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The firing accuracy of the projectile has a positive relation with aerodynamic parameters. Due to the complex dynamic
characteristics of projectiles, there is an overfitting risk when a single extreme learning machine (ELM) is used to identify the
aerodynamic parameters of the projectile, and the identification results oscillate transonic region. To obtain the aerodynamic
parameters of the projectile accurately, an aerodynamic parameter identification model based on ensemble learning theory and
ELM optimized by improved particle swarm optimization is proposed. The improved particle swarm optimization algorithm
(IPSO) with an adaptive update strategy is used to optimize the weight and threshold of ELM. Combined with the ensemble
learning theory, the improved ELM neural network is regarded as a weak learner to generate a strong learner. The structural
parameters of the strong learner were continuously optimized through training, and an aerodynamic parameter identification
model of projectile based on ensemble learning theory is obtained. The simulation results show that the introduction of the
IPSO and ensemble learning theory enables the model to exhibit excellent generalization ability. The proposed identification
model can accurately describe the variation of aerodynamic parameters with the Mach number.

1. Introduction

Aerodynamics is the decisive factor affecting the ballistic
trajectory and flight stability of the projectile [1]. The pro-
jectile’s firing accuracy positively relates to aerodynamic
parameters [2]. Currently, numerical computation, wind
tunnel test, and shooting test are common technical means
to obtain aerodynamic parameters [3]. The result of the
numerical calculation method depends on the accuracy of
the ballistic model. Still, due to the strong coupling of the
projectile flight motion and external disturbance, it is difficult
to obtain a completely accurate ballistic model. The wind
tunnel experiment simulates the genuine flight attitude of
the projectile by changing the attitude and velocity of the
model, which is generally used to test and correct the shape
parameters and aerodynamic characteristics of the projectile.
The parameter identification method is used to process the
measured data (provided by shooting test) and indirectly
extract the aerodynamic parameters of projectile. Research

on the aerodynamic parameter identification method has
significant practical engineering application value [4]. The
least squares method (LSM), maximum likelihood method
(ML), Kalman filtering method (KF), and intelligent algo-
rithm are mature algorithms in the field of parameter identi-
fication [5–7].

LSM [8] is a classical estimation method in aircraft
parameter identification. Dunkel [9] realized the identifica-
tion of aerodynamic derivative and stability derivative by
LSM. However, LSM is susceptible to extreme outliers. To
mitigate the effects of outliers, Su and Song [10] used recur-
sive LSM with fading memory to improve the identification
performance. Kamali et al. [11] proposed improved LSM
and successfully identified Dutch roll movement parameters
and segment period parameters of aircraft. Mu et al. [12]
combined the model reduction technology with LSM for
parameter identification. Due to the complex motion char-
acteristics of the projectile, the traditional identification
equation (based on LSM) needs to be better posed. Yang
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et al. [13] combined LSM with an engineering test to obtain
the aerodynamic parameters of projectile.

ML has been widely used due to its unbiasedness
[14–17]. Carnduff and Cooke [18] applied ML to recon-
struct the aerodynamic model of an unmanned aerial
vehicle (UAV) with an unconventional fuselage structure.
However, ML highly relies on model accuracy, and the
variance is significant at high latitudes, so it is often
used in combination with other methods. To improve
the performance of ML, Kumar and Rao [19] combined
the output error method with ML, which can accelerate
the speed of convergence. Zou and Li [20] introduced
the interior point optimization method into ML to
reduce the severe error caused by second-order numeri-
cal differentiation.

By extending the parameters (to be identified) to sys-
tem states, the problem of parameter identification can
be transformed into the issue of optimal state estimation
so that KF can be applied to parameter identification
[21–23]. In nonlinear systems, KF cannot accurately esti-
mate the state matrix. It was later developed into the
extended Kalman filter (EKF) and unscented Kalman filter
(UKF). Zheng et al. [24] proved that UKF is better than
EKF in projectile parameter identification because of
unscented transformation (U-transformation). To reduce
the computational complexity and improve the accuracy,
many other improved KF algorithms have been proposed.
Menon et al. [25] combined the differential vortex lattice
algorithm with EKF to realize flight path reconstruction.
Majeed and Kar [26] proposed adaptive UKF to improve
identification accuracy. Shen et al. [27] combined EKF
with the aerodynamic semiempirical method to identify
derivative residuals.

