is
completed, input the video file to be detected, and then, the
aviation rivet classification and anomaly detection results are
shown in Figure 5.

It can be seen that the algorithm can realize the classifi-
cation of fuselage rivets and the detection of abnormal con-
ditions and calibrate the position and confidence of the
target. In Figure 5(a), five objects were detected, including
countersunk rivets, round head rivets, and abnormal condi-
tions. The confidence level of three types of objects reached
about 90%. The confidence level of the detection results of
countersunk rivets was the highest, and the confidence level
of the detection results of abnormal conditions and round

(a) Countersunk head rivets (b) Flat head rivets (c) Round head rivets

(d) Blind rivets (e) Phillips screws (f) Abnormal

Figure 3: Marking results of different types of rivets.
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Figure 4: Loss curve of training process.
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head rivets decreased in turn. The target (CHr “0.93” 684
448 741 521) indicates that the target type is countersunk
rivet with confidence of 93%, the relative coordinates of
the center point of the target frame are 684 and 448, and
the height and width are 741 and 521, respectively, and the
detection speed is 33.25 frames per second. In Figure 5(b),
six objects are detected, all of which are flat head rivets. It
can be seen that the confidence of the algorithm in the detec-
tion results of flat head rivets is more than 91%. Among
them, the target (FHr “0.93” 253 479 307 542) indicates that
the target type is flat head rivet with confidence of 93%. The
relative coordinates of the center point of the target box are

Found 5 boxes for img
bʹCHr 0.93ʹ 684 448 741 521
bʹRHr 0.91ʹ 476 398 534 469
bʹAbn 0.91ʹ 291 352 338 428
bʹRHr 0.90ʹ 892 507 949 574
bʹRHr 0.86ʹ 1114 567 1171 634
fps = 33.25

Fps = 33.25

(a)

Found 6 boxes for img
bʹFHr 0.93ʹ 253 479 307 542
bʹFHr 0.93ʹ 373 431 425 490
bʹFHr 0.92ʹ 113 533 168 600
bʹFHr 0.92ʹ 70 287 132 357
bʹFHr 0.91ʹ 219 246 273 311
bʹFHr 0.91ʹ 350 211 400 271
fps = 32.15

Fps = 32.15

(b)

Fps=30.00

Found 5 boxes for img
bʹBr 0.93ʹ 399 311 454 371
bʹBr 0.92ʹ 561 277 627 341
bʹBr 0.92ʹ 260 338 307 397
bʹBr 0.91ʹ 757 233 834 304
bʹBr 0.90ʹ 141 366 183 418
fps = 30.00

(c) (d)

Figure 5: Target detection results of aviation rivets.

Table 2: Accuracy, recall rate, and AP value of different types of
rivets.

Aviation rivets category p/% r/% AP/%

Countersunk head rivets 98.19 92.07 96.48

Flat head rivets 99.09 94.60 96.38

Blind rivets 95.08 86.57 92.13

Round head rivets 99.27 96.45 98.77

Phillips screws 97.82 97.82 98.47

Abnormal 97.55 85.05 88.16
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253 and 479, the height and width are 307 and 542, respec-
tively, and the detection speed is 32.15 frames per second. In
Figure 5(c), five targets are detected, all of which include
blind rivets. It can be seen that the confidence of the algo-
rithm in the detection results of blind rivet targets is more
than 90%. Among them, the target (Br “0.93” 399 311 454
371) indicates that the target type is blind rivets, with confi-
dence of 93%, the relative coordinates of the center point of
the target box are 399 and 311, the height and width are 454
and 371, respectively, and the detection speed is 30 frames
per second. In Figure 5(d), eight objects are detected, all of
which are Phillips screws. It can be seen that the confidence
level of the algorithm for the detection results of cross
recessed rivets is about 90%. Among them, the target (Ps
“0.92” 462 531 521 591) indicates that the target type is a
Phillips screw with a confidence of 92%, the relative coordi-
nates of the center point of the target box are 462 and 531),
the height and width are 521 and 591, respectively, and the
detection speed is 34.33 frames per second. It can be seen
that the reliability of the proposed algorithm for the classifi-
cation and anomaly detection results of aviation rivets is
about 90%, and the detection speed is more than 30 frames,
which has met the requirements of real-time detection.

4.4. Model Evaluation. According to the evaluation indexes
related to target detection mentioned above, the recall rate
(r), precision rate (p), and average precision rate (AP) value
of target category detection of aviation rivets are obtained as
shown in Table 2.

