
Research Article
Adaptive Distributed Fixed-Time Cooperative Three-Dimensional
Guidance Law for Multimissiles against Manoeuvring Target

Jiwei Gao ,1 Xiaojing Li,2 Shaofei Zang ,1 Jianwei Ma ,1 and Jinpeng Zhang3

1School of Information Engineering, Henan University of Science and Technology, Luoyang 471023, China
2Luoyang Institute of Science and Technology, Luoyang 471023, China
3National Key Laboratory of Air-Based Information Perception and Fusion, Luoyang 471099, China

Correspondence should be addressed to Jiwei Gao; jwgao2012@163.com

Received 13 July 2023; Revised 8 November 2023; Accepted 27 November 2023; Published 21 December 2023

Academic Editor: Binbin Yan

Copyright © 2023 Jiwei Gao et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The problem of cooperative interception of the manoeuvring target is investigated in this paper. Firstly, in light of fast fixed-time
consensus theory, time-to-go, and undirected topologies, adaptive cooperative guidance along the line-of-sight (LOS) direction is
proposed to guarantee impact time synchronization. Next, novel nonsingular terminal sliding mode (NTSM) is designed to
establish adaptive fixed-time guidance law for steering LOS angular rates to the origin or its small neighbourhood. Without the
knowledge of target manoeuvre, the proposed cooperative guidance law can be provided by lateral and longitudinal
accelerations of each missile, while more reasonable and rigorous analysis of fixed-time stability is carried out through the
Lyapunov theory. Within the specified time, both control tasks of simultaneous attack and the desired impact angles can be
completed before the final time of the guidance process. Finally, numerical simulations demonstrate the feasibility and
effectiveness of the proposed scheme.

1. Introduction

With the development of science and technology in the mil-
itary field, the importance and significance of multiple mis-
siles jointly intercepting or attacking one target, which can
reduce the miss distance and enhance the destruction inten-
sity, have become increasingly prominent. In this field, two
important aspects, that is, a group of missiles reaches the tar-
get simultaneously and each missile attacks the target with
different impact angles, may be generally considered. In
[1], distributed cooperative guidance law is proposed to
achieve the expected impact angle, while sufficient condition
on arbitrary time-varying topologies is established to accom-
plish impact time consensus. For two-dimensional (2D) and
three-dimensional (3D) scenarios of stationary target [2],
impact angle-constrained salvo attack is achieved by the pro-
posed cooperative guidance laws. In [3], 3D cooperative
guidance of multiple spatial-temporal constraints is accom-
plished without active speed control. Finite-time observer
is constructed to estimate full states and disturbances [4],
and then, two parts are, respectively, designed to guarantee

that simultaneous hit-to-kill attack can be realized at the
desired impact angles. Similarly, individual and cooperative
parts are proposed to make all missiles hit target simulta-
neous from the desired direction [5]. For 3D space attack
of stationary target [6], normal accelerations are constructed
to make azimuth and elevation LOS angle errors converge to
the origin within the specified time, and tangential accelera-
tion is designed to maintain the variables of the time-to-go
reaching the consensus.

So far, some methodologies have been applied to this
field, and several achievements have been made. In [7],
PNG law and impact time error feedback are combined to
formulate new guidance scheme such that stationary target
can be simultaneously hit by antiship missiles. In the pitch
and yaw channels [8], augmented PNG and time-to-go coor-
dination laws are, respectively, designed to solve cooperative
guidance problem. With coverage strategy [9], cooperative
guidance law is designed to intercept strong manoeuvrable
target. In [10], prescribed-time optimal consensus and typ-
ical pure PNG law are applied to establish first-stage and
second-stage cooperative schemes, respectively, and salvo
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attack is finally realized. Similarly, field-of-view two-stage
guidance law is designed to achieve salvo attack without
time-to-go estimation based on inverse optimal approach
and typical pure PNG law [11]. Nonsingular sliding mode
guidance is derived by the desired impact time [12], while
the analysis of capture capability is obtained with different ini-
tial conditions. With impact time and angle constraints [13],
time-varying sliding mode (SM) is implemented to develop
guidance law for homing missiles hitting stationary or moving
target. Adaptive law is adopted to deal with the uncertainty
[14], while fixed-time stability of simultaneous arrival can be
achieved under partial actuator effectiveness.

Among these methods, finite-time cooperative guidance
laws with adaptive law and sliding mode technique have
received more attention due to smaller miss distance and bet-
ter antidisturbance performance. In [15], adaptive law, super
twisting, integral sliding mode (ISM), and NTSM are imple-
mented to design finite-time 3D cooperative guidance scheme,
and simultaneous attack is completed with impact angle con-
straints. Finite-time consensus is proposed to ensure that vehi-
cles could arrive at the target simultaneously [16], and target
accelerations are observed by extended state observer. In the
presence and absence of leader missile, finite-time 2D coop-
erative guidance laws are proposed based on nonhomoge-
neous observer, super twisting, and SM technique [17].
With directed topologies and impact angle constraint, 3D
cooperative guidance law is established to accomplish
simultaneous attack based on integral sliding mode (ISM),
super twisting, and geometric homogeneity [18].

Fixed-time guidance laws [14, 19–26], which are evolved
from finite-time algorithms [15–18, 27, 28], do not depend on
the initial states and have better convergent characteristics, so
these schemes have further been studied.With time-delay input
[20], adaptive cooperative guidance law is proposed to guaran-
tee that the consensus errors converge to the equilibrium point
in fixed-time interval. For impact time errors, leader-follower
control law is developed to the consensus [21], and guidance
commands are proposed to make the interceptors reach the sta-
tionary target with desired impact angles. With regard to 3D
manoeuvring target, distributed cooperative protocol is adopted
to formulate tangential acceleration [22], while normal acceler-
ation is designed to achieve fixed-time convergence of LOS
angle errors by ISM technique. Under constraints of topology
switching failure, input amplitude, impact time, and angle
[23], fast fixed-time NTSM is developed to design adaptive
cooperative guidance laws along and perpendicular to LOS
directions. Adaptive supertwisting consensus is developed to
ensure that time-to-go variables are steered to the equilibrium
point [24], while the expected angle constraint is achieved by
NTSM and disturbance observer. One method similar to litera-
ture [29] is implemented to construct two-order cooperative
control law, and then, guidance laws are developed to guarantee
fixed-time stabilization of LOS angles in the elevation and azi-
muth [25]. Likewise, extended state observer and protocol are
united to achieve fixed-time consensus [26], and adaptive
fixed-time guidance laws are designed to guarantee that LOS
angular rates are nullified in the elevation and azimuth LOS
directions. Based on the SM observer of the low-pass filtering
[30], fixed-time consensus and NTSM are adopted to realize

salvo attack and impact angle constraints, respectively. In the
process of coordinated attack, a group of missiles can be
regarded as special multiagents, so most cooperative guidance
laws are established from consensus protocols [29, 31, 32] and
guidance laws of single missile [19, 27].

Inspired by the previous researches, this paper adopts
consensus protocol, fast fixed-time stability, adaptive law,
ISM, and NTSM to solve the problem of multimissile coop-
erative interception of manoeuvrable target, and some inter-
esting results have been acquired. Compared with the
existing literatures, the main contributions or innovations
of this paper are provided as follows.

(1) With respect to [2, 6, 18, 21], target manoeuvrability
is not considered, and therefore, these cooperative
guidance laws could be only applied to intercept sta-
tionary target or moving target with constant veloc-
ity. In our manuscript, the proposed scheme not
only solves 3D interception problem of manoeuvring
target but also has better anti-interference perfor-
mance and higher guidance accuracy

(2) Compared with finite/fixed-time cooperative method-
ologies [15–18, 21, 24], the settling time of closed-loop
subsystem system is not dependent on the initial states
by the presented algorithm. In addition, fast fixed-
time convergence has been accomplished, and each
missile can quickly complete the mission of time-to-
go synchronization and interception angle constraints

(3) Two-order consensus protocols are constructed in
[21, 25, 26]. Although time-to-go estimation is
avoided, the average velocity is uncertain or
unknown, which may have certain limitations on
the adaptability of these schemes. Therefore, the
designed guidance law possesses wider applicability

The structure of this article is provided as follows. In
Section 2, preliminaries and problem formulation of cooper-
ative interception are stated. The main results are obtained
in Section 3, where mathematical model of geometric
engagement is considered, and adaptive fixed-time coopera-
tive guidance law is derived by rigorous stability proof.
Numerical simulation is carried out in Section 4. Section 5
draws some conclusions.

2. Preliminaries

2.1. Fixed-Time Stabilization

Definition 1 (see [33, 34]). Consider differential equation

x = f t, x ,

x 0 = x0,
1

with x ∈Rn. f R+ ×Rn ⟶Rn is a nonlinear function,
which may be discontinuous. If the solutions of (1) are
understood in the sense of Filippov, the origin is supposed
to be an equilibrium point of system (1).
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Definition 2 (see [35]). The origin of (1) is said to be fixed-
time stable if it is globally finite-time stable, and the corre-
sponding settling time T x0 is bounded, i.e., ∃Tmax > 0 T
x0 ≤ Tmax, ∀x0 ∈R

n.

Lemma 3 (see [36]). Let z1, z2,⋯, zn, 0 < p < 0, and q ≥ 1
and the following inequalities ∑n

i=1zi
p ≤∑n

i=1z
p
i and n1−q

∑n
i=1zi

q ≤∑n
i=1z

q
i hold.

Lemma 4 (see [35, 37]). If there exists one Lyapunov function
V x such that V x ≤ −αV x p − βV x q + Δ holds, where
the parameters satisfy α > 0, β > 0, 0 < p < 1, q > 1, and Δ >
0, then the trajectory of system (1) is globally practical fixed-
time stable. The corresponding residual set of the solution is
expressed as Φ = lim

t⟶T
V x ≤min Δ/α 1 − λ 1/p,

Δ/β 1 − λ 1/q with 0 < λ < 1, and the settling time can
be estimated by T x0 ≤ 1/ α 1 − p + 1/ β q − 1 .

Theorem 5. Consider continuous Lyapunov functions V x t
satisfying V x t ≤ −η1V x t − η2V

p+2 /2 x t /tanh V1/2

x t for system (1) with η1 > 0 and η2 > 0. Then, system tra-
jectory is fixed-time stable, and the settling time is bounded by
2/pη2 ln 1 + η2/η1 + 2/η1 1 − p ln 1 + η1/η2 .

Proof. If V x > 1 is fulfilled, it can be obtained that V
x t ≤ −η1V x t − η2V

p+2 /2 x t . When circumstance
V x ≤ 1 arises, the result can be further simplified as
V x t ≤ −η1V x t − η2V

p+1 /2 x t . Then, define new
variable y = 1 + ln V for V x t > 1 and y = V 1−p /2 for
V x t ≤ 1. Then, the above differential inequality can
be further expressed as

y = −η1e
p y−1 /2 − η2, y > 1,

y = −
1 − p
2

η1y + η2 , 0 < y ≤ 1
2

From (2), the settling time can be calculated as

Tm = lim
y x 0 ⟶∞

y x 0

1

1
η1e

p y−1 /2 + η2
dy +

1

0

2
1 − p η1y + η2

dy

3

Select z = ep y−1 /2, and then, (3) can be rewritten as

Tm = lim
z x 0 ⟶∞

z x 0

1

2
pz η1z + η2

dz +
1

0

2
1 − p η1y + η1

dy

= lim
z x 0 ⟶∞

2
pη2

z x 0

1

1
z
−

1
z + η2/η1

dz

+
2

η1 1 − p
ln 1 +

η1
η2

=
2
pη2

ln 1 +
η2
η1

+
2

η1 1 − p
ln 1 +

η1
η2

4

Remark 6. Theorem 5 is inspired by [38], and the unified
term can ensure that convergent property in both far and
near neighbourhoods of the equilibrium point. However,
the convergent rate is furthermore improved through intro-
ducing one continuous term for differential system in this
manuscript, while the upper bound of the settling time has
been also analysed by more rigorous logical proof. Subse-
quently, it is used to design new NTSM surface, which can
be widely applied to various nonlinear systems, and further-
more adaptive law is combined to establish fixed-time guid-
ance law.

2.2. Algebraic Graph. Let n missiles intercept one target
together, and information communication between them is
expressed as the graph G V , E, A in the process of cooper-
ative attack. The graph G V , E, A consists of a node V =
V1, V2,⋯,Vn , an edge E ⊆ Vi, V j : Vi, V j ∈ V , and a

weighted adjacency matrix A = aij ∈R
n×n. Vertex Vi repre-

sents the ith missile; edge Vi, V j denotes an edge of G; aij =
aji = 1 is defined if the ith missile can communicate with
the jth missile (namely, they are adjacent), and zero other-
wise. The Laplacian matrix of G is defined as L = lij ∈
Rn×n with lij = −aij for i ≠ j and lii =∑n

j=1aij. In addition,
the following assumptions are satisfied for the communica-
tion graph G.

Assumption 7. The graph G is connected if there is a com-
munication path that involves all the missiles.

Assumption 8. The graph G is undirected if the ith and jth
missiles can get information from each other.

Lemma 9 (see [39]). Consider Laplacian matrix L = lij of
the graph G, and the conclusions can be drawn as follows.

(1) The matrix L is semipositive definite with only one
zero eigenvalue, and the other eigenvalues are positive
real numbers if and only if the graph G is
unconnected

(2) For undirected graph G, the equation xTLx =∑n
i=1

∑n
j=1aij xj − xi

2/2 holds

Lemma 10 (see [39]). The algebraic connectivity of undi-
rected graph G is expressed by the second small eigenvalue
λ2 L of the Laplacian matrix L. If undirected graph G is con-
nected, the following inequality can be obtained as follows:

λ2 L =min x ≠0,1Tn x=0
xTLx

x 2 > 0, 5

where 0 is an eigenvalue of L, and 1n is the associated eigen-
vector. If the circumstance ∑n

i=1xi = 0 1Tn x = 0 is fulfilled, the
following inequality holds:

xTLx ≥ λ2 L xTx 6
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2.3. Missile-Target Engagement. To simplify pursuit-
situation equations, the following assumptions are given:
(i) the missiles and target are point masses; (ii) the seeker
and autopilot dynamics of the missiles are fast enough to
be neglected; and (iii) the accelerations are bounded and
unknown between every missile and target, and each missile
(interceptor) can only acquire the corresponding velocities
and positions for each other. Under these assumptions, 3D
interception geometry is shown in Figure 1, and the kine-
matic relationship between each missile and the target can
be expressed in polar coordinates. T and M denote target
and missile, respectively. The subscript i stands for variables
related with interceptor i. OxIyIzI is the inertial reference
frame; MxIyIzI represent the inertial reference frame whose
origin is set at the gravity center of missile i. MxLyLzL is the
LOS reference frame. ri, θi, and ϕi describe the relative dis-
tance and the elevation and azimuth angles between each
missile and target, respectively. Then, the three-
dimensional equations can be obtained from the classical
principles of kinematics and dynamics:

ri − riθ
2
i − riϕ

2
i cos θi = aTri − aMri,

riϕi cos θi + 2riϕi cos θi − 2riθiϕi sin θi = aTϕi − aMϕi,

riθi + 2riθi + riϕi sin θi cos θi = aTθi − aMθi,

7

where aMi = aMri, aMϕi, aMθi
T and aT = aTr , aTϕ, aTθ

T rep-
resent the acceleration vectors of the ith missile and the tar-
get, respectively.

Remark 11. The transformation matrix between the inertial
frame and the LOS frame is expressed as

RLI θLi, ϕLi =

cos θLi cos ψLi cos θLi sin ψLi −sin θLi

−sin ψLi cos ψLi 0

sin θLi cos ψLi sin θLi sin ψLi cos θLi
8

Define the acceleration components aMxi, aMyi, and aMzi

of the missile in the inertial reference frame. Then, from the
transformation matrix RLI , it can be obtained that

aMxi, aMyi, aMzi
T = R−1

LI aMri, aMϕi, aMθi
T 9

Remark 12. When interception collision occurs, relative dis-
tance ri belongs to the actual interval rmin, rmax , which can
be considered as the range of miss distance. Herein, rmin and
rmax are bounded positive constants. Due to nonzero size,
the relationship (10) may be satisfied during the interception
engagement

r0 ≤ ri t ≤ ri 0 , r0 ∈ rmin, rmax , 10

with the initial relative distance ri 0 .

3. Main Results

3.1. Tangential Guidance Law Design. Consider expected
terminal elevation angle θdi and azimuth angle ϕdi for each
missile, which can be selected as the intersect angles or
impact angles in three-dimensional engagement scene. At
the impact time t f i, the constraint of LOS angles can be
expressed as θf i = θdi and ϕf i = ϕdi. Define new variables

xki (k = 1, 2,⋯, 6) as x1i = ri, x2i = ri, x5i = θi − θdi, x6i = θi,
x3i = ϕi − ϕdi, and x4i = ϕi. Then, cooperative engagement
model can be rewritten as

x1i = x2i,

x2i = x1ix
2
6i + x1ix

2
4i cos θi − aMri + dri,

x3i = x4i,

x4i = −
2x2ix4i
x1i

+ 2x4ix6i tan θi −
aMϕi

x1i cos θi
+ dϕi,

x5i = x6i,

x6i = −
2x2ix6i
x1i

− x4i sin θi cos θi −
aMθi

x1i
+ dθi,

11

with dri = aTri, dϕi = aTϕi/ x1i cos θi , and dθi = aTθi/x1i.

Assumption 13. It is assumed that the LOS angles θi ≠ ±π/2
are fulfilled during the cooperative guidance process.

Firstly, define one variable tgoi to denote the time-to-go
for each missile interception. Since the relative velocity ri
changes slightly in the practical guidance process, tgoi can
be computed by tgoi = −ri/ri. Differentiating tgoi versus time
yields

tgoi = −1 +
x21ix

2
6i

x22i
+
x21ix

2
4i

x22i
cos θi −

x1i
x22i

aMri +
x1i
x22i

dri, 12

...

ZI

Vm1

𝜃m1

𝜃t

𝜃L1

𝜃mn

𝜙m1

𝜙t

𝜙mn

𝜙L1

XI

VT

YI

Vmn

𝜙m3𝜙m2 𝜃m3

𝜃m2

Vm3Vm2

Figure 1: The engagement geometry in 3D space.
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Then, introduce another variable t f i to indicate the pre-
dictive engagement instant t f i = t + tgoi, and the derivative of
t f i can be expressed as

t f i =
x21ix

2
6i

x22i
+
x21ix

2
4i

x22i
cos θi −

x1i
x22i

aMri +
x1i
x22i

dri = uri + dri

13

Therefore, the agreement of t f i is equivalent to that of

tgoi. If dri = 0 (dri = 0) is fulfilled, the consensus protocol
(14) can achieve interception time synchronization for every
missile.

Theorem 14. Consider system (13) (dri = 0) with undirected
and connected graph, and the nominal protocol (14) can
guarantee that predictive engagement instant t f i realizes fast
fixed-time consensus.

unri = αsig 〠
j∈Ni

aij t f j − t f i

p

+ βsig 〠
j∈Ni

aij t f j − t f i

q

+ γ〠
j∈Ni

aij t f j − t f i

14

Proof. Select the following Lyapunov function:

V1 =
1
4
〠
N

i=1
〠
N

j=1
αij t f j − t f i

2 15

Taking the time derivative of (15) yields

V1 = −〠
N

i=1
〠
N

j=1
aij t f j − t f i · αsig 〠

j∈Ni

aij t f j − t f i

p

+ βsig 〠
j∈Ni

aij t f j − t f i

q

+ γ〠
j∈Ni

aij t f j − t f i

= −α〠
N

i=1
〠
j∈Ni

aij t f j − t f i

1+p

− β〠
N

i=1
〠
j∈Ni

aij t f j − t f i

1+q

− γ〠
N

i=1
〠
j∈Ni

aij t f j − t f i

2

≤ −α 〠
N

i=1
〠
N

j=1
aij t f j − t f i

2 1+p/2

− βN1−q/2 〠
N

i=1
〠
N

j=1
aij t f j − t f i

2 1+q/2

− γ〠
N

i=1
〠
j∈Ni

aij t f j − t f i

2

16

By Lemma 10, (16) can be furthermore simplified as

V1 ≤ −α 2λ2 LA V1
1+p/2 − βN1−q/2 2λ2 LA V1

1+q/2

− γ 2λ2 LA V1
17

Define another variable z = V 1−p /2
1 , and then, differenti-

ating it yields

z ≤ −
1 − p
2

α 2λ2 LA
1+p/2 + βN1−q/2 2λ2 LA

1+q/2zq−p/1−p + 2γλ2 LA z

18

The upper bound of the settling time for (17) or (18) can
be estimated by

T1 ≤
z 0

0

2

1 − p α 2λ2 LA
1+p/2 + βN1−q/2 2λ2 LA

1+q/2zq−p/1−p + 2γλ2 LA z
dz

=
1

1 − p

z 0

1

1
2p−1/2αλ2 LA

1+p/2 + 2q−1/2βN1−q/2λ2 LA
1+q/2z1+ξ + γλ2 LA z

dz

+
1

1 − p

1

0

1
2p−1/2αλ2 LA

1+p/2 + 2q−1/2βN1−q/2λ2 LA
1+q/2z1+ξ + γλ2 LA z

dz,

19

with ξ = q − 1 / 1 − p and z 0 =V1 0 1−p/2. Further-
more, the following result can be obtained that

T1 ≤
1

1 − p

z 0

1

1
2q−1/2βN1−q/2λ2 LA

1+q/2z1+ξ
dz

+
1

0

1
2p−1/2αλ2 LA

1+p/2 + γλ2 LA z
dz

≤
1

2q−1/2βN1−q/2λ2 LA
1+q/2 q − 1

+
1

γλ2 LA 1 − p

ln 1 +
γ 2λ2 LA

1−p/2

α

20

This completes the proof.

Remark 15. Due to relational expression t f j − t f i = tgoj − tgoi,
fast fixed-time consensus protocol (14) can be rewritten as

unri = αsig 〠
j∈Ni

aij tgoj − tgoi

p

+ βsig 〠
j∈Ni

aij tgoj − tgoi

q

+ γ〠
j∈Ni

aij tgoj − tgoi

21

It can be obtained that this consensus protocol is depen-
dent on information interchange between mutual-
communication missiles, and the designed algorithm is one
dynamic consensus strategy during guidance process.
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In the circumstance dri ≠ 0 (dri ≠ 0), the nominal con-
sensus protocol cannot guarantee the fixed-time agreement
of system (13). According to assumptions (i)-(iii), it can be
inferred that the lumped uncertainties dri is bounded.
Therefore, it can be assumed that there exist unknown
scalars κri > 0 such that dri = x1idri/x22i ≤ κriΘri holds
with Θri = x1i/x22i . Furthermore, consider the following
ISM surface:

sri = t f i − t f i 0 −
t

0
unridt 22

By virtue of (22) and parameter adaptation law,
robust fixed-time consensus guidance law can be designed
as follows:

uri = unri + ucri − η1sig
p1 sri − η2sig

q1 sri − κ riΘri sign sri ,
23

ucri = −
sri
s2ri

c1i 2εri − 1
8εri

2p1 1 − λi κ
2p1
ri + 22q1−1λiκ

2q1
ri ,

24

κ ri = −c0i c1iκ ri −Θri sri , 25

where εri > 0 5, 0 < λi < 1, η1 > 0, and η2 > 0 are control
parameters. c0i and c1i are designed parameters of adap-
tive law, and κ ri is estimated value of κri.

Theorem 16. Consider system (13) (dri ≠ 0) with undirected
and connected graph. The designed guidance law (23)–(25)
can ensure that the sliding mode si evolves on the manifold
and remains there in spite of the uncertainties, and then,
fixed-time agreement of tgoi can be accomplished.

Proof. Let us choose the Lyapunov function:

V2 =
1
2
s2ri +

1
2c0i

κri − κ ri
2 26

Differentiating (26) yields

V2 = srisri +
1
c0i

κri − κri κri

= sri ucri − η1sig
p1 sri − η2sig

q1 sri − κriΘri sign sri + dri

−
1
c0i

κri − κri κri

27

By the boundedness inequality of dri and adaptive updat-
ing law (25), one has

V2 ≤ sri · ucri − η1 sri
1+p1 − η2 sri

1+q1 − κriΘri sri + sri dri

−
1
c0i

κri − κri κri = sri · ucri − η1 sri
1+p1 − η2 sri

1+q1

+Θri sri κri − κri −
1
c0i

κri − κri κri = sri · ucri − η1 sri
1+p1

− η2 sri
1+q1 + c1iκri κri − κri

28

Consider the following inequality

κ ri κri − κ ri ≤
− 2εri − 1

2εri
κri − κri

2 +
εri
2
κ2ri, 29

with εri > 1/2, and the above result can be further provided as

V2 ≤ sri · ucri − η1 sri
1+p1 − η2 sri

1+q1

−
c1i 2εri − 1

2εri
κri − κri

2 +
εri
2
κ2ri

≤ sri · ucri − η1 sri
1+p1 − η2 sri

1+q1

−
c1i 2εri − 1

2εri
1 − λi κri − κri −

1
2
κri − κri

p1
2

−
c1i 2εri − 1

2εri
λi κri − κri −

1
2
κri − κri

q1
2

−
c1i 2εri − 1

2εri
1 − λi κri − κri

1+p1

+
1
4
c1i 2εri − 1

2εri
1 − λi κri − κ ri

2p1

−
c1i 2εri − 1

2εri
λi κri − κri

1+q1 +
1
4
c1i 2εri − 1

2εri
λi κri − κri

2q1

≤ sri · ucri − η1 sri
1+p1 − η2 sri

1+q1

−
c1i 2εri − 1

2εri
1 − λi κri − κri

1+p1

+
1
4
c1i 2εri − 1

2εri
1 − λi 2p1 κ

2p1
ri + κ

2p1
ri

−
c1i 2εri − 1

2εri
λi κri − κri

1+q1 +
1
4
c1i 2εri − 1

2εri
λi22q1−1 κ

2q1
ri + κ

2q1
ri ≤ −η1V

1+p1/2
2 − η2V

1+q1/2
2 + Δ1,

30

with η1=min 21+p1/2η1, c1i 2εri − 1 /2εri 1 − λi 2c1i 1+p1/2

and Δ1 = c1i 2εri − 1 /8εri 2p1 1 − λi κ
2p1
ri + 2q1λiκ

2q1
ri η2 =

21− q1/2 min 21+ q1/2η2, c1i 2εri − 1 /2εri λi 2c0i
1+ q1/2 .

According to Lemma 4, it can be inferred that V2 can con-
verge to the residual of the origin and the setting time T2
is computed as follows:

Φ = lim
t⟶T

V2 ≤min
Δ1

η1 1 − ϑi

2/1+p1
,

Δ1
η2 1 − ϑi

2/1+q1
,

T2 =
2

η1ϑi 1 − p1
+

2
η2ϑi q1 − 1

,

31
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with the constant 0 < ϑi < 1. Therefore, combined with The-
orem 5 and ISM (22), it can be obtained that system is fixed-
time stable, and the upper bound of the convergent time is
T1 = T2 + T1.

Remark 17. In order to avoid chattering of sliding mode
manifolds, the sign function in the control can be replaced
by some types of approximate continuous function: (1)
f1 si = si/ si + ℏi , where ℏi > 0 is constant and selected
to be sufficiently small, and (2) a hyperbolic tangent func-
tion f2 si = 1 − exp −ℏ∗i si / 1 − exp −ℏ∗i si (ℏ∗i > 0, i =
1, 2, 3).

3.2. Normal Guidance Law Design. In this subsection, adap-
tive guidance law is constructed to guarantee that all the
LOS angles of the missiles converge to the desired values with-
out the information on target manoeuvