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For complicated aerodynamic design problems, the efficient global optimization method suffered from the defect of the incorrect
portrayal of the design space, resulting in bad global convergence and efficiency performance. To this end, a Kriging-based global
optimization method, named the Kriging-based space exploration method (KSE), was proposed in this paper. It selected multiple
promising local minima and classified them into partially and fully explored minima in terms of the fitting quality of the surrogate
model. Then, the partially explored minima would be furtherly exploited. During the local search, an enhanced trust-region
method was adopted to make deep exploitation. By combining local and global searches, the proposed method could improve
the fitting quality of the surrogate model and the optimization efficiency. The KSE was compared to other global surrogate-
based optimization methods on 12 bound-constrained testing functions with 2 to 16 design variables and 2 aerodynamic
optimization problems with 24 to 77 design variables. The results indicated that the KSE generally took fewer function
evaluations to find the global optima or reach the target value in most test problems, holding better efficiency and robustness.

1. Introduction

In aerodynamic shape design, Computational fluid dynamics
(CFD) solvers and optimization algorithms were essential.
The optimization algorithms have been divided into two
categories: gradient-free and gradient-based methods. Gener-
ally, the gradient-based methods needed sufficient gradient
calculations and inherently converged to local minima, which
was not suitable for complex multimodal problems [1]. The
gradient-free methods, which did not need gradient informa-
tion, could be easily incorporated into existing frameworks
and have been found in many engineering applications [2, 3].
The gradient-free methods could be divided into several differ-
ent groups: biology-based, physics-based, social-based, music-
based, chemical-based, sport-based, swarm-based, and hybrid
methods which were combinations of these [4, 5]. Since the
optimization field was expansive, suitable gradient-free
methods would be problem dependent. However, the
gradient-free methods would need massive calls and simula-
tions for the high-fidelity design requirements, leading to an
enormous computational burden. Therefore, the efficient global

optimization method (EGO) [6] has greatly acquired the
research and development of the global optimization method
called surrogate-based optimization (SBO) [7–12], which had
the potential to uncover the unconventional aircraft configura-
tions in the aerodynamic design. For problems with multimo-
dality, the accuracy for the surrogate model largely depended
on the capability of the surrogate model in capturing the non-
linearity of the problems. Ignoring this would result in subop-
timality or infeasibility of optimal solutions [13–16]. The EGO
method soon acquired a reputation for its flexibility to imitate
complicated functions for it had a random error estimate
between the true and the surrogate functions to quantitatively
measure the uncertainty in prediction [3, 17].

The most attractive characteristic of the EGO method
was that it could meet two requirements: the exploitation
of local minima (local search ability) and the exploration
of uncertain areas (global search ability). The balance of
global and local search ability largely relied on the predicted
standard error. However, the numerical experiments showed
that the EGO did not perform very well on multimodal
problems and it also suffered from the curse of
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dimensionality on problems with more than 30 design vari-
ables [18–20]. Thus, it would take a considerable amount of
computational cost to improve the surrogate model accuracy
[18] for complicated aerodynamic design problems with
high multimodality and dimensionality [21]. Therefore,
enhancing and balancing these two abilities was essential
to improve optimization efficiency [22]. Various extensions
and modifications of EGO have been developed and applied
to engineering design problems. Sun et al. [23] proposed two
different multiobjective EGO algorithms, where the infill cri-
terion formed by the “Kriging believer” and “multiple good
local optima” strategy was adopted to compromise exploita-
tion and exploration. By extending the generalized EGO
algorithm and adopting a constant liar strategy, Li et al.
[24] used a Kriging-based unconstrained global optimization
method to obtain multiple infill sample points. Xing et al.
[25] proposed a P-EI method, combined with the effective
design domain simplification technology, to search multiple
peaks of the expected improvement (EI) function. Amine
Bouhlel et al. [26] proposed a regional extreme criterion
combined with the partial least squares method (KPLS(+K)
model) to deal with the high-dimensional problems.

Besides, there were many meaningful works to enhance
and balance the global and local searches for surrogate-
based global optimization: Wang and Simpson [27] applied
the fuzzy K-means clustering method on many cheap sam-
ple points to reduce the design space. A stochastic RBF
method for the global optimization of expensive functions
was proposed by Regis and Shoemaker [28], which
improved the Gutmann-RBF method by varying the size of
the subdomain in different iterations [29]. Villanueva et al.
[30] used the K-means clustering method to partition initial
design space into different subregions and explored them
separately by multiagent systems. Long et al. [31] combined
a set of intelligent space exploration strategies with TR-
ARSM for global optimization. In addition, the multistart
approach has also proved to be an efficient global optimiza-
tion strategy. Regis and Shoemaker [18] introduced A
QUAsi-multistart Response Surface (AQUARS) locating
the promising regions of the objective function by perform-
ing local searches around the local minima of the surrogate
model, and it bounced between the local minima to obtain
the global optima. Dong et al. [32] combined the multistart
approach with space reduction strategy, introducing the
multistart space reduction method. The MSSR reduced
space size automatically based on the current best sample
point. Eriksson et al. [33] proposed the TURBO algorithm
which applies multiple local surrogate models to approxi-
mate the objective function and uses an implicit bandit
method to perform a principled global allocation of samples
across these models. Bartoli et al. [34] proposed a supereffi-
cient global optimization coupled with a mixture of expert
(SEGOMOE) method, where an enrichment strategy based
on a mixture of experts and adaptive surrogate models was
applied to tackle multimodal problems with complex con-
straints. Diouane et al. [35] proposed a trust-region-like
EGO method (TREGO), which alternated between tradi-
tional EGO steps and local steps within a trust region. To
deal with the constrained black-box problems, some

researches adopted different infill criterions to figure out
the feasible regions during the optimization process
[36–38], and some researches integrated surrogate model
with evolutionary algorithms to deal with expensive con-
straints [39–41], which could dramatically improve the opti-
mization efficiency and convergence on constrained
optimization problems.

These researches indicated that the design space reduc-
tion approach presented to be an efficient optimization
method for multimodal and computationally expensive
black-box problems. However, there were two main argu-
ments significantly affecting the optimization stability, con-
vergence, and efficiency:

(a) The local minima of the surrogate model would
change significantly as more sample points were
evaluated, and the new subspaces were generally
centered at a single best point. Thus, it was difficult
to select suitable local minima to construct promis-
ing subspaces. Once it was trapped in some decep-
tive regions, it would cost plenty of computational
effort to escape and search for other possibilities [32]

(b) Some algorithms tended to search for new sample
points around the well-explored local minima, lead-
ing to wasted computing resources, and would
ignore the potential regions where better sample
points might exist

The Kriging-based space exploration method (KSE) was
proposed to address these problems by using multiple subre-
gion local search strategy and the enhanced trust-region
method in this paper. It combined the global search over
the entire space and local search in the subspaces to balance
and enhance the global exploration ability and local exploi-
tation, thereby addressing problem (a). During the local
searches, not all local minima need to be further exploited.
The local minima were classified into fully and partially
explored minima in terms of root mean square error
(RMSE). And only the local minima with large RMSE
needed further exploitation, during which an enhanced
trust-region method was proposed to emphasize the optimi-
zation of the partially local minima, thereby addressing
problem (b). Besides, to overcome the limitations of the
original EGO, the infill criterion would be turned into min-
ima prediction (MP) [6] to make further exploitation when
all local minima were fully explored and the improvement
of the EI criterion was lower than the preset threshold.

The proposed KSE method was compared to alternative
global optimization methods on 12 test functions with 2 to
16 design variables and 2 aerodynamic design problems with
24 to 77 design variables. The numerical results indicated
that the KSE method generally used fewer function evalua-
tions to find the global minima on most test problems com-
pared to alternative methods. Moreover, it could use fewer
function evaluations to reach a reasonably good solution to
aerodynamic design problems compared to alternatives.
Hence, the KSE was very promising for the global optimiza-
tion of engineering design.
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The rest of the paper was organized as follows: part 2
introduced the background while part 3 focused on the
framework of the proposed method. Part 4 and part 5
described the computational experiments and their results
as well as the related discussion. Finally, the last part pro-
vided a summary and the conclusions.