Due to the complex environment and unknown exter-
nal interference, getting a completely accurate aircraft
model is complex. To solve the modeling error of the tra-
ditional identification method, intelligent algorithms and
their variants have been widely used in aerodynamic
parameter identification. Du et al. [28] combined particle
swarm optimization algorithm (PSO) with real-coded
genetic algorithm (GA) to obtain the resistance coefficient
of the projectile. Based on the maximum likelihood crite-
rion, Li et al. [29] applied the neural network Newton
method to extract the zero-lift drag coefficient of the pro-
jectile. To improve accuracy and accelerate convergence,
Wang et al. [30] introduced an elite crossover strategy into
GA. Guan et al. [31] combined GA with ML to identify
the zero-lift resistance coefficient of a high-speed rotating
projectile based on the speed data of the projectile. Aiming
at the problem that gradient descent optimization algo-
rithm is easy to fall into local optima in traditional aero-
dynamic parameter identification, Han et al. [32] put
forward a double backpropagation (BP) neural network, Pu
et al. [33] put forward a method of sample expansion and
neural network parameter online fast correction based on
support vector machine (SVM), and Li et al. [34] proposed
an improved teaching-learning-based optimization (ITLBO)
for aerodynamic parameter identification. To avoid the ini-
tial value estimation, Yan et al. [35] proposed a derivative

method for identifying the aerodynamic parameters of air-
craft by the three-layer neural network. Hou et al. [36]
applied a differential evolution algorithm to weaken initial
value sensitivity. Ji-gang et al. [37] combined the advantage
of PSO in the initial value section and the advantages of the
Newton iteration method in precise iteration and successfully
identified the drag coefficient of the projectile. Mohamad
et al. [38] put forward the concept of dynamic parameter esti-
mation (DAPE).

Extreme learning machine (ELM) [39] is an algorithm
for training single hidden layer feedforward neural networks
(SLFNs). The structural parameters (input weights and hid-
den thresholds) of ELM are generated randomly and require
no iterative adjustment. Owing to it, ELM has low computa-
tional complexity and good real-time performance and has
been widely used in cloud computing, data visualization,
and random projection [40–42]. Akusok et al. [41] applied
ELM to identify the drag coefficient of the projectile for the
first time. Affected by uncertain factors such as the actual
combat environment and external meteorological condi-
tions, the ballistic trajectory data is characterized by solid
nonlinearity, time-dependent nature, and susceptibility to
random noise. Randomly generated structural parameters
lead to the oscillation of ELM identification results [42]. In
addition, when a single ELM is used to identify the aerody-
namic parameters of the projectile, all the given training
samples are often used to model the global situation. In
other words, it is easy to make insufficient use of the sample
data and cause overfitting. In summary, using a single ELM
to identify aerodynamic parameters has the following
limitations:

(a) The identification result oscillates (especially in the
transonic region) due to randomly generated struc-
tural parameters

(b) When a single ELM is used to identify projectile
aerodynamic parameters, it is hard to make sufficient
use of the local information of the sample data and
then causes overfitting

To overcome the above problems and then accurately
obtain the aerodynamic parameters of the projectile, a large
number of documents are referenced. For problem (a), the
classical idea is to apply PSO, GA, and other optimization
algorithms to optimize the structural parameters of ELM
[43–49]. However, iterative optimization increases the time
complexity of the algorithm. Then, the adaptive update
strategy is introduced to improve the performance of PSO.
For problem (b), Schapire [50] proved that multiple weak
learners could generate a strong learner with good generali-
zation performance by ensemble theory. Considering that
the projectile parameter identification problem is a regres-
sion problem, AdaBoost. RT algorithm [51] is used as the
integration framework. Above all, this paper puts forward
an aerodynamic parameter identification model of projectile
based on improved ELM and ensemble learning theory
(we named IPSO-ELM-AdaBoost). The proposed IPSO-
ELM-AdaBoost is a comprehensive application of multiple
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algorithms. In short, the functions of the hybrid algorithm
can be generalized as follows:

