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A novel homing guidance law against maneuvering targets based on the deep deterministic policy gradient (DDPG) is proposed.
The proposed guidance law directly maps the engagement state information to the acceleration of the interceptor, which is an end-
to-end guidance policy. Firstly, the kinematic model of the interception process is described as a Markov decision process (MDP)
that is applied to the deep reinforcement learning (DRL) algorithm. Then, an environment of training, state, action, and network
structure is reasonably designed. Only the measurements of line-of-sight (LOS) angles and LOS rotational rates are used as state
inputs, which can greatly simplify the problem of state estimation. Then, considering the LOS rotational rate and zero-effort-miss
(ZEM), the Gaussian reward and terminal reward are designed to build a complete training and testing simulation environment.
DDPG is used to deal with the RL problem to obtain a guidance law. Finally, the proposed RL guidance law’s performance has
been validated using numerical simulation examples. The proposed RL guidance law demonstrated improved performance
compared to the classical true proportional navigation (TPN) method and the RL guidance policy using deep-Q-network (DQN).

1. Introduction

Intercepting the maneuvering targets is a particular chal-
lenge due to the complexity of the engagement [1, 2]. The
traditional guidance and control system for interception
show its weakness when facing high maneuvering targets,
but intelligent methods can solve the problem [3]. In the
field of guidance, proportional navigation (PN) has found
widespread applications because of the features of simplic-
ity and robustness [4]. PN is mainly divided into true pro-
portional navigation (TPN) [5] and pure proportional
navigation (PPN) [6]. For maneuvering targets, Ref. [7]
investigated the capture region of the realistic true propor-
tional navigation (RTPN) in three-dimensional (3D) space,
taking into account the nonlinearity of the interceptor-
target relative kinematics, resulting in more general find-
ings. However, when targets exhibit large maneuvering,
the performance of proportional navigation (PN) can sig-
nificantly decline. This is mainly due to the commanded

acceleration of PN often exceeding the capability of the
interceptor, resulting in large miss distances [8]. Optimal
guidance law (OGL) can intercept or strike a target with a
specific optimized performance index [9]. However, the
time-to-go needs to be accurately estimated in OGL; other-
wise, the performance may decline. Many new guidance
methods such as differential geometry [10], sliding mode
control [11], and other dynamic and control theories have
also been proposed. However, these guidance laws are often
too complex in form, which usually require too much mea-
surement information and involve plenty of guidance param-
eters, and, hence, are difficult to be applied in practice.

Reinforcement learning (RL) [12] provides a new idea
for the homing guidance law design problem. For example,
Q-learning is used for the adaptive determination of param-
eters in [13] and [14] by training. In [15], a guidance frame-
work designed by RL-based guidance law is proposed. It has
been proven that guidance laws based on RL are much better
than PNG, according to plenty of numerical simulation
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results. However, these traditional RL-based algorithms pro-
mote the guidance performance only through selecting suit-
able coefficients of the controller [16], which cannot achieve
precise guidance under realistic disturbed conditions. More-
over, the state and action set of the traditional RL method
are discrete, and the dimension is low, while the actual inter-
ception engagement is continuous and high-dimensional
[17].

As deep learning (DL) continued to advance, a new class
of algorithms known as DRL, combining both DL and RL
techniques, emerged [18]. The DRL method can effectively
overcome the difficulties of complex space and high dimen-
sions [19, 20], so it may have advantages in homing guid-
ance. Ref. [21] proposed deep Q-Network (DQN), which
solves the problem of high-dimensional input. Aiming at
the problem of exoatmospheric homing guidance, a novel
guidance method using DQN is proposed in [22]. However,
DQN is more suitable for the problem of discrete control,
while the actual interceptor’s acceleration is usually continu-
ous. The discrete action command might lead to a large
deviation and also a big miss distance.