2. Methodology

During the last decade, the EGO method [6] has become one
of the most popular methods for global optimization. The
EGO method was a sequential planning strategy that used
a Gaussian process-based surrogate model, e.g., Kriging,
and a variance-based merit function or criterion to generate
candidate solutions. Therefore, the theories of EGO were
briefly depicted in this section.

2.1. The Kriging Model. The Kriging was first proposed in
the field of geostatistics by Krige [42] and Matheron [43].
After Sacks et al. [44] applied it to computer-based engineer-
ing design, the Kriging model became popular in engineer-
ing design and optimization.

In the Kriging model, the values of the black-box func-
tion f were assumed to be the outcomes of a stochastic pro-
cess. In particular, it was assumed that the function value
f ðxÞ was a realization of a random variable YðxÞ which
was normally distributed with mean μ and variance σ2. For
any two points xi and xj, the correlation between YðxiÞ
and YðxjÞ could be modeled as

Corr Y xið Þ, Y xj
À ÁÂ Ã

= exp −〠
d

k=1
θk xik − xjk
�� ��pk !

, ð1Þ

where 1 ≤ pk ≤ 2 and θk > 0 ðk = 1, ::, dÞ were hyperpara-
meters of the model, and they provided more degree of free-
dom for the predictor to imitate the behavior of multimodal
functions. Let y1 = f ðx1Þ,⋯, yn = f ðxnÞ and y = ðy1,⋯, ynÞT
be the vector function values. Fitting the surrogate model
through the ðx1, y1Þ,⋯, ðxn, ynÞ was equivalent to finding
the maximum likelihood estimates (MLEs) of the parame-
ters μ, σ2, θ1,⋯, θd , p1,⋯, pd . Then, the Kriging predictor
at a new point x∗ was presented as

ŷ x∗ð Þ = bμ + rTR−1 y − Jn×1bμð Þ, ð2Þ

where bμ = JTn×1R
−1
y y/JTn×1R−1

y Jn×1 and r = ðCorr½Yðx∗Þ, Yðx1Þ�
,⋯, Corr½Yðx∗Þ, YðxnÞ�ÞT . The uncertainty at x∗ could be
given by mean squared error (MSE):

s2 xð Þ = bσ2 1 − rTR−1r +
1 − rTR−1r
À Á2
JTn×1R

−1 Jn×1

" #
, ð3Þ

where bσ2 = ðy − Jn×1bμÞTR−1ðy − Jn×1bμÞ/n. The first term
represented the uncertainty due to the correlation of the sam-
ple points, and the second term described the uncertainty of

the estimated parameter μ. For more details, Jones [21] gave
a taxonomy of surrogate-based optimization methods.

2.2. The EGO Method. The EGO method belonged to the so-
called “two-stage” method: the first step consisted of fitting
the surrogate model and estimating the associated hyper-
parameters. The second step consisted of using this surro-
gate model instead of the true function and searching for
promising sample points. It used (4) to find new sample
points.

EI =
fmin − ~y xð Þð ÞΦ fmin − ŷ xð Þ

s xð Þ
� �

+ s xð Þϕ fmin − ŷ xð Þ
s xð Þ

� �
, if s xð Þ > 0,

0, if s xð Þ = 0:

8><>:
ð4Þ

Here, fmin was the current best objective function value.
The Φ and ϕ were the cumulative density function and the
standard normal probability density functions.

For an inequality constraint function as gðxÞ > glimit, the
constraint function was also modeled by a Gaussian process.
And this model could be used to calculate the probability
that the constraint was met. So, the ‘probability of feasibility’
for each constraint gðxÞ would be calculated in (5):

P g xð Þ > glimit½ � = 1
ŝ xð Þ ffiffiffiffiffiffi

2π
p

ð∞
0
e− G xð Þ‐glimitð Þ−ĝ xð Þ½ �2/ 2ŝ2 xð Þð Þ, ð5Þ

where GðxÞ was a normally distributed random variable with
mean value ĝðxÞ and variance value ŝ2ðxÞ and GðxÞ − glimit
measured the feasibility of new points. Provided that the
constraint and objective functions were all independent
models, Sasena et al. [45] proposed the constrained expected
improvement (CEI) method to handle constraints by multi-
plying the expected improvement of the objective function
and the probability of feasibility as

CEI = EI × P g xð Þ − glimit½ �: ð6Þ

Locatelli [46] proved that the EGO method generally
took plenty of function evaluations to find the global optima.
During the EI-based global optimization, the sðxÞ was usu-
ally slightly lower than its true error value [47]. Unless the
uncertainty of the current region became relatively low, the
underestimation would cost many iterations to explore the
local spaces, especially for some deceptive regions with lower
estimated standard deviation, causing slower convergence
rate.

2.3. Trust-Region Method. The trust-region method (TRM)
[48] has proven to be an efficient space reduction method
for its good performance in optimization [49]. It identified
the promising space, where the actual global optima proba-
bly exist, in light of how well the current surrogate model
predicted the improvement of the objective function. In
TRM, the current best sample point was chosen as the center
of the new space. The trust-region factor rk and trust-region
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radius δk were computed through

rk =
f xk−1ð Þ − f xkð Þ
f xk−1ð Þ − f

~
xkð Þ

=
Δf

f k−1 − f
~

k

, ð7Þ

δk =

c1 xk − xk−1k k, rk < r1,

min c2 xk − xk−1k k, δmaxð Þ, rk > r2,

xk − xk−1k k, r2 ≥ rk ≥ r1,

δmin, rk < 0:

8>>>>><>>>>>:
ð8Þ

The f ðxkÞ and f ~ðxkÞ were the true and predicted values,
respectively. rk could measure the improvement of objective
function and accuracy of surrogate model at the same time
through Δf and f k−1 − f ~k. If Δf > 0, the current surrogate
model was capable of decreasing the true objective value,
and then, the trust radius δk was updated according to (8)
[49], where the typical values of r1, r2, c1, c2 were used,
namely, r1 = 0:10, r2 = 0:75, c1 = 0:75, and c2 = 1:25. The
δmax was the upper bound of the trust radius, which was
usually set to 0.5, and k:k indicated the L1 Euclidean norm.
Otherwise, the current surrogate model could not improve
the objective value for its bad fitting quality. In this case,
the minimum trust radius δmin was used, which usually lies
in the interval ½0:01, 0:1�. Then, TRM was forced to exploit
a small neighborhood around the present best point. The
TRM allowed optimization to focus on a small region
around the current point with dynamic bounds, and it was
very efficient in local search, avoiding the prior knowledge
of constructing local space.

3. Proposed Method

3.1. Classification of Local Minima. From the discussion
above, the EGO method attempted to explore the entire
design space which would require numerous computational
resources. Once it focused on some deceptive local minima,
it was hard for it to escape from local minima and explore
other potential regions in time. An unbalanced approach
to exploitation and exploration usually caused a poor depic-
tion of the design space, as well as the convergence and effi-
ciency of optimization.