(a) ELM (function as a weak learner) establishes the
mapping relationship between ballistic data and
aerodynamic parameters

(b) Improved PSO (IPSO) provides ELM with optimized
structural parameters

(c) AdaBoost. RT is responsible for integrating multiple
weak learners into strong learners

The rest of the paper is arranged as follows: in Section 2,
the concrete expression of the ballistic equation is given.
ELM-AdaBoost. RT aerodynamic parameter identification
model based on improved particle swarm optimization
(IPSO-ELM-AdaBoost) is described in detail in Section 3.
The simulation results under standard meteorological condi-
tions are analyzed in Section 4. Ultimately, conclusions are
summarized in Section 5.

2. Ballistic Trajectory Model

Before parameter identification, the ballistic trajectory model
(6DOF) [52] must first be solved to obtain the ballistic data.
6DOF treats the projectile motion as a rigid body motion. It
considers the three degrees of freedom of the projectile cen-
troid motion and the three degrees of freedom of the angular
motion. Ignoring the dynamic unbalance of the projectile,
the aerodynamic eccentricity, and the Coriolis inertial force
caused by the Earth’s rotation, 6DOF can be mathematically
described as
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where v is the speed; vr is the relative velocity; vrε, vrη, and vrξ
are the components of relative velocity along ε, η, and ξ axes;
x is the distance; y is the altitude; z is the lateral distance; ωε,
ωη, and ωξ are the projected components of rotational speed
along ε, η, and ξ axes; θa is the elevation angle in coordinate
system of projectile axes; S is the characteristic area; m is the
mass of projectile; l is the reference projectile length; d is the
reference projectile diameter; g is the acceleration of gravity;
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ρ is the air density; wxV
, wyV

, and wzV
are the projected

components of wind velocity along xV , yV , and zV ; δr is the
relative angle of attack; Λ is the latitude; ΩE is the rotational
angular velocity of the earth; αd is the angle of departure; δr is
the relative angle of attack; θV is the elevation angle in veloc-
ity coordinate system; ψV is the direction cosine in velocity
coordinate system; ψa is the direction cosine in coordinate
system of projectile axes; δM is the aerodynamic malalign-
ment of additional moment; δN is the aerodynamic malalign-
ment of additional force; δud is the horizontal component of
angle of attack; δld is the longitudinal component of angle of
attack; cx is the drag coefficient; cy is the lift coefficient; cy′ is
the lift coefficient derivative; cz is the Magnus force coeffi-
cient; mxz′ is the rolling damping moment coefficient deriva-
tive;mz is the static moment coefficient; mzz′ is the oscillating
damping moment coefficient derivative; and my″ is the Mag-
nus moment coefficient derivative.

3. IPSO-ELM-AdaBoost

The proposed IPSO-ELM-AdaBoost is a comprehensive
application of multiple algorithms: ELM (function as a weak
learner) is used to extract aerodynamic parameters from
ballistic data. PSO variants provide ELM with optimized
structural parameters. AdaBoost. RT algorithm (function
as an integration framework) is responsible for integrating
multiple weak learners into strong learners and outputting
the projectile’s final aerodynamic parameter identification
results. In this section, ELM and AdaBoost. RT will be briefly
introduced as prior knowledge, and the idea of adaptive
update strategy in IPSO will be presented in detail.

3.1. ELM. ELM [39] is a special SLFN without iterative
adjustment of structural parameters. The working process
of ELM can be divided into learning and prediction. For
ELM with M input layer, L hidden neurons, O output layer,
and activation function σðW1,X, bÞ (the activation function
can be any nonzero function), the structure of ELM is shown
in Figure 1.