The DDPG algorithm, introduced in [18], is an actor-
critic (AC) [23] algorithm that is well suited for the homing
guidance problem in continuous state and action space envi-
ronments. Ref. [24] explored the possibility of applying
DDPG to the design of homing guidance law. By comparing
the two learning modes of learning from zero and learning
with prior knowledge, it is proven that the latter helps to
improve learning efficiency. In [25] and [26], the terminal
guidance law of missiles is also advanced based on DDPG.
The result shows that the proposed policy has stronger
robustness and a smaller miss distance compared with PN.
However, most DRL-based guidance laws need to measure
and estimate the relative velocity and position between the
target and interception and the information on target accel-
eration [27, 28]. The involved measurements are too many
and are usually with lags and large errors. An RL-based
guidance law was proposed in [29] and [30] to solve this
problem, which only uses the LOS angle measurements
and their change rates as the observation information. The
problem of state estimation is simplified, and the bad influ-
ences caused by the estimation biases of position and veloc-
ity may be eliminated. Ref. [29] introduces proximal policy
optimization (PPO) to propose a homing guidance law to
intercept exoatmospheric maneuvering targets, combing
with metalearning [31, 32]. Experimental results have shown
that this guidance method outperforms the augmented ZEM
[30] guidance method. Ref. [33] proposed a model-based DRL
method, which uses deep neural networks andmetalearning to
approximate the predictive model of the guidance dynamics
and incorporates it into the control framework of path integra-
tion. It introduces a general framework for guidance, but it is
complex in form, and the problem of estimation errors is still
not solved.

A novel homing guidance law against maneuvering tar-
gets using the DDPG algorithm is proposed in this paper,
which directly maps an engagement state information to
the commanded acceleration, which is an end-to-end and
model-free guidance policy. The homing guidance law we

proposed only takes the information of LOS angles and
LOS rates between the target and interceptor as observation
and state inputs and does not require prior estimation of the
target’s acceleration. DDPG algorithm can effectively solve a
continuous and high dimensional dynamic environment.
Continuous action space is designed based on the intercep-
tor’s acceleration overload. The LOS rate and ZEM are
mainly considered in the design of reward, and the agent is
trained in a 3D environment. The results of comparison with
TPN and DQN-based RL guidance law show that the pro-
posed guidance method is with strong environmental adapt-
ability and better guidance performance.

The paper is structured as follows: Section 2 presents the
problem formulation, including the engagement scenario
and the model of motion and measurement. Section 3
mainly introduces the DDPG algorithm, and the details of
RL guidance law are described. The results are given in Sec-
tion 4, and Section 5 presents the conclusion.

2. Problem Formulation

2.1. Engagement Scenario. The interception process, a sim-
plified engagement scenario, is used. Referring to Figure 1,
the target’s and the interceptor’s position vectors are rt and
rm. r is the relative position in the launch inertial coordinate
system. The velocity vectors are vt and vm, the relative veloc-
ity vector is v. The accelerations are defined as at and am,
and the relative acceleration vector is a = at − am.

For the process of interception, the closing velocity is
usually large. If the target and interceptor maneuver along
the LOS direction, it can be challenging to alter the miss dis-
tance outcome. Therefore, we assume that the interceptor
maneuvers only in a plane perpendicular to the direction
of LOS in the LOS coordinate system, without considering
its maneuver along the LOS direction.

2.2. Motion Model of Interception. The intersection plane is
formed by r and v which are shown in Figure 1, and the
details are illustrated in Figure 2. The plane between the tar-
get and interceptor will rotate as a function of their relative
motion [34]. Figure 2 illustrates the centroid of the intercep-
tor at the origin om, with unit vectors perpendicular and
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Figure 1: The interception geometry in 3D.
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parallel to r denoted by eθ and er , respectively. Additionally,
q represents the LOS angle within the plane.

The relative velocity is decomposed into two compo-
nents: vr represents the closing velocity, while vθ represents
relative velocity perpendicular to the LOS. vθ causes the
rotation of the LOS. Additionally, ωs denotes the angular
velocity of the LOS within 3D space, ωs = ωseω and eω is per-
pendicular to er and eθ, forming the LOS coordinate system.
According to [6],

_r = vrer + vθeθ = _rer + rωseω × er , ð1Þ

_eω =Ωser × eω = −Ωseθ: ð2Þ
Ωs represents the angular velocity. By deriving from

equation (1),

€r − rω2
s

À Á
er + r _ωs + 2_rωsð Þeθ + rωsΩseω = a: ð3Þ

The LOS direction can be represented using qβ and qε
and within the launch inertial system [35]. Referring to [6],
equation (4) can be obtained.