To overcome these issues, this paper proposed the
Kriging-based space exploration method (KSE). The multi-
ple subregion local search strategy was used to explore the
local regions in the entire design space, improving the depic-
tion of the design space and surrogate model accuracy. One
of the main aspects of this strategy was to select reasonable
potential regions to make deep exploitation. It classified
the local minima of the surrogate model into fully and par-
tially explored local minima, from which the partially
explored minima were selected to make further exploitation.
The classification of partially explored local minima was
relayed on the depiction of local regions, defined by the root
mean square error (RMSE) of local regions. The poor fitting
quality of the surrogate model would lead to substantial
fluctuations in design space, resulting in misleading results
for the algorithm. And a good depiction of the entire design
space, which relied on depicting vicinities of local minima,
could improve the fitting quality of the surrogate model.
Thus, the main purpose of multiple subregion local search
strategy was to make the proper depiction of potential local
regions and provided efficient information for global
optimization.
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Figure 1: The sketch of local minima.
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Let design space D = ½a, b� ⊆ℝd and f : D⟶ℝd be any
function from D to ℝd , whose local regions were nearly lin-
ear. Suppose x∗ was a local minima of the objective function
f over D; then, there existed radius ρ > 0, so that f ðx∗Þ ≤ f
ðxÞ for all x ∈ Lðx∗, ρÞ ∩D = fx ∈D : kx − x∗k ≤ ρg. Simi-
larly, the f̂ ðxs∗Þ ≤ f̂ ðxÞ for the surrogate model with local
minima xs

∗ over local space ~Lðxs∗, ρÞ. For a well-
performed surrogate model, the x∗ would be consistent with
the xs

∗ and the trend of ~Lðxs∗, ρÞ in surrogate model would
be similar to that of Lðx∗, ρÞ in objective function.

Otherwise, it would need more sample points to depict the
neighborhood properly, like C in Figure 1. Under this circum-
stance, the root mean square error (RMSE) of sample points
within the local region was used to decide whether the corre-
sponding local minimawere fully explored or not, and the par-
tially explored local minima would need further exploration.
During these processes, the exploitation of partially explored
local minima of the surrogate model was used to improve
the fitting quality of the surrogate model in local space, and
the exploitation of partially explored local minima of the
objective function was used to search for better points. Local
minima for the surrogate model did not always correspond
to a local minima for the objective function. However, the
deep exploitation in the vicinity of local minima of the surro-

gate model could eliminate the “fake local minima” and obtain
the true local minima for the objective function. Since the local
minima with better performance were more likely to be close
to the global optima, the further exploitation of the local min-
ima of objective function would make the algorithm toward
the global optima more efficient. In combination, the global
exploration for the target value would be promoted.

The above conditions could not guarantee that the sur-
rogate model would achieve a good approximation to the
objective function f in some neighborhoods of local minima.
However, if f had a relatively simple surface in the neighbor-
hood of x∗ (e.g., if it was nearly linear), then the possibility
that f was well approximated by the surrogate model in that
local region would be increased by those conditions. Thus,
the fully explored local minima of the surrogate model were
more likely to be the local minima of the objective function,
as shown in Figure 1.

3.2. The Enhanced Trust-Region Method. Although the tradi-
tional trust-region method (TRM) has shown the advantages
of improving the optimization efficiency, it might not make
sufficient search in local regions since the space radius of
new design space was largely dependent on the previous best
point (the radius from kxk − xk−1k was linearly dependent),
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Exploration in entire
design space 

Convergence criteria
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local minimums and 
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All local minimums
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Figure 2: Flowchart of the KSE optimization process.
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which would lead to premature of the optimization. To
avoid this shortcoming, this paper proposed an enhanced
trust-region method (ETRM) combining the independent/
dependent strategy with the stochastic perturbation strategy,
as shown below.

Dnew =Dindependent ∪Ddependent ∪Dstochastic, ð9Þ

AEI =
max fmin − f xk−1ð Þ, 0ð Þ

EI
, ð10Þ

rk =

min γ1rk−1, rmaxð Þ, AEI ≥ η,

rk−1, 0 < AEI < η,

max γ2rk−1, rminð Þ, AEI = 0,

8>><>>: ð11Þ

The KSE for Global Optimization
Input: (1) original design space D = ½X max, X min� ⊂ℝd , d ≥ 1;
(2) global exploration iteration number m global;
(3) cluster number N , cluster radius rreq;
(4) maximum iteration number Max k;
(5) FunctionCriterion: EI function;
(6) threshold of RMSE:RMSEthreshold
Output: the best solution as global optima ðx∗, yðx∗ÞÞ;
Begin
Choose an initial set of sample points XD = ½xD1 ,⋯, xDn � ∈D by LHS sampling method.
Evaluate XD to obtain the corresponding response YD = ½yD1 ,⋯, yDn �, and store them in the database S.
While k <Max k
for i = 1 : m global
Employ EGO algorithm with FunctionCriterion;
Store the optimized solution x and its function response value y in the database S;
k = k + 1;
end

Select N clusters from database S, and identify the cluster center X∗ = ½x∗1 ,⋯, x∗N �, other sample points within the distance rreq =
0:01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jX max − X minj2

p
, would be classified into the corresponding cluster S∗ = fS∗1 ,⋯, S∗Ng. The distance between sample points

with cluster center was computed by Euclidean distance.
for j = 1 : N
Sort all sample points X∗

c = ½x1,⋯, xn� of S∗j in terms of their function response value Y∗
c = ½y1,⋯, yn� in ascending order;

Use Cross-validation to obtain the predicted value Y∗
c = ½y1,⋯, yn� of all sample points;

RMSE = 1/n∑n
i=1ðyi − eyi Þ;

if RMSE ≤ RMSEthreshold

Store x∗i into fully explored local minima dataset Xf = ½xf1,⋯, xfn�;
else
Store x∗i into partially explored local minima dataset Xp = ½xp1,⋯, xpn�;
end
end
if Xp ≠∅
for i = 1 : n
Define local space VTR centered at xpi by the ETRM algorithm;
Employ EGO algorithm with FunctionCriterion in VTR;
Store the optimized solution x and its function response value y in the database S;
k = k + 1;
end
else
Select current best sample point value f best.
CEI = ComupteFunctionCriterionðEImax, f bestÞ
if CEI ≥ 0:01
FunctionCriterion⟵ EI criterion;
else
FunctionCriterion⟵MP criterion;
end
end
end
End

Algorithm 1: The encoding type of KSE.

6 International Journal of Aerospace Engineering



Dindependent = xmin − rk b − ak k, xmin + rk b − ak k½ �, ð12Þ

Ddependent = xmin − rk xmin − xmin,i‐1ð Þ, xmin + rk xmin − xmin,i‐1ð Þ½ �,
xmin ∈ Xmin, Xmin = xmin,1, ::, xmin,i½ �,

ð13Þ

P kð Þ = 1 −
In kð Þ

In Nmaxð Þ ,

Ipertube ≔ i : ωi < P kð Þ, ωi ∈ 0, 1½ �, i = 1,⋯, df g,
δk = Ipertube rmax b − ak k:∗ rand d, 1ð Þð Þ,

Dstochastic = xmin − δk, xmin + δk½ �:

ð14Þ

Here, the Dnew was the new local space defined by the
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Figure 3: Original GP function.
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Dindependent, Ddependent, and Dstochastic, which were computed
by different strategies, as shown in (9). The space radius of
the ETRM changed in terms of the actual improvement of
EI (AEI) while the original TRM adopted the predicted
improvement based on the surrogate model as shown (8).
The trust factor rk was computed through (10), where typi-
cal values of rmin = 0:04, rmax = 0:08, γ1 = 1:2, and γ2 = 0:8
were used, respectively. If AEI ≥ η, where the η was the
threshold for the AEI, the EI criterion was capable of decreas-
ing the objective function value; the space radius would be
expanded according to (11). If 0 < AEI < η, the space radius
would keep unchanged. If AEI = 0, the surrogate model was
unable to obtain better points in current space; then, a conser-
vative space radius would be selected. (12) used the indepen-
dent strategy from the current best point xmin and the entire

design space to construct a uniform box-shaped trust region,
where a and b were the lower and upper bound of the entire
design space, respectively, and k k was the Euclidean norm.
The purpose of this strategy was to reduce the influence of
the previous sample points and make the optimization more
independent to find diverse sample points in each iteration.
However, the dependent information ðxmin − xmin,i‐1Þ from
the previous best point Xmin = ½xmin,1, ::, xmin,i� could maintain
the efficient dimension information which would help the algo-
rithm toward the global optima quickly. Thus, the dependent
information was used to improve the dimension setting of the
trust region, which was indicated by the vector direction from
the previous best point xmin,i‐1 to the current best point xmin,
as shown in (13). Besides, to make a full exploration of the local
region, a stochastic strategy for trust region was presented by
(14). Here, the PðkÞ was the probability of perturbing any
dimensions of design space, and Nmax was the maximum num-
ber of iterations. For the iteration k, the number of the dimen-
sion to be perturbed was a random variable with a binomial
ðd, PðkÞÞ distribution with a mean number of perturbed
dimensions d × PðkÞ, where d was the number of all dimen-
sions in the design space. In (14), the PðkÞ was decided by a
strictly decreasing function andwould decrease as the optimiza-
tion carries on. The Ipertube was the set of the index of the per-
turbed dimension decided by PðkÞ and ωi, where ωi was a
uniform random number generated in the range ½0, 1�, and it
would be different in each iteration to maintain the diversity
of design space. Then, the Dstochastic was computed by the trust
radius δk and the current best point xmin. The use of a stochastic
strategy for constructing a trust region was expected to be help-
ful for problems with many local minima and design variables.