3.1.1. Training Process. Given input vector XM×1,

XM×1 = x1,⋯, xM½ �T : ð13Þ

The structural parameters of ELM are randomly gener-
ated as follows:

W1
L×M =

w1
1,1 ⋯ w1

1,M

⋮ ⋱ ⋮

w1
L,1 ⋯ w1

L,M

2
664

3
775, ð14Þ

bL×1 = b1,⋯, bL½ �T : ð15Þ

Then, the output of the hidden layer is as follows:

HL×1 = σ W1
L×M ·XM×1 + bL×1

À Á
: ð16Þ

The output weight matrix W2
O×L is mathematically

described as
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The output ŶO×1 can be calculated as

ŶO×1 =W2
O×L ⋅HL×1: ð18Þ

Given N training samples ðXM×N , YO×NÞ, the output of
ELM is as follows:

ŶO×N =W2
O×L ⋅HL×N : ð19Þ

The training goal is mathematically described as

YO×N − ŶO×N
  = 0: ð20Þ

The output weight matrix can be calculated as

W2
O×L = YO×N ⋅H+

L×N , ð21Þ

where H+
L×N is the Moore–Penrose generalized inverse of

HL×N .
In order to improve the generalization ability of ELM

and avoid overfitting, based on the ridge regression principle
[53], a regularization term [54] is introduced in (21):

W2
O×L = YO×N ⋅ HT

L×N ⋅HL×N + I
C

� �−1
⋅HT

L×N , ð22Þ

where I is the identity matrix and C is the regularization
factor.

3.1.2. Prediction Process. When ELM completes the training
process, the output matrix W2

O×L can be calculated by equa-
tion (22). Given P predicting samples XM×P , the output of
ELM is

ŶO×P =W2
O×L ⋅HL×P: ð23Þ
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Figure 1: The structure of ELM.
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3.2. ISPO. PSO is a metaheuristic algorithm proposed by
Kennedy and Eberhart [55]. Compared with other meta-
heuristic algorithms, such as GA [56] and ant colony algo-
rithm [57], the PSO algorithm has a simple structure, easy
implementation, global solid searchability, and fast conver-
gence speed [58]. Based on the global best position gbest
and the individual best position pbest, the particles are itera-
tively updated until convergence. The steps of PSO can be
described as follows:

(1) Set hyperparameter

Hyperparameters that need to be set include the follow-
ing: population size e, particle dimension D, velocity inertia
weight ωðvÞ, learning factors c1 and c2, maximum iteration
kmax, minimum error Δmin, maximum particle velocity
Vmax, and maximum position Xmax.

(2) Initialization

Initialize position Xi = ðxi1, xi2,⋯, xiDÞT and velocity
Vi = ðvi1, vi2,⋯, viDÞT , i = 1, 2,⋯e.

(3) Iterative update

The fitness function Fitnessð⋅Þ is selected to calculate the
fitness value of particles and find out the individual and
global optimum of particles. For optimization problems,
the update rule is

pkibest =
pk−1ibest, Fitness pkibest

� �
> Fitness pk−1ibest

� �
,

Xk
i , Fitness pkibest

� �
≤ Fitness pk−1ibest

� �
,

8><
>: ð24Þ

gkbest = arg min Fitness pkibest
� �

i = 1, 2,⋯, ej
n o

, ð25Þ

where pkibset = ðpki1best, pki2best,⋯, pkiDbestÞ
T

specifies the indi-
vidual optima of the ith particle in the kth iteration and

gkibset = ðgk1best, gk2best,⋯, gkDbestÞ
T

specifies global optima in
the kth iteration.

Particle is iteratively updated by

vk+1id = ω vð Þvkid + c1r1 pkidbest − xkid
� �

+ c2r2 gkdbest − xkid
� �

,

ð26Þ

xk+1id = xkid + vk+1id , ð27Þ
where d = 1, 2,⋯,D. r1 and r2 are random numbers subject
to uniform distribution.

(4) Iteration stop

When the algorithm converges, the optimization result is
output. If not, step (3) is transferred to continue the
iteration.

The structural parameters of ELM that are optimized by
PSO can contain more training sample information than

randomly one and can effectively improve the identification
accuracy. However, the iterative optimization of PSO
increases the time complexity of the algorithm. The ωðvÞ
in equation (26) can keep the motion inertia of particles
and make them tend to expand the search space, which
has an important influence on the optimization performance
of the algorithm. Dynamic ωðvÞ can obtain better optimiza-
tion results than fixed one [59]. A larger ωðvÞ can improve
the global search ability of the algorithm, while a smaller
one can improve the local search ability of the algorithm.
In order to improve the convergence speed of the algorithm,
the adaptive update strategy is introduced in IPSO. Formula
(28) calculates the average distance dkg from the global opti-
mal particle to other particles in the kth iteration and then
maps dkg to the interval [0, 1] by formula (29) to obtain the
adaptive factor f . f describes the state of the population. In
other words, the larger the f , the farther the particle is from
the global optimal particle, and the particle needs a larger
ωðvÞ to quickly approximate the global optimal solution.
The smaller the f , the closer the particle is to the global
optimal particle, and a smaller ωðvÞ is required to limit the
particle to the vicinity of the global optimal solution and
improve the search accuracy. The adaptive update strategy
(based on f ) of ωðvÞ can be described as