ωs = _qβ sin qε ⋅ xS + _qβ cos qε ⋅ yS + _qεzS, ð4Þ

where xS, yS, and zS are the coordinate axis unit vectors in
the LOS coordinate system. According to [36] and [22],

_er = _qεyS − _qβ cos qεzS, ð5Þ

eθ =
_qεyS − _qβ cos qεzSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_qβ cos qε
� �2

+ _q2ε

r , ð6Þ

eω =
_qβ cos qεyS + _qεzSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_qβ cos qε
� �2

+ _q2ε

r : ð7Þ

In summary, when qε and qβ are measured, and then
their rates of change are obtained by filtering, the equation
of motion and the intersection plane can be determined
according to equations (5)–(7).

ZEM is the final miss distance generated by the intercep-
tor when the target and missile are not maneuvering [7, 34].
ZEM and time-to-go are calculated as follows.

ZEM��! = r − v ⋅ tgo,

tgo =
r ⋅ v
v2

:
ð8Þ

2.3. Measurement Model of Interception. The measurement
model is mainly to process the information measured by
the interceptor and is developed to calculate the LOS angles
and LOS rates of change based on the current missile-target
state [37]. Referring to Section 2.1, the relative position and
velocity vector are as follows:

r = rx, ry, rz
Â ÃT, ð9Þ

v = vx, vy, vz
Â ÃT

: ð10Þ

By utilizing equations (9) and (10),

qε = tan−1
ryffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x + r2z

p
 !

,

qβ = tan−1
−rz
rx

� �
,

_qε =
r2x + r2z
À Á

vy − ry rxvx + rzvzð Þ
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x + r2z

p ,

_qβ =
rzvx − rxvz
r2x + r2z

:

ð11Þ

This paper’s simulation neglects the effects of error
related to the relative distance, closing velocity, and LOS
angle measurements in the measurement model. Only the
errors of measurement in the LOS angular rates are intro-
duced. A Gaussian noise with zero mean and a specified
standard deviation 1 × 10−4rad/s is assigned.

3. RL Homing Guidance Law

Establishing a Markov decision model [38] of the problem is
a prerequisite for designing the homing guidance law using
the DRL algorithm [12]. Then, the interception problem
needs to be transformed into the RL framework.

3.1. The Overview of RL. Reinforcement learning is an itera-
tive process [39] that involves an agent interacting with the
environment, observing state St and receiving an instanta-
neous reward Rt for each action At taken during a single epi-
sode of training. Then, it executes an action and feeds back
to the environment, so that the agent learns the better policy.

Reinforcement learning algorithms are broadly catego-
rized into two methods: value function and policy gradient
[40]. The methods of the former, such as Q-learning and
DQN, estimate the value of state-action pairs. The latter’s
methods, such as policy gradient and AC algorithm, directly
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learn the policy which maps states to actions. DRL algo-
rithms, such as DDPG and A3C, combine deep learning
with these methods. However, value function methods are
not suitable for problems with high dimensions and contin-
uous action spaces, and the policy gradient method based on
AC architecture has more advantages for such problems.
DDPG is used for solving the problem and is compared
against the TPN and DQN algorithms in this paper.

3.2. DDPG Algorithm. DDPG is based on AC architecture
for solving RL problems with continuous spaces in state
and action. The algorithm uses neural networks to approxi-
mate the functions, which are represented by the value net-
work (part of the critic) and policy network (part of the
actor). The value network calculates the state or action
values of the corresponding state, while the policy network
calculates the action values of the policy. The DDPG frame-
work is shown in Figure 3.

A dual network is also used in the DDPG algorithm,
namely, the current and the target network. The AC-type
algorithm generally includes a policy and value network, so
DDPG has a total of four networks after using a dual net-
work [18].