It can be seen that the model can detect the normal and
abnormal conditions of various rivets. Among them, the
detection accuracy of targets is higher than 95%, especially
the recognition accuracy of flat head rivets and round head
rivets is more than 99%, and the accuracy of blind rivets is
relatively low, about 95.08%. The target recall rate is more
than 85%, especially the recognition accuracy of round head
rivets and Phillips screws is more than 96%, while the recall
rate of blind rivets and abnormal conditions is relatively low,
about 86%. The recognition accuracy of target AP values is
more than 88%, and the AP of other types of rivets is more
than 92% except for abnormal conditions. On the whole,
the order of the inspection effect of the model on all types
of rivets from good to bad is Phillips screws, round head
rivets, flat head rivets, countersunk head rivets, blind rivets,
and abnormal conditions. The reason is that the number of
samples of blind rivets collected is relatively small, and the
quality is low.

Overfitting means that the gap between training error
and test error is too large. In other words, the complexity
of the model is higher than the actual problem. The model
performs well in the training set but poorly in the test set.
To solve the overfitting problem, it is necessary to signifi-
cantly reduce the test error without excessively increasing
the training error, so as to improve the generalization ability
of the model. Acquiring and using more data are the funda-
mental methods to solve overfitting. Mosaic data enhance-
ment used in this paper is specifically to read 4 pictures
randomly at a time in the prepared data set and then flip
(flip the original picture left and right), zoom (scale the orig-
inal picture size), color gamut change (change the bright-
ness, saturation, and hue of the original picture), and other
operations on the 4 pictures, respectively. After the opera-
tion is completed, place the original image on the top left
according to the first image, the second image on the bottom
left, the third image on the bottom right, and the fourth
image on the top right in four directions and then use the
matrix method to cut down the fixed area of the four images
and splice them into a new image. The new image contains a
series of contents such as a label box. After this operation,
the background information of the picture is enriched, and
the four pictures are spliced together, which also increases
the number of data set samples in disguised form. When
batch normalization is performed, it is equivalent to calcu-
lating four pictures at the same time, which greatly improves
its training efficiency.

4.5. Comparison of Different Algorithms. In order to verify
the performance of the algorithm proposed in this paper, it
is compared with the traditional Yolov4, Yolov5 algorithm,
and other versions of Yolox algorithm in the same scene.
The performance comparison of the detection results is
shown in Table 3.

As can be seen, all algorithms can achieve the detection
of classification of aviation rivets and abnormal situation,
and the overall performance ranking from high to low is
the algorithm proposed in this paper, Yolox-s, Yolox-m,
Yolov5-s, Yolov4, and Yolov5-m. Among them, the preci-
sion, recall, and mean precision values obtained by the algo-
rithm in this paper are 98.12%, 92.09%, and 95.07%,
respectively, which are higher than those obtained by other
versions of the same algorithm, the Yolox-m and Yolox-s
algorithms by 4.81%, 8.06%, 6.49%, 2.71%, 5.45%, and
5.62%, respectively. The GPU processing speed of the pro-
posed algorithm is 84.56 f/s, which is 50.97% higher than

Table 3: Performance comparison of six algorithms.

Algorithms p/% r/% mAP/%
GPU processing
speed/(f.s-1)

Video detection
speed/(f.s-1)

Algorithm in this paper 98.12 93.28 95.77 84.56 35

Yolox-m 93.31 85.22 89.28 56.01 26

Yolox-s 95.41 87.83 90.15 72.65 28

Yolov5-m 97.2 57.68 73.31 65.25 32

Yolov5-s 80.14 60.12 84.25 74.94 34

Yolov4 90.09 75.13 81.50 48.06 30
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other versions of the Yolox-m and Yolox-s algorithms and
16.39% higher than the Yolov5-m, Yolov5-s, and Yolov4
algorithms, respectively. Compared with the same version
algorithm, the speed of aviation rivet classification and
anomaly detection based on deep learning is significantly
improved, which should be more attributed to the use of
lightweight network structure framework. The improvement
of accuracy of aviation rivet classification and anomaly
detection should be attributed to the improvement of detec-
tion head, anchorless mechanism, and label assignment
method.

5. Conclusions

(1) One method of aviation rivet classification and
anomaly detection based on deep learning was pro-
posed in this paper, which can achieve classification
and abnormality detection of aviation rivets with
confidence level above 90% and average accuracy,
recall, and AP value above 95%, 85%, and 88%,
respectively

(2) The algorithm presented in this paper can real-time
detect the classification of aviation rivets and the
abnormal situation, and the order of detection effec-
tiveness is in the order of good to bad: Phillips
screws, round-headed rivet, flat-headed rivet, coun-
tersunk head rivets, blind rivets, and abnormal
situation

(3) Since the algorithm uses a more lightweight network
architecture, the accuracy and speed of aviation rivet
classification and anomaly detection have absolute
advantages compared to the other Yolox algorithms
in the same version as well as the Yolov5 and Yolov4
algorithms

Data Availability

The data used to support the findings of this study are
included within the supplementary information file, which
is named rivets.
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