dkg =
1

e − 1〠
e

i=1
gkbest −Xk

i

 
2
, ð28Þ

f k =
dkg − dkmin

dkmax − dkmin
, ð29Þ

ω vð Þk = 1 − f k
� �

ω vð Þmin + f kω vð Þmax: ð30Þ

In order to verify the effectiveness of the IPSO, the stan-
dard test functions f Sp and f Sc are selected to conduct the
test independently for 100 times and compared with the
PSO algorithm. The expressions of test functions f Sp and
f Sc are shown in equations (31) and (32), and the related
parameter settings of the improved particle swarm are
shown in Table 1. The results after 100 independent tests
are given in Table 2. Test results show that the introduction
of adaptive updated ωðvÞ in IPSO can effectively improve the

Table 1: Parameter setting of IPSO.

Parameter Value

kmax 1000

ωmax 0.8

ωmin 0.2

c1 1.59

c2 1.83

Vmax 0.4

Xmax 1
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accuracy and convergence speed of the algorithm. In the case
of the same number of particles, for the same test function,
the results of IPSO are closer to the actual value, and the
average convergence speed is faster.

f Sp = 〠
30

i=1
μ2i , μi ∈ −100, 100½ �, ð31Þ

f Sc = 0:5 +
sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ21 + μ22

p� �
1 + 0:001 μ21 + μ22

À ÁÀ Á2 , μi ∈ −10, 10½ �:

ð32Þ

The structure of ELM optimized by IPSO (IPSO) is
shown in Figure 2.

Table 2: Test results of different test functions.

Function Algorithm Size Max Min Mean Iteration Theoretical value

Sphere

PSO

50 0.515 0.034 0.130 600 0

100 0.050 0.004 0.018 400 0

150 0.006 0.001 0.002 350 0

IPSO

50 0.178 0.023 0.096 450 0

100 6:35 × 10−8 1:47 × 10−11 5:41 × 10−9 300 0

150 3:83 × 10−12 8:79 × 10−17 6:26 × 10−13 200 0

Schaffer

PSO

50 0.037 0.008 0.011 650 0

100 0.037 0.009 0.010 450 0

150 0.009 1:98 × 10−17 0.008 400 0

IPSO

50 0.013 0.005 0.010 500 0

100 0.001 5:73 × 10−12 9:14 × 10−7 300 0

150 1:54 × 10−5 2:87 × 10−13 6:27 × 10−7 200 0

Start

Set related parameter

Population initialization

Calculate Pk
ibest, gk

best with (24) ~ (25)

Update Vk
i with (26) & (30)

Update Xk
i with (27)

Output
parameter

T

Improved PSO

F

Calculate f with (28) ~ (29)

k = 1

k = k+1 k ≤ kmax

y1 y2

Output layer

Hidden layer

Input layer

ELM

yo

1 2 L

x1 x2 xM

Figure 2: The structure of IPSO-ELM.
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3.3. AdaBoost. RT. AdaBoost. RT [60] is proposed for regres-
sion problems. The idea is to filter out examples with a
relative estimation error higher than the preset threshold
value and then follow the AdaBoost procedure. Its basic idea
can be as follows: preset threshold φ, train weak learners
(IPSO-ELM) based on training samples, and update the
weight of training samples according to the current predic-
tion error of IPSO-ELM. In the next round of training, the
training samples with significant prediction error will have
larger weights and continue to train weak learners based
on the new weight. After M training rounds, M weak
learners are obtained, and finally, the output of all weak
learners is weighted to get the final prediction result.
The implementation process of IPSO-ELM-AdaBoost is
described as follows:

(1) Initialization

Randomly select N training samples from the dataset
fðxi, tiÞgNi=1, initialize the weight DjðiÞ = 1/Nði = 1, 2,⋯,NÞ
of the training samples, and set the threshold φ of the algo-
rithm, the initial prediction error rate ε1, and the iteration
round number T .

(2) Train weak learners ðj ≤ TÞ
The jth weak learner hjð⋅Þ is trained by training data, and

calculate the error of each training sample (Ej
i) and weak

learner (εj).

Ej
i = hj xið Þ − ti
 , ð33Þ

εj =〠Dj ið Þ, i : Ej
i > φ, ð34Þ

where hjðxiÞ is the prediction result of the jth weak learner
(jth round) in the ith training data and ti is the actual
value.

(3) Update the weight of training samples

The updated formula is as follows:

Dj+1 ið Þ =

Dj ið Þ
Bj

" #
⋅ ε2j , Ej

i ≤ φ,

Dj ið Þ
Bj

" #
⋅

1
ε2j

 !
, Ej

i > φ,

8>>>>><
>>>>>:

ð35Þ

where Bj is the normalization factor.

(4) Repeat the training

Repeat T rounds of the step to obtain T weak learners
and weighting to obtain the output of the strong learner:

h xð Þ = ∑T
j=1 ln 1/ε2t

À Á
hj xð ÞÂ Ã

∑T
j=1ln 1/ε2t

À Á : ð36Þ

The flow chart of IPSO-ELM-AdaBoost is shown in
Figure 3.

4. Simulation Verification

In this section, a series of simulation tests are carried out
under standard weather conditions to validate the feasibility

Data set

Bootstrap aggregating
(based on weights) Training set

Update
weight D

D1

DT

IPSO-ELM

IPSO-ELM

IPSO-ELM

IPSO-ELM

IPSO-ELM

Update
weight D

Calculate
weight of

IPSO-ELM

Weighted
sum

Result

𝜀1

𝜀T

Figure 3: The structure of IPSO-ELM-AdaBoost.

Table 3: Initial launch parameters of 6DOF.

Initial launch parameter Value

v0 (m/s) 930

θa (
°) 45

ψa (
°) 95

ω0 (rad/s) 188.5
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and excellence of IPSO-ELM-AdaBoost in aerodynamic
parameter identification. In simulation test 1, IPSO-ELM-
AdaBoost is compared with three other machine learning
algorithms (ELM, IPSO-ELM, and ELM-AdaBoost), and
the performance of mentioned machine learning algorithms
is stated in the quantitative ways. In simulation test 2, IPSO-
ELM-AdaBoost, LSM, ML, and UKF are used to reconstruct
the trajectory, respectively. The performance of the four
algorithms is evaluated from the point of fall and side
deflection.

4.1. Data Preprocessing. Under standard meteorological con-
ditions, 6DOF in Section 2 is solved, and 10000 ballistic data
are obtained. Table 3 shows the initial launch parameters of
6DOF, and the variation laws of the X, Y , Z, and V of the
projectile with time are shown in Figures 4–7.

The ballistic trajectory data contains the flight velocity,
position, and attitude of the projectile, and different infor-
mation has different dimensions. To eliminate the influence
of different dimensions on data analysis, the min-max
normalization is used to preprocess 10000 original datasets.
The formula is as follows:

x∗j =
xj − xmin
xmax − xmin

, ð37Þ

where xj represents the original data, xmin is the minimum
value of data, xmax represents the maximum value of data,
and x∗j represents the normalized data.

4.2. Simulation Test 1. Figures 8–12 are graphs of aerody-
namic parameter identification results. In the figure, the
abscissa represents the Mach number (Ma), and the ordinate
represents aerodynamic parameters to be identified. The
identification result of IPSO-ELM-AdaBoost can accurately
fit the real aerodynamic parameter curves in the whole
trajectory range. For the same parameter to be identified,
the introduction of the IPSO and ensemble learning theory
enables the model to exhibit excellent generalization ability.
Take the identification results of mxz′ (Figure 12) as an
example, the identification result curve of ELM oscillates,
especially in the transonic region ð0:8 <Ma < 1:2Þ. The
identification results of IPSO-ELM and ELM show that
the structural parameters optimized by IPSO contain more
sample information, which leads to higher curve fitting
degree. Comparing the identification results of ELM-
AdaBoost and ELM, it is found that the identification result
curve considering multiple weak learners can better describe
the variation law of aerodynamic parameters with Ma. It is
worth mentioning that (by comparing the identification
results of IPSO-ELM and ELM-AdaBoost), although IPSO