DDPG also uses the replay buffer to reduce the correlation
between training data. During training, the agent randomly
selects small batches of data from the experience replay pool
to calculate network loss and gradient and then updates the
current policy network and value network through gradient
backpropagation. DDPG differs from DQN in that it imple-
ments a soft update approach to update the target network,
as opposed to periodically copying parameters from the cur-
rent network. The soft update slowly updates the parameters
each time, and it is mathematically expressed as follows:

w′⟵ τw + 1 − τð Þw′,
θ′ ⟵ τθ + 1 − τð Þθ′,

ð12Þ

where τ is the update coefficient. To avoid the local optimum
in the process of exploring the state space, random noise μ is
added to the action, which is expressed as follows:

a = πθ sð Þ + μ, ð13Þ

where πθðsÞ is the output of actor network. The loss is also
obtained by temporal-difference (TD) training. The pseudo-
code is shown in Algorithm 1.

3.3. RL Model of Interception. To solve the problem of inter-
ception using DDPG, the original problem needs to be trans-
formed into the framework of RL. First, the corresponding
MDP is established, and the elements of reinforcement
learning are designed according to the motion model in Sec-
tion 2.2.

3.3.1. State. The process of interception can be described by
an MDP. The environment of this process is composed of
the 3D motion model established in Section 2. The state
space designed mainly includes LOS angle and their change
of rate [29], which is expressed as follows:

S = Δqε, Δqβ, _qε, _qβ
h i

, ð14Þ

where Δqε and Δqβ are the LOS angle differences. Therefore,
this information can be used for the state input of the agent
only by measuring the LOS angles and their rates. It is
assumed that the interceptor has a detection capability.
The process is observable, and the variables in this paper
are defined as follows:

O = rt, vt, rm, vm, Δqε, Δqβ, _qε, _qβ
h i

: ð15Þ

3.3.2. Action. The DDPG algorithm is particularly appropri-
ate for problems with continuous actions. Considering the
continuous maneuvering form of the interceptor, without
considering the maneuvering along the LOS, that is, the
interceptor maneuvers along the plane perpendicular to
LOS. Therefore, if the interceptor’s acceleration in yS and
zS directions is u1 and u2, respectively, the continuous action
space is expressed as follows:

A = u1, u2½ �, u1, u2 ∈ −amax, amax½ �: ð16Þ

The total acceleration acting on the interceptor is as fol-
lows:

am =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u12 + u22

p
: ð17Þ

We assume that the maneuvering target’s maximal over-
load and the interceptor in a certain direction are 3 g and 6 g,
respectively, so the target’s and the interceptor’s maximum
total overload are 3

ffiffiffi
2

p
g and 6

ffiffiffi
2

p
g.

3.3.3. Reward. The reward design is the key to RL problems.
To ensure the training converges to the optimum, the
method of reward shaping [41] is used to avoid the problem
of reward sparsity and learn the optimal policy.

The LOS rate and ZEM are considered in the reward
function of the model. During the interception, the LOS rate
is positively correlated with the relative velocity. The smaller
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Figure 3: DDPG basic framework.
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the absolute value of the relative velocity, the smaller the
ZEM. The Gaussian reward [30] is designed as follows:

R1 = exp − θj j/σð Þ: ð18Þ

The reward is a shaping reward that depends on the
velocity-leading angle θ between the LOS direction and
the relative velocity. The reward coefficient σ is used for
adjusting the reward value. Figure 4 illustrates the effect
of different σ values on the reward. Smaller values of σ
result in smaller rewards under the same conditions.
When θ is smaller, it indicates that the corresponding
reward is larger.

To ensure effective interception of the target, a terminal
reward constraint is required. Therefore, a terminal reward
function is designed. If the ZEM meets with the allowable

miss distance, then a positive reward (+10) is given. Other-
wise, there is no reward value (+0). Specifically expressed as:

R2 =
+10 if ZEMf ≤ rMiss

0 else

(
: ð19Þ

To sum up, the total reward is as follows:

R = R1 + R2: ð20Þ

3.4. Create the Agent. Based on the established framework of
interception, the network is further designed, the algorithm
hyperparameters are debugged, and the DDPG agent is
trained.