At the initial stage of optimization, the distribution of
xmin could be very sparse and their positions would change
significantly in different iterations since the surrogate model
accuracy would not be very precise. Under this condition,
the dependent strategy could make use of useful dimension
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Figure 5: Convergence history of the objective function.

Infill

Lg
 (E

I m
ax

)

0 20 40 60 80 100

–30

–20

–10

0

Figure 6: Convergence history of max EI.

8 International Journal of Aerospace Engineering



x1

x2

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2 121555.958
69545.349
39788.717
22764.168
13023.977

7451.359
4263.118
2439.041
1395.439

798.367
456.767
261.328
149.513

85.540
48.940
28.000
16.019

9.165
5.244
3.000

(a) The first stagnation process (iteration 4 to 44)

x1

x2

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2 121555.958
69545.349
39788.717
22764.168
13023.977

7451.359
4263.118
2439.041
1395.439

798.367
456.767
261.328
149.513

85.540
48.940
28.000
16.019

9.165
5.244
3.000

(b) The efficient searching process (iteration 45 to 53)

Figure 7: Continued.
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information to accelerate the convergence speed to better
points. And the stochastic strategy would help the algorithm
to search for multiple diverse sample points by perturbing a
large fraction of the dimensions. As the progress of optimi-
zation, the distribution of xmin would be more centralized
and the distance between the best points would be smaller.
By perturbing a progressively smaller fraction of dimension,

the vicinity of the current best point xmin was less likely to be
disturbed. At present, the trust region would be largely
dependent on the independent strategy, which ensured that
the neighborhood of xmin would be focused throughout the
process of optimization.

The ETRM measured the improvement of the objective
function and combined an independent/dependent strategy
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Figure 7: The infill process of the EGO method.
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with the stochastic perturbation strategy to construct the
promising local regions. These strategies could deal with dif-
ferent situations across the optimization process, and in
combination, they could preserve the diversity of design
space and prevent the premature of optimization, improving
the efficiency and convergence of optimization.

3.3. Detail of Proposed Method. The proposed KSE method
consisted of four parts: (1) search effective samples and
select local minima; (2) classify local minima into fully and
partially explored local minima; (3) exploit the partially
explored local minima; and (4) combine global exploration

and local exploitation. The flowchart of the method is illus-
trated in Figure 2, and the following were the detailed steps
of this method.

Step 1 (initial design). In the beginning, Latin hypercube
sampling (LHS) method [50] was adopted to generate initial
sample points.

Step 2 (global search by EI criterion). The EGO method
based on DACE, where the Gaussian kernel function was
adopted, was used to explore the entire design space, during
which the particle swarm optimization (PSO) algorithm was

Figure 8: Convergence history of the objective function.
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Figure 10: Continued.
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adopted as an optimizer. As for the problems with multiple
constraints, the constrained expected improvement criterion
(CEI) [45] would be adopted to handle constraints in KSE.

Step 3 (identify the local minima). The sample points with
good performance were selected as local minima and corre-
sponding sample cluster.

Step 4 (select the partially explored local minima). Classify
the local minima into fully and partially explored local
minima.

Step 5 (multiple subregion local search). Deep exploitation of
all partially explored local minima, based on the ETRM,
would be carried out to improve the surrogate accuracy.
After all local minima have been explored to their fullest
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(c) Iterations 46 to 55

x1

x2

–2 –1.5 –1 –0.5 0 0.5 1 1.5 2 2.5
–2

–1.5

–1

–0.5

0

0.5

1

1.5

2 121555.958
69545.349
39788.717
22764.168
13023.977

7451.359
4263.118
2439.041
1395.439

798.367
456.767
261.328
149.513

85.540
48.940
28.000
16.019

9.165
5.244
3.000

(d) Iterations 55 to 58

Figure 10: The infill process of the KSE method.
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extent, the algorithm would proceed to Step 2 until no par-
tially explored local minima could be identified.

Step 6 (switch criterion function). At the last stage of optimi-
zation, the MP criterion would be adopted instead of EI cri-
terion based on the improvement of the EI criterion. The
objective function was set as (15), and the function transi-
tion factor CEI measured the improvement of the EI crite-
rion, as shown in (16). The fmin was the objective value of
the current best sample point, and EImax was the improve-
ment of the EI criterion. In this paper, the CEI was set as
0.01, which meant if the EImax was less than 1% of fmin,
the objective function turned into the MP criterion.

Objective =
EI criterion, CEI ≥ 0:01,

MP criterion, else,

(
ð15Þ

CEI =
EImax
fmin

: ð16Þ

4. Illustrative Examples

4.1. Example of the EGO Method. To illustrate the limitations
of the traditional EGO method, the Goldstein-Price function
[51] was used as an example. This 2‐d function was usually
evaluated on the ½−2, 2�2, with 3 local minima. And the global
optima was located at ð0,−1Þ with the value of 3.000. Figure 3
describes the original GP function while Figure 4 shows the
surrogate space constructed by the Kriging model with initial
ðd + 1Þ ∗ 2 sample points [18], where d was the dimension.
It demonstrated that the initial surrogate mode could not
achieve a good approximation of the objective function.

The convergence history of the GP function is shown in
Figure 5, where two obvious stagnations happened. The first
stagnation was in the global exploration process, during which

the maximal EI value was very large and the optimizer tended
to explore the entire design space and improve the surrogate
accuracy, as presented in Figure 6. During the late stages of opti-
mization, the optimizer searched the neighborhood of the
global optima. Since the objective values of sample points in that
local space were close to that of the global optima, the EI crite-
rion showed very little improvement and the optimizer tended
to stochastic search. Thus, the optimization was trapped again.

The sample infilling process is presented in Figure 7, in
which the contour was the space constructed by the Kriging
model, and white triangles were the infilled sample points. At
the beginning of optimization, the fitting quality of the Kriging
model was not that good and it would take a large number of
sample points to explore the entire design space, during which
the first stagnation happened, as shown in Figure 7(a). After
that, the surrogate accuracy was improved, and the optimizer
would turn into an efficient searching process during which
the objective value was efficiently decreased. Figure 7(b) pre-
sents that the surrogate model achieved a much better approx-
imation to the objective function, and sample points with good
results have been obtained. However, at the later stage of the
optimization, the first term of the EI function would become
small since the difference between the prediction value of
unknown points and the current best point was very small,
and the second term of the EI function would dominate the
optimization trend. Thus, the optimizer tended to stochastic
search in unknown regions, during which the EI criterion could
notmake substantial improvement. Therefore, the optimization
was trapped again, as shown in Figure 7(c). After 45 sample
points were updated, the global optima would be found at the
99th iteration. Figure 7(d) presents the final surrogate model.

The process above demonstrated that the EGO method
explored the entire design space at the price of plenty of
computational costs, for it took a large number of sample
points to improve the fitting quality of the surrogate model
in the entire design space and get rid of deceptive regions.
Besides, the EI criterion tended to be maximized in the
regions close to the bounds of the design space and far away

Table 1: Bound-constrained benchmark problems for global optimization.