0 10 20 30 40 50 60 70 80 90 100

Time (s)

0

0.5

1

1.5

2

2.5

3

X 
(m

)

×104
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can improve the performance of the model, respectively,
ISPO-ELM still has the risk of overfitting because it only
takes a single learner into consideration. For different aero-

dynamic parameters (to be identified), the linearity between
aerodynamic parameters and Ma affects the fitting degree.
The stronger the linearity between aerodynamic parameters
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Figure 7: V‐T curve.
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to be identified and Ma, the higher the curve fitting degree
of identification results.

Table 4 shows the model structure and average identifi-
cation time (after 100 independent tests) of the four
algorithms. From the perspective of model structure, the
introduction of IPSO and ensemble learning theory can
effectively reduce the number of neurons in the hidden layer
and simplify the model. From the point of identification
time, although the IPSO algorithm and the introduction of
ensemble learning theory simplify the complexity of the
model, the iterative optimization process of IPSO and the

serial training process of the weak learner by AdaBoost. RT
both lead to the increase in identification time.

To further assess the performance of the model, three
well-known measures are taken [61–64]. The description of
these measures is as follows:

(a) Correlation Coefficient (R). R is a statistical measure
of the strength of a linear relationship between two
variables. Its values can range ½−1, 1�. R = 1 shows
a perfect positive correlation, or a direct relation-
ship. R = −1 describes a perfect negative, or inverse,

c y

Observed
IPSO-ELM-AdaBoost
ELM-AdaBoost

IPSO-ELM
ELM

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0.35
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Figure 9: Identification results of cy .
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Figure 10: Identification results of mz .
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correlation, with values in one series rising as those
in the other decline and vice versa. Moreover,
when R = 0, there is no possible agreement
between experimental results and numerical ones

(b) Mean Square Error (MSE). As a common model per-
formance evaluation function, MSE can reflect the
difference between the observed and the predicted
ones. The smaller the order of magnitude of MSE,
the higher the identification accuracy

Table 4: Results of four algorithms.

Model Structure Time (s)

ELM 12-95-5 8.7

IPSO-ELM 12-70-5 20.3

ELM-AdaBoost 12-65-5 31.9

IPSO-ELM-AdaBoost 12-50-5 33.5

Observed
IPSO-ELM-AdaBoost
ELM-AdaBoost

IPSO-ELM
ELM

m
' xz
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Figure 12: Identification results of mxz′ .
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Figure 11: Identification results of mzz′ .
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(c) Mean Absolute Percentage Error (MAPE). MAPE is a
relative error measure that uses absolute values to
avoid positive and negative errors canceling out.
For each data series, MAPE value is a positive ratio
of error value (difference between predicted output
and observed one) to observed value

The specific expression of the above-mentioned mea-
sures can be described as

R =
∑P

t=1 predictedt − predicted
� �

observedt − observed
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑P

t=1 predictedt − predicted
� �2

∑P
t=1 observedt − observed
� �2r ,

ð38Þ

MSE = 1
P
〠
P

t=1
observedt − predictedtð Þ2, ð39Þ

MAPE = 100
P

〠
P

t=1

predictedt − observedt
observedt

����
����, ð40Þ

where P represents the number of predicted samples,
observedt represents the tth actual observation value,
predictedt represents the tth model prediction value,
predictedt is the mean of predictedt , and observedt is the
mean of observedt .

The statistical results are collected in Table 5. Under the
combined action of ensemble theory and structural parame-

ters (optimized by IPSO), IPSO-ELM-AdaBoost has the best
generalization performance among the four machine learn-
ing algorithms. The structural parameters of ELM optimized
by IPSO can make the input weight and threshold contain
more information of input samples, which can effectively
improve the identification accuracy. AdaBoost can also
improve the identification accuracy by comprehensively
considering the learning results of multiple weak learners.
The results of IPSO-ELM and ELM-AdaBoost show that
ensemble theory improves more on the performance of the
algorithm. This is because structural parameters (optimized
by IPSO) contain more sample information, but on the other
hand, they also increase the risk of overfitting.

4.3. Simulation Test 2. In order to further verify the excellent
performance of the proposed algorithm in projectile aerody-
namic parameter identification, IPSO-ELM-AdaBoost is
compared with the traditional projectile parameter identifi-
cation algorithm (LSM, ML, and UKF). Figure 13 shows
the trajectory reconstruction results of the four algorithms.
The trajectory reconstructed by IPSO-ELM-AdaBoost has
the highest fitting degree with the actual trajectory. Among
the three traditional algorithms, the reconstructed result of
UKF is the closest to the actual trajectory. The fitting degree
of the four algorithms from low to high is as follows: LSM,
ML, UKF, and IPSO-ELM-AdaBoost. In practical engineer-
ing, more attention is paid to the landing point and side
deflection of the projectile, so the landing point (X) and side
deflection (Z) of the four algorithms are also presented in

Table 5

(a) R of four algorithms

cx cy mz mzz′ mxz′
ELM 0.61 0.75 0.89 0.16 0.14

IPSO-ELM 0.72 0.77 0.92 0.57 0.62

ELM-AdaBoost 0.83 0.81 0.94 0.89 0.86

IPSO-ELM-AdaBoost 0.90 0.85 0.97 0.92 0.91

(b) MSE of four algorithms

cx cy mz mzz′ mxz′
ELM 7:59 × 10−3 9:10 × 10−7 6:44 × 10−14 2:96 × 10−3 3:63 × 10−3

IPSO-ELM 6:47 × 10−4 1:31 × 10−7 3:17 × 10−14 5:81 × 10−5 1:58 × 10−6

ELM-AdaBoost 3:20 × 10−10 5:36 × 10−10 9:44 × 10−16 1:03 × 10−9 1:54 × 10−10

IPSO-ELM-AdaBoost 7:59 × 10−11 4:83 × 10−11 2:84 × 10−16 8:30 × 10−10 1:07 × 10−10

(c) MAPE (%) of four algorithms

cx cy mz mzz′ mxz′
ELM 25.8 28.4 9.6 55.2 71.2

IPSO-ELM 29.6 23.9 5.5 47.7 15.9

ELM-AdaBoost 10.2 20.7 5.8 10.3 9.2

IPSO-ELM-AdaBoost 7.1 18.4 4.1 10.0 8.3
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Table 6. Compared with the traditional algorithm, the pro-
posed algorithm has the highest accuracy. The drop point
error of IPSO-ELM-AdaBoost is 6m, and the sideway error
is 2m. In terms of the drop point error, the drop point error
of LSM and ML is more than 50 meters, which can no longer
meet the need of actual engineering. From the perspective of
side deviation error, UKF and IPSO-ELM-AdaBoost have
good performance, and their side deviation error is less than
10m.

5. Conclusion

Accurate aerodynamic parameters can effectively improve
the firing accuracy of the projectile. Affected by uncertain
factors such as actual combat environment and external
meteorological conditions, the actual ballistic trajectory data
is characterized by strong nonlinearity, time-dependent
nature, and susceptibility to random noise. Take a single
ELM for aerodynamic parameters, and the identification
result curve oscillates in transonic region. To accurately
obtain aerodynamic parameters of projectile, a new aerody-
namic parameter identification model based on improved
ELM and ensemble theory is constructed. Under standard
weather conditions, the model is trained by trajectory data,
and the mapping relationship between trajectory data and
aerodynamic parameters is established. The simulation
results show that the generalization ability of the model
can be effectively improved by optimizing the structural
parameters of ELM with IPSO and integrating several weak
learners into one strong learner. Although the identification

time is increased because of the iterative optimization of
IPSO and serial training of AdaBoost. RT, the identification
time of IPSO-ELM-AdaBoost is still the same order as that
of ELM. The proposed IPSO-ELM-AdaBoost has excellent
performance in the aerodynamic parameter identification
of projectile and can be extended to the other aircraft.
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