3.4.1. The Neural Network. The Tensorflow framework is
used for building the neural network of DDPG. DDPG con-
tains two parts: value and policy network. For the value net-
work, the output is the action value corresponding to the
state and action, which is different from the Q network in
DQN. The value network uses a three-layer backpropagation
(BP) neural network [42], which is shown in Table 1. Relu
and tanh activation functions are used in the network [43].
The policy network structure is described in Table 2.

3.4.2. Hyper Parameter. The parameters are important to the
performance of training. And this adjustment process is dif-
ferent in different application ranges. Different problems
have different parameter sets. If the parameter setting is

1. Initialize network parameters and target Q network parameters w, θ, w’=w, θ ’= θ.
2. Initialize replay pool D.
3. For episode = 0 to T
4. Interceptor's state s0 is initialized
5. For s = s0to Terminations:
6. a) Output action a = πθðsÞ + μ according to state s in policy network.
7. b) Execute a, transfer to s', and get reward r. Judge termination d.
8. c) Store transitions {s, a, s', r, d}.
9. d) Sample n transitions from D.
10. e) Compute the current target Q value yi.

yi = r j + ð1 − dÞγQ′ðsj′, πθ′ðsj′Þ,w′Þ.
11. f) Compute the loss c loss = 1/n∑n

j=1ðyj −Qðsj, aj,wÞÞ2. Update value network parameter w by backpropagation.

12. g) Compute the loss of policy network aloss = −1/n∑n
j=1ðsj, πθðsjÞ, θÞÞ. Update policy network parameter θ by

backpropagation.
13. h) Update parameters in target networks with equation (12).
14. i) Update state: s = s'.

Algorithm 1: DDPG for homing guidance law.
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Table 1: The structure of the value network.

Layers Neurons Activation functions

Input of state 4 \

Input of action 2 \

Hidden layer 1 60 Relu

Hidden layer 2 40 Relu

Output 1 \
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unreasonable, the algorithm cannot converge. Therefore,
hyperparameters need to be continually adjusted during train-
ing. The hyperparameters used in this problem are determined
by conducting numerous numerical simulations in the estab-
lished interception environment. Table 3 shows the hyper-
parameters that are ultimately chosen for this study.

4. Simulations and Analysis

During the training, the state measurement errors and time
constant are not considered. The motion equation of each
episode is integrated by the Runge-Kutta method, whose
order is 4 and the simulation step is 1ms. Table 4 shows
the initial conditions.

During training, a terminal reward with an allowable
miss distance of 0.2m was used. The results presented
include the training results, a comparison with TPN, and a
comparison with a homing guidance law based on
DQN [22].

4.1. Results of Training. The DDPG environment is built in
Tensorflow, and then the agent generates a large volume of
data which is used to optimize its policy. We train the agent
by a computer with NVIDIA GeForce RTX 2080 Ti GPU,
Gold 6226R: 2.90GHz CPU. The versions of Python and
Tensorflow are 3.7.6 and 1.15.0.

Tensorboard is used to show the process of training, and
it took approximately 9401.2702 seconds to train 2000 epi-
sodes, equivalent to about 2.6 hours for full training.
Figures 5 and 6 depict the change in the loss for the policy
and value networks, respectively, with the horizontal axis
representing the iterations of training. A decrease in the pol-
icy network loss corresponds to an increase in the Q-value
output of the value network, as demonstrated in Figure 5.

This indicates that the parameters of the policy network
are continuously optimized, resulting in maximum action
value output. The loss function is in the value network,
and it can be observed that in the early stages of training,
TD error is relatively small. As training progresses, the net-
work becomes increasingly optimized, with lower TD error
values being more beneficial for algorithm training.

Figure 7 illustrates the changes in rewards, with the hor-
izontal axis representing episodes and the vertical axis repre-
senting the cumulative reward (in blue) and average reward
(in orange) for each round after smoothing. It can be
observed that the maximum cumulative reward is achieved
after 250 episodes. Since DDPG contains two networks, the
stability of the algorithm is affected, and there may be fluctu-
ations. Therefore, there is a certain range of change in the
cumulative reward after convergence. However, the policy
of the agent is optimized during training, and the conver-
gence speed is fast.