Test functions Dim Domain No. of local min Global min value

Branin 2 −5, 10½ � × 0, 15½ � 3 0.3980

Goldstein-Price 2 −2, 2½ �2 4 3.0000

Hartman3 3 0, 1½ �3 4 -3.8628

Shekel5 4 0, 10½ �4 5 -10.1532

Hartman6 6 0, 1½ �6 6 -3.3223

SC 2 −2, 2½ �2 6 -1.0316

Shekel7 4 0, 10½ �4 7 -10.4029

Shekel10 4 0, 10½ �4 10 -10.5364

Shubert 2 −10, 10½ �2 >10 -186.7309

Trid10 10 −100, 100½ �10 — -210.0000

Sphere10 10 −5:12, 5:12½ �10 — ≤0:001

F16 16 −1, 1½ �16 — 25.8750
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from the previous sample points, which made it inefficient
for finding the global optima. To overcome these problems,
this paper proposed a Kriging-based space exploration
method.

4.2. Example of the Proposed Method. To better demonstrate
the KSE method, the optimization process of the Goldstein-
Price function was shown below. Figures 8 and 9 present the
convergence history of the objective function value and the

Table 3: Average number of function evaluations (over 30 trials) to get a relative error of <1%.

Problems
KSE MLSL-SQP MPS MADS EGO

The best-published
results from the

comparison of TR-
ARSM, MSSR,

AQUARS, and TRIKE-
Restart

Results Ne Results Ne Results Ne Results Ne Results Ne Results Algorithm

Branin 22.7 (3.69) 30 24.4 (1.52) 30 57.3 (2.15) 30 31.5 (1.35) 30 40.8 (2.33) 30 25.6 TRIKE-restart

Goldstein-Price 43.6 (4.31) 30 56.8 (9.63) 30 132.4 (6.25) 30 63.6 (4.77) 30 98.5 (10.77) 30 36.2 TR-ARSM

Hartman3 23.4 (2.21) 30 42.3 (3.36) 30 >38.9(-) 27 41.7 (2.55) 30 42.1 (3.88) 30 26.5 TRIKE-restart

Shekel5 164.9 (33.3) 30 >368.9(-) 25 >446.3(-) 5 213.5 (37.1) 30 >139.9(-) 9 202.4 TRIKE-restart

Hartman6 131.1 (11.4) 30 157.1 (12.6) 30 >500(-) 0 144.6 (13.62) 30 154.2 (9.63) 30 54.5 MSSR

SC 21.6 (3.46) 30 37.5 (2.77) 30 32.3 (5.66) 30 26.4 (2.11) 30 49 (6.37) 30 22.5 MSSR

Shekel7 144.3 (22.5) 30 >362.3(-) 22 >137.6(-) 13 168.5 (19.5) 30 >500 (30) 0 152.7 AQUARS

Shekel10 137.5 (9.62) 30 >414.2(-) 17 >455.7(-) 7 136.8 (11.2) 30 >500 (30) 0 121.1 AQUARS

Shubert 124.5 (11.3) 30 237.1 (21.7) 30 >500(-) 0 143.7 (12.6) 30 >437.5 (22) 8 122.9 MSSR

Trid10 114.7 (13.5) 30 189.4 (11.4) 30 125.2 (5.74) 30 145.6 (4.55) 30 >500 (30) 0 142.4 MSSR

Sphere10 107.6 (9.85) 30 172.5 (8.96) 30 131.5 (9.68) 30 177.6 (11.12) 30 >500 (30) 0 115.4 MSSR

F16 135.2 (8.57) 30 165.1 (7.3) 30 >500(-) 0 159.7 (8.55) 30 337.4 (15.9) 30 137.7 MSSR

Table 2: Parameter setting of KSE method.

Method Parameter Value

KSE

Cluster number N 5

Objective function transition factor CEI 0.01

Distance coefficient 0.01

MLSL-SQP

Reduced sample coefficient ξ 0.5

Fixed number in critical distance ρ 4

Number of local minima w 10

Termination tolerance for current design variable 0.001

Termination tolerance for objective function value 0.0001

Maximum number of iteration 500

MPS

Mode-pursing sample points np The number of dimension

Model fitting tolerance coefficient cd 0.01

Diff tolerance εr 0.00001

Speed control factor r 1

MADS

Mesh size update parameter w− -1

Mesh size update parameter w+ 1

Fixed rational number τ 4

Initial mesh size parameter Δm
0 1

Initial poll size parameter Δp
0 1

EGO
Iteration number N 800

Population number pos Ten times the dimension
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CEI , respectively. There were mainly four phases during the
optimization process. Phase 1 was the global exploration
process based on the EI criterion. However, during this pro-
cess, the objective value had little improvement after many

iterations due to the bad fitting quality of the Kriging model.
Then, three local minima were found and multiple subre-
gions of local searches started to make deep exploitation,
during which the objective value decreased a lot, as shown
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Figure 11: Box plot of the number of function evaluations to get within 1% of the target value.
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in phase 2. After that, the global exploration started again to
search the global optima, which was demonstrated as phase
3. During this process, the improvement of the EI criterion
was very little. To speed up the convergence of optimization,
the objective function was transited into the MP criterion,
and the global optima was soon found, shown as phase 4.

The update of sample points is shown in Figure 10.
Figure 10(a) presents the global exploration based on the
EI criterion. Then, three partially explored local minima
were selected to make further exploitation by multiple subre-
gion local search strategy. To perform better exploitation,
the ETRM algorithm was adopted to restrict optimization
in a small region with dynamic bounds, where the red-
dashed rectangular were their initial design spaces, namely,
as shown in Figure 10(b). The exploitation result is pre-
sented in Figure 10(c), in which the local minima disappear
and the surrogate model approximated the objective func-
tion well. To detect new partially explored local minima,
the global search continued and several points were updated.
In Figure 10(d), all local minima were fully explored. And in
terms of the value of CEI, the objective function was turned
into the MP criterion and it only took 3 evaluations to locate
the global optima. At last, the global optima would be found
at the 58th iteration.

The KSE method could enhance and balance the exploi-
tation and exploration ability of optimization by locating
potential local minima and combining multiple objective
functions, improving the optimization efficiency and pre-
venting premature optimization.

5. Test Functions

5.1. Experimental Setup. The performance of KSE was stud-
ied in the sense of global convergence capability, efficiency,
and robustness on a broad set of global optimization test
problems with 2 to 16 design variables. These included the
seven Dixon [51] test functions (Branin, Goldstein-Price,
Hartman3, Shekel5, Shekel7, Shekel10, and Hartman6),
two test functions (SC and Shubert) with multiple local min-
ima, and three test functions (Trid10, Sphere10, and F16)

with higher dimension [32]. These test problems had their
unique characteristics, and in combination, they could better
represent many different situations in design problems. The
detailed forms of these functions are given in Table 1. The
initial LHS samples with size 2ðd + 1Þ were the same for all
optimization algorithms on all problems. Thirty runs on
each of these benchmark problems have been made.

The experiments of all test cases were performed on
Intel(R) Core (TM) i7-8700 CPU @ 3.20GHz computer.
The obtained statistical results were compared with that of
several well-known global optimization methods. One alter-
native was the efficient global optimization method (EGO)
[6] as implemented in MATLAB by Viana [52], which was
one of the most widely used surrogate-based global optimi-
zation methods, especially for engineering design problems.
The model-pursuing sampling (MPS) method [53] was an
adaptive surrogate model method producing discriminative
samples toward the actual global optima. The mesh adaptive
direct search (MADS) [54] algorithm was implemented as
NOMADm [55], using the surrogate model to make it suit-
able for computationally expensive problems. A universal
multistart approach called multilevel single linkage (MLSL)
[56], with local optimization solver sequential quadratic pro-
gramming (SQP), is implemented by MATLAB optimiza-
tion toolbox [57]. Another alternative was trust-region-
based adaptive response method (TR-ARSM) [49], which
was an efficient space reduction method for multimodal
problems. Trust-region implementation in Kriging-based
optimization with expected improvement with restart strat-
egy (TRIKE-Restart) was a trust-region-like approach where
EI function was combined with trust-region and restart
strategy [20]. We also compared the proposed method with
two multistart methods: the A QUAsi-multistart Response
Surface (AQUARS) [18], during which the initial points
were obtained from the CGRBF method [29], and the multi-
start space reduction method (MSSR) [32], which was the
combination of multistart approach and space reduction
strategy. The parameter settings of these methods are sum-
marized in Table 2. The acquired statistical results of
AQUARS, TR-ARSM, TRIKE-Restart, and MSSR were

Table 4: Average number of function evaluations (over 30 trials) to get a relative error of <1%.

Problems N = 5, CEI = 0:01h i N = 3, CEI = 0:01h i N = 7, CEI = 0:01h i N = 5, CEI = 0:005h i N = 5, CEI = 0:02h i N = 5, CEI = nullh i
Branin 22.7 (3.69) 21.2 (2.52) 24.5 (1.04) 23.9 (2.97) 22.2 (3.01) 24.6 (1.94)

Goldstein-
Price

43.6 (4.31) 44.8 (6.31) 45.8 (5.15) 44.9 (3.17) 45.4 (3.69) 45.7 (3.74)

Hartman3 23.4 (2.21) 47.8 (2.38) 39.9 (3.44) 22.7 (4.19) 26.6 (3.22) 46.9 (4.21)

Shekel5 164.9 (33.3) 179.5 (42.8) 166.7 (35.18) 167.5 (31.09) 166.7 (32.91) 188.4 (33.22)

Hartman6 131.1 (11.4) 166.4 (12.18) 141.2 (13.55) 133.3 (12.07) 132.8 (13.67) 169.6 (15.71)

SC 21.6 (3.46) 39.8 (4.11) 26.7 (2.19) 23.9 (2.64) 22.4 (3.01) 39.6 (3.52)

Shekel7 144.3 (22.5) 187.7 (25.23) 158.4 (29.45) 147.6 (23.11) 146.4 (26.71) 189.3 (23.21)

Shekel10 137.5 (9.62) 192.3 (10.74) 145.8 (9.75) 141.6 (10.44) 145.9 (11.09) 201.8 (12.73)

Shubert 124.5 (11.3) 177.6 (12.08) 146.1 (11.70) 129.1 (13.88) 127.6 (10.76) 184.4 (11.03)

Trid10 114.7 (13.5) 118.8 (12.77) 115.3 (13.8) 119.7 (13.01) 121.3 (13.69) 132.3 (15.01)

Sphere10 107.6 (9.85) 106.8 (10.18) 105.2 (12.33) 106.4 (9.24) 110.4 (8.35) 122.6 (8.11)

F16 135.2 (8.57) 147.5 (10.12) 134.7 (8.44) 133.5 (9.69) 139.6 (7.75) 157.1 (11.24)
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collected from the published papers due to the lack of pub-
licly available software to implement the competitor
methods.

These methods were compared in terms of the average
number of function evaluations (over 30 trials) required to
get a solution with relative error < 1%. If f target was the global
minima value over the domain D and fmin was the best value
obtained by an algorithm, then the relative error of the algo-
rithm was given by

Relative error =

fmin − f target
��� ���

f target
��� ��� , f target ≠ 0,

0:001, f target = 0:

8>>><>>>: ð17Þ

5.2. Results and Discussion. Table 3 gives the average number
of function evaluations required by each method to reach the
target value with relative error < 1% [18]. If all 30 trials got
within 1% of the global optima, then the number inside
the parenthesis was the standard error of the mean. The
symbol “>” indicated that at least one of the trials could
not detect the target value. And Ne was the number of trials
that did not get within 1% of the global minima value within
500 function evaluations.

From Table 3, it was shown that the proposed KSE
method performed much better than the EGO method,
MPS method, and MLSL-SQP method on all test problems.
The EGO method generally required more evaluations to
get the target value, especially for the problems with high
dimensionality and multimodality. The new sample points
of EGO were more likely to be updated around the local
minima which were well explored. The MPS method per-
formed a little better than EGO on high-dimensional prob-
lems (Trid10 and Sphere10), but it was not efficient for
complicated problems with higher multimodality (Shekel
problems and Shubert function), since it was hard for MPS
to detect the promising regions from the design space with
multiple local minima. It was presented that MLSL-SQP
was much better than EGO and MPS methods on 8 test
problems, except for the difficult Shekel problems with deep
and narrow global optima basins. However, the local
searches of MLSL-SQP tended to full convergence around
all local minima even if these local minima were unlikely
to lead to better points. These three methods were well
known for engineering design, so these results suggested that
the KSE method was very promising for engineering optimi-
zation problems.

It showed that KSE could reach the target value faster
than 4 alternative methods (TR-ARSM, MSSR, AQUARS,
and TRIKE-Restart) on 8 test problems (Branin, SC, Hart-
man3, Shekel5, Shekel7, Trid10, Sphere10, and F16), and it
could be compared with the best results attained by the alter-
native methods on 2 other problems (Goldstein-Price and
Shubert). Although alternatives based on the multistart
approach (MSSR and AQUARS) could perform better than
the KSE on 3 test problems (Hartman6, Shekel10, and Shu-
bert), it could not conclude that the multistart approach had

extremely advantages over the KSE, since KSE performed
much better than MLSL-SQP on all test problems. It might
be that these methods put much emphasis on local search.
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Figure 12: Box plot of the number of function evaluations to get
within 1% of the target value.
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Besides, the different initial LHS methods and surrogate
models in the compared papers could also influence the
results. Anyway, the KSE was quite robust in the test cases
mentioned in Table 3. And it has shown its advantages in
stability and efficiency to reach the target value in all trials
on serval test problems.

Figure 11 shows the box plots for the number of function
evaluations required to get within 1% of the target value for
the KSE and some other alternatives on all test problems.
Many trials of EGO and MPS could not achieve the desired
target value on many test problems, and it was impossible to
create accurate box plots for these methods. Hence, they
were excluded from the box plots. The box plots showed that
MADS was competitive with the KSE on Shekel and Shubert
problems and MLSL-SQP was much worse than the KSE on
all test problems in terms of the median number of function
evaluations to get within 1% of the global minima value. The
distributions of the number of function evaluations were
much less spread out for the KSE compared to that of other

methods on most test problems. Hence, the KSE was gener-
ally more robust and efficient than other methods.

Rather than demonstrating the superiority of the pro-
posed algorithm over other existing algorithms, the objective
of the study was to show that the proposed algorithm could
be a viable alternative for computationally expensive black-
box global optimization, which has been shown on a wide
variety of benchmark test problems.

5.3. Sensitivity Analysis. In this section, the KSE was tested
on various cluster numbers and function transition factors.
Table 4 shows the results obtained by the test cases of apply-
ing KSE with different hyperparameters including (1) N =
5, CEI = 0:01, (2) N = 3, CEI = 0:01, (3) N = 7, CEI = 0:01, (4)
N = 5, CEI = 0:005, (5) N = 5, CEI = 0:02, and (6) N = 5, CEI
= null. Case (1)~case (3) were compared to study the influ-
ence of cluster number. The comparisons of the other cases
as well as case (1) were to research the influence of the func-
tion transition factor, during which case (6) presented the

Table 5: RAE 2822 airfoil optimization problem description.

Quantity Lower Upper Scaling

Minimize Cd

Concerning Shape (coefficients of Bernstein function) 24 -0.05 0.05 1

Total number of design variables 24

Subject to Cl 1 0.824 0.824 1

Cm 1 -0.092 10

Area constraint 1 Areainitial 10

Total number of design variables 3

x/c

0 0.2 0.4 0.6 0.8 1
–0.1

–0.05

0

0.05

0.1

Baseline
boundary

y/
c

Figure 13: The initial design space.
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results without function transition, indicating that the objec-
tive function was always the EI criterion. The initial samples
with the size of 2ðd + 1Þ were the same for all cases. Each test
problem has been repeated 30 times.

From Table 4, we could know that case (1) and case (2)
achieved really good results on Branin and Goldstein-Price
problems and case (3) also obtained competitive results on
these two test problems, which showed that the proposed
method was not that sensitive to the cluster number for
problems with low multimodality and dimensionality. In
the era of increasing multimodality and dimensionality, a
more comprehensive clustering strategy in KSE was needed

to identify the promising local minima. It was shown that
case (2) obtained the best results on Hartman3, Shekel5,
Hartman6, Shekel7, Shekel10, Shubert, and Trid10 test
problems and competitive results on Sphere10 and F16 test
problems. But case (3) also obtained the competitive results
on Shekel5, SC, Shekel7, Shekel10, and Trid10 test problems.

As for the function transition factor CEI, it seemed that the
KSEwas not sensitive to the function transition factorCEI with
the appropriate cluster number, likeN = 5. There was little dif-
ference among the results obtained by case (1), case (4), and
case (5) on all test problems, where the case (1) obtained the
best results on 8 test problems, except Branin, Hartman3,
Sphere10, and F16 test problems, and competitive results on
Branin, Hartman3, and Sphere10 test problems. Despite this,
case (6) performed worse onmost test problems than the cases
with a function transition factorCEI. This suggested that it was
important to incorporate the function transition factor as well.

Figure 12 shows the box plots for the number of function
evaluations required to get within 1% of the target value of all
cases. It was presented that the results obtained by case (1) were
better than other cases on 8 of the 12 test problems (all except
Branin, Shekel5, Trid10, and Sphere10). And the distribution
of function evaluations of the case (1) was more concentrated
than that of other cases, although the results of the case (4)
and case (5) could be competitive on all test problems, indicat-
ing that they were not very sensitive within the current interval.

In summary, these results suggested that cluster number
and function transition factor were all necessary for good per-
formance onmost test problems, and the KSE was not very sen-
sitive to function transition factor with suitable cluster number.

6. Test on Benchmark Problems

This section applied the proposed KSE method to two aerody-
namic optimization problems. To validate the proposed
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Figure 14: The computational grid of RAE 2822.
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Figure 15: The results of ten trials of each method.
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algorithm’s performance, three other global optimization
methods were employed for comparison. One was MLSL
coupled with mesh adaptive direct search (MADS) [54] algo-
rithm, which was implemented as NOMADm [55], using the
surrogate model to make it suitable for computationally expen-
sive problems. Another one was the constraint-importance
model-pursuing sampling (CiMPS), which was an extension
of the MPS method developed for handling expensive con-
straints by Kazemi et al. [58]. The last method was the EGO
method, one of the most well-known global optimization
methods for engineering problems. The default or recom-
mended tuning parameters of these methods were used. Ten
runs on each problem have been made by all methods.

In this section, a high-fidelity CFD solver, CFL3D [59], was
adopted to evaluate the aerodynamic characteristics of airfoils
and wings. The Navier-Stokes function incorporated with shear
stress transport (SST) two-equation turbulence model was used
to simulate the flow field of airfoils and wings. To perform the
aerodynamic design optimization, a more powerful workstation
equipped with AMD Epyc 7763 64-core @ 2.45GHz CPUs and
512G RAM was used.

6.1. Case I. Transonic Airfoil Design. Case I was provided by
the AIAA aerodynamic design optimization discussion group
(ADODG: the drag minimization of the RAE 2822 airfoil in
transonic viscous flow). The Mach number was 0.734, and
the Reynolds number was 6.5e6. The RAE 2882 airfoil was
optimized with a fixed life coefficient of 0.824. The pitching
moment should be bigger than -0.092, and its area should
not be less than that of RAE 2822. The statements of problem
are summarized in Table 5. More detail on this case could be
referred to in [60, 61]. The problem could be expressed as a
standard nonlinear optimization problem:

MinCd ,

s:t:Cl = 0:824,

Cm≥−0:092,

Area ≥Areainitial:

ð18Þ

It was a standard airfoil optimization with medium multi-
modality [62], which could be used to test the proposed
method. The baseline shape was the RAE 2822 airfoil. The
design variables were the z-coordinates of the CST parameter-
ization with 24 shape parameters in total. The design space is
shown in Figure 13, and the computational grid is shown in
Figure 14. Generate 100 sample points in the initial design
space with the LHS method, and update 300 sample points
during optimization progress.

In this case, the EGO method tried to explore everywhere
of design space, leading to bad optimization convergence; the
CiMPSmethod was very efficient in the early stage of optimiza-
tion, but at early stage, the surrogate model was not stable, and
it was easily trapped in local minima, leading to optimization

Table 6: The best result comparison of different methods.

Cl
Cd

(counts)
Cm

The number of
objective function

evaluation

CPU
time
(min)

Baseline 0.824 203.1 -0.0927 N/A

KSE 0.824 110.5 -0.0919 100 + 300 112.02

EGO 0.824 112.6 -0.0915 100 + 300 117.11

CiMPS 0.824 112.8 -0.0910 100 + 300 110.68

MADS 0.824 112.1 -0.0908 100 + 300 105.59
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Figure 17: The comparison of optimized airfoil shape.
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Figure 18: The comparison of pressure coefficient distribution.
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premature in this problem; the starting points could easily lie in
the neighborhood of the previously found local minima, caus-
ing wasted computational cost in researching these well-
explored local minima. Figure 15 presents the design results
of ten trials of all methods, and most of the design results by
the KSE method were better than other methods, indicating
that the KSE method was more stable than the other alterna-
tives. Figure 16 shows that the KSE took 17% iterations of
MADS to reach the similar drag coefficient value and it con-
verged to the target shape faster. Thus, the KSE method was
more efficient and robust.

The best design result of each method was selected to
make a comparison. Table 6 presents the result comparison
of different methods which indicated that all the constraints
were satisfied. Under the same limited objective function
evaluations, the computational cost of the MADS was the
cheapest, but the KSE obtained better design results, com-
pared to other optimization methods. And the Cd of design
result by the KSE was around 110 cts, which was similar to
the result in reference [62]; therefore, it was very likely close
to the global optima. Figures 17 and 18 show the comparison

of the optimized airfoil shapes and pressure coefficient dis-
tribution. As we could see, the shape trend of all optimized
airfoils was the same: the locations of maximal thickness
were moved backward, compared to the baseline, and the
radiuses of their leading edges were reduced. The upper
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Figure 19: Baseline CRM wing scaled by its mean aerodynamic chord.

Table 7: CRM wing optimization problem description.

Quantity Lower Upper Scaling

Minimize CD

Concerning
Twist angle 5 −4o 4o 1

Sectional shape (z-coordinates of the FFD parameterization) 72 -0.05 0.05 1

Total number of design variables 77

Subject to

CL 1 0.5 0.5 1

CM 1 -0.17 10

Volume constraint 1 Vbaseline 1000

Thickness constraint 500 0:25tbaseline 1000

Leading edge position 1 1000

Trailing edge position 6 1000

Total number of design constraints 510

X

Y

Z

Figure 20: Shape design variables of FFD.
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surfaces of optimized airfoils were very similar, and the dif-
ference mainly occurred on the lower surface, which was the
main source of local minima. From Figure 18, we could
know that the suction peaks of all optimized airfoils got

much stronger and the shock waves have been weakened
compared to baseline. However, the KSE nearly eliminated
the shock wave while other methods remained an obvious
shock wave, leading to bad aerodynamic performance.

X

Y

Z

Figure 21: The computational grid of the CRM wing.
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6.2. Case II. CRM Wing Optimization. The baseline of Case
II was a wing with a blunt trailing edge selected from the
CRM wing-body geometry [63], which was representative
of a contemporary transonic commercial transport, similar
to the Boeing 777. The geometry and specifications were also
given by the ADODG, while the fuselage and tail were
removed from the original CRM, and the root of the remain-
ing wing was moved to the symmetry plane. This baseline
geometry is shown in Figure 19. All coordinates were scaled
by the mean aerodynamic chord (275.8 in). The resulting
reference chord was 1.0, and the reference area was
3.407014. The moment reference point was located at ðx, y
, zÞ = ð1:2077, 0:0, 0:007669Þ.

The problem statements are shown in Table 7. The objec-
tive was to minimize the drag, subject to a lift constraint
(CL = 0:5) and a pitch moment constraint (CMy

≥ −0:17). The
shape design variables were the z-coordinate movement of 72
control points on the FFD volume and 5 twist angles, which
are shown in Figure 20. The control points at the trailing edge
were constrained to keep the trailing edge unchanged. And
the leading edge control points at the wing root were also con-
strained to maintain a constant incidence for the root section.
There were 500 thickness constraints imposed in a 25 chord-
wise and 20 spanwise grid covering the full span. Each thickness
constraint was set to be no smaller than 25% of the baseline
thickness at all locations. Finally, the internal volume was

Figure 24: Pressure distributions of baseline and the KSE.

Table 8: The best result comparison of different methods.

CL CD (counts) CM The number of objective function evaluation CPU time (h)

Baseline 0.50 210.8 -0.182 N/A

KSE 0.50 196.4 -0.169 200 + 500 106.30

EGO 0.50 200.2 -0.165 200 + 500 107.66

CiMPS 0.50 198.8 -0.166 200 + 500 107.53

MADS 0.50 199.3 -0.166 200 + 500 106.26

–1 –0.692308 –0.384615 –0.0769231 0.230769 0.538462 0.846154

Baseline
CL = 0.50
CD = 0.02108
CM = –0.182

EGO
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CM = –0.165

Y
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Figure 25: Pressure distributions of baseline and the EGO.
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constrained to be greater than or equal to the baseline volume.
The optimization problem was shown below.

MinCD,

s:t:CL = 0:5,

CMy
≥−0:17,

t ≥ 0:25tbaseline,

V ≥Vbaseline,

ΔzTE,upper = −ΔzTE,lower,

ΔzLE,upper,root = −ΔzTE,lower,root:

ð19Þ

The computational grid is shown in Figure 21. The mesh
was marched out from the surface mesh using an O-grid topol-
ogy to a far-field located at a distance of 25 times the span. The
cruiseMach number was 0.85 with a Reynolds number of 5mil-
lion based on the mean aerodynamic chord. The mesh gener-
ated for optimization contained 15.5 million cells. It was a
complicated 3D aerodynamic optimization problem with rela-
tively high dimensionality and multimodality [64].

200 sample points were generated in the initial design
space by the LHS method, and 500 sample points were to
be updated as optimization progresses. Figure 22 presents
the cost-effectiveness comparison and optimized results
of ten trials for each method, indicating that the KSE
method generally achieved better results within default
computational costs and was more efficient, compared to
other methods. Figure 23 shows that the KSE held a better
convergence speed to obtain the ideal design results.
Table 8 summarizes the results of all methods. At the
optima points, the lift coefficient and pitch moment coef-
ficient constraints were all met. The discrepancy in the
computational cost of all optimization algorithms was
not that large under the same number of objective func-
tion evaluations. It was shown that the optima by the
KSE were the best of all global optimization methods,
and the drag coefficient has been reduced by 14.4 counts
compared to the baseline. The drag coefficient of the result
obtained by the CiMPS method was similar to that of the
MADS method, which was slightly better than that of the
EGO method.

Pressure distributions on the platforms of all optimized
results are shown in Figures 24–27, during which the
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Figure 26: Pressure distributions of baseline and the CiMPS.

Figure 27: Pressure distributions of baseline and the MADS.

25International Journal of Aerospace Engineering



X

C p Z

0.5 1 1.5

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1 –0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Y = 0.085 m

Baseline

KSE

EGO 

CiMPS

MADS

(a) Y = 0:085m

X

C p Z

0.8 1 1.2 1.4 1.6 1.8

–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6 0

0.2

0.4

0.6

0.8

1

1.2

Y = 1.025 m

Baseline

KSE

EGO 

CiMPS

MADS

(b) Y = 1:025m

X

Z

1.6 1.8 2 2.2 2.4

Y = 2.115 m

C p

–0.6

–0.8

–0.4

–0.2

0

0.2

0.4

0.6

0.6

0.4

0.2

Baseline

KSE

EGO 

CiMPS

MADS

(c) Y = 2:115m (d) Y = 2:642m

Figure 28: Continued.
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baseline was shown on the left and the optimized results
were on the right, respectively. For all the optimized wing
results, the lift coefficient targets were met and the pitching
moment constraints were satisfied. In the optimized result
of the KSE method, the shock was largely reduced, which
was achieved by fine-tuning the twist distribution and airfoil
shapes. The optimized results of the CiMPS and MADS
methods were similar to each other, the low-pressure regions
extended, which was beneficial to drag reduction, but there
still existed obvious shock across the middle of the wings.
As for the optimized result of the EGO method, the shock
wave on the inner wing has been eliminated, while on the
outer wing, the shock extended to the wingtip.

Pressure distributions on different cross-sections are
compared in Figure 28. At Y = 0:085m, the thickness of
the airfoil on the optimized results got thicker while airfoils
on other sections get thinner, since the thicknesses were
allowed to decrease to 25% of the original thickness and
the wave drag was strongly influenced by decreased the
thickness. But the volume was constrained to be not smaller
than the baseline volume, so the optimizer decreased the
thickness of the airfoils on the outer wing while increasing
the thickness near the root section. Lyu et al. [63] observed
similar trends in their results. Most of the optimized results
eliminated the shock at Y = 0:085m, except for the results
obtained by the EGO method. At Y = 1:025m, Y = 2:642m
, and Y = 3:544m, the shock has been eliminated on the
optimized wing of the KSE method, while for other results,
the shocks were still existing. All results shared a similar
trend at Y=2.115m, and the double weak shock replaced
the strong shock. And at Y = 3:130m, the shocks moved for-
ward without obvious weakness.

7. Conclusion

In this paper, a Kriging-based space exploration method
(KSE) was proposed for multimodal and computationally
expensive black-box problems. This method combined multi-
ple subregion local search strategy with global search to bal-
ance and enhance the exploration and exploitation ability.
By multiple local search strategy, the exploitations of local
minima were enhanced, which was beneficial to promoting
the exploration of the entire space and improving the optimi-
zation convergence as well as efficiency. During this process,
an enhanced trust-region method (ETRM) was adopted to
make efficient further exploration of the promising local min-
ima. Hence, this method was expected to perform better than
traditional global optimization methods.

In the numerical experiments, the KSE was compared
with other global optimization methods on 12 analytical
functions. The results indicated that the KSE method was
robust and it generally took fewer function evaluations to
get the global optima. Then, it was demonstrated for aerody-
namic shape optimizations of the benchmark RAE 2822 air-
foil and CRM wing with high dimensionality. Generally
speaking, it was difficult for the original EGO algorithm to
obtain the ideal results as a result of the curse of dimension-
ality. The proposed KSE could overcome the limitation of the
original EGO and be more effective and stable in all optimi-
zation cases compared to other alternatives.

However, the current work still had some limitations.
When dealing with high-dimensional problems, a very large
amount of samples would be acquired to fit a high-quality
surrogate model, and plenty of time would be cost to train
the hyperparameter and construct the Kriging model, which
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Figure 28: Geometry and pressure distributions at a different section of the baseline model and optimized results.

27International Journal of Aerospace Engineering



made KSE inefficient for enormously high-dimensional
problems. Besides. KSE might be still trapped in local min-
ima when a large number of local minima made design space
appear strong nonlinearity in local regions. Therefore, our
future work would focus on training the hyperparameter
with fewer samples, and improving the surrogate accuracy
in nonlinear local regions, to make KSE more robust with
complicated problems.
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