4.2. Comparison with TPN. During training in Section 4.1,
the effects of measurement errors and time delays are not
considered. The agent is compared with TPN with different
guidance coefficients in two ways, that is constant maneu-
vering and sinusoidal maneuvering. The simulation takes
into account the measurement error. Additionally, the con-
trol system’s response delay is assumed to be equivalent to
two sampling periods (20ms) after the guidance command.

The simulation is conducted under the following condi-
tions: the launch location’s latitude is 60°, longitude is 140°,
launch azimuth is 90°, and altitude is 100m. The target’s
and interceptor’s initial information is presented in
Table 5, indicating an initial relative distance between them
of 100 km with qε and qβ both being 30°. The guidance accel-
eration’s sampling period is 10ms, with the time step being
1ms in the test. When the relative velocity is greater than
0, the terminal miss distance approximates the ZEM.

4.2.1. Constant-Maneuvering Target. In the case of constant-
maneuvering targets, the maneuvering is only considered in
the LOS vertical plane. To verify the DDPG guidance law’s

Table 2: The structure of the policy network.

Layers Neurons Activation functions

Input of state 4 \

Hidden layer 1 60 Relu

Hidden layer 2 40 Relu

Output 1 Tanh

Table 3: The hyperparameters of DDPG.

Hyperparameter Parameter value

Maximum iterations 2000

Discount factor 0.995

Coefficient of soft update 0.001

Reward coefficient 0.05

Capacity of experience replay pool 100000

Minibatch size 64

Environmental noise variance 1.0

Noise attenuation rate 0.99

Value network learning rate 0.002

Policy network learning rate 0.001

Table 4: The initial conditions for training.

Physical parameters Reference value

Azimuth angle of LOS 40 deg

Elevation angle of LOS 30 deg

LOS range 100 km

Interceptor’s position vector 0, 0, 0½ �T m
Velocity yaw angle of target 220 deg

Interceptor velocity 5 km/s

Target velocity 7 km/s
Alignment deviation perpendicular to
intersection plane

2 deg

Velocity pitch angle of the target 0 deg

Alignment deviation in the intersection plane 2 deg

6 International Journal of Aerospace Engineering



generalization ability, we assume the target’s acceleration is
at = ½0, 4g, 4g�Τ. The interceptor’s total overload is set to
6√2 g, which differs from the target and interceptor setting
during training. The guidance coefficient is 3 and 5.
Figure 8 shows the results.

The terminal miss distance is given in Table 6. In
Figure 8(a), the TPN in both cases of N taking 3 and 5 can-
not reduce the vertical velocity. When the time-to-go
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Table 5: The initial conditions of the simulation.

Position (km) Velocity (m/s)

Interceptor (0, 0, 0) (338.7, 4984, -211)

Target (70, 50, -33.3) (-6039, 610, 3486)

7International Journal of Aerospace Engineering



decreases, vq increases continuously, and the closing velocity
also changes greatly. In Figure 8(d), the guidance law based
on DDPG effectively suppresses the LOS rate. According to
the results, when N is 3 and 5, TPN eventually produces a
large miss distance, while DDPG guidance law produces a
small miss distance.

4.2.2. Sinusoidal-Maneuvering Target. The target’s accelera-
tion is at = ½0, 2g + 2gcosðtÞ, 2g − 2gsinðtÞ�Τ, and the over-
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Figure 8: DDPG results of the constant-maneuvering target.

Table 6: The comparison results of terminal miss distance.

TPN
N = 3ð Þ

TPN
N = 5ð Þ

DDPG
guidance law

Constant maneuvering 414m 68m 0.16m

Sinusoidal maneuvering 12.5m 0.93m 0.1m
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Figure 9: The acceleration in sinusoidal maneuvering target.

8 International Journal of Aerospace Engineering



load saturation is 4
ffiffiffi
2

p
g. Figure 9 shows the acceleration

changing with time.
The guidance coefficient also takes 3 and 5. Figure 10

gives the simulation results. In Figure 10(a), the guidance
law based on DDPG can reduce the vertical velocity more
fully than TPN. In Figure 10(d), the change of the LOS rate
also shows that DDPG can reduce the LOS rate more effec-
tively during the guidance process.

The coefficient N takes 3 and 5 in this case as well. The
results are presented in Figure 10. Table 6 reveals the termi-
nal miss distance for the DDPG-based guidance law and

TPN. Figure 10(a) suggests that the DDPG method can
reduce the vertical velocity to a greater extent than TPN.
Additionally, Figure 10(d) illustrates that DDPG is more
effective in reducing the LOS rate during the guidance
process.

The above results show that the proposed RL method is
more effective than the TPN to intercept targets with certain
maneuvering ability. The DDPG guidance law is capable of
effectively reducing the vertical relative velocity, ensuring a
very small final miss distance, and mitigating the divergence
of the LOS rate.

4.3. Comparison with DQN. During the training process in
Section 4.1, the target’s maximum overload is 3

ffiffiffi
2

p
g. In the

test of this section, the initial conditions are kept unchanged.
The target moves in a mode of constant maneuvering, and
its maximum overload is also 3

ffiffiffi
2

p
g. The acceleration form

is at = ½0, 3g, 3g�T. The interceptor is guided by the guidance
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Figure 10: DDPG results of sinusoidal maneuvering target.

Table 7: The initial conditions of the target and interceptor.

Position (km) Velocity (m/s)

Target (66.34, 50, -55.67) (-5362, 0, 4499)

Interceptor (0, 0, 0) (872, 4860, -785)
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laws based on DDPG and DQN [22]. The initial conditions
are presented in Table 7, and Figures 11 and 12 show the
results.

Figures 11 and 12(a) show that the two methods are suit-
able for discrete (DQN) and continuous (DDPG) accelera-

tions, respectively. As shown in Figure 12(d), the terminal
miss distances in DQN and the DDPG guidance law are less
than the allowable miss distance, and both are less than
0.01m after calculating. When the target’s overload satura-
tion is 3

ffiffiffi
2

p
g, both guidance laws can fully suppress the
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Figure 11: Acceleration of DQN command.
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Figure 12: Comparative simulation results of DQN and DDPG.
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LOS rate’s divergence. In Figure 12(b), the LOS rate of the
DQN guidance law fluctuates in the end, while the LOS rate
of the DDPG guidance law decreases to 0. Therefore, the
DDPG guidance law performs better than the DQN. In
Figures 12(c) and 12(d), the velocity leading angle of the
two guidance laws decreases continuously during the inter-
ception process, that is, vq decreases continuously. At the
same time, the ZEM generated by the interceptor also
decreases, and it effectively hits the target with a small miss
distance at the end time.

In addition, when the total overload saturation of the
target is less than 3

ffiffiffi
2

p
g , the simulation is compared and

verified. The two RL-based guidance laws can effectively
intercept the target from the results, and the final miss dis-
tance is within the allowable miss distance. However, the
DDPG guidance law can deal with the continuous action
space, which is more realistic. Moreover, the DDPG guid-
ance law can effectively suppress the LOS rate (see
Figure 12(b)), while the DQN guidance law diverges at the
end of time, indicating that the DDPG method performs
better. Based on the simulations conducted above, it can be
observed that when the target possesses some maneuvering
capability, both RL-based guidance laws can ensure effective
target interception, with the DDPG guidance law outper-
forming the DQN guidance law.

5. Conclusion

We propose a DDPG-based guidance law for the guidance
and control of interceptors with continuous maneuvering
capabilities in this paper. The DDPG agent is developed
using TensorFlow and optimized in the interception engage-
ment scenario. Taking into account the effects of measure-
ment errors and time delays in guidance control, the
effectiveness of the proposed guidance law is compared with
TPN and DQN-based RL guidance law through simulations
of typical examples. The findings suggest that the DDPG-
based guidance law outperforms the other two in terms of
guidance performance. Future research could consider more
complex interception scenarios, exploring more suitable
intelligent guidance methods with potential implementation
in real interception processes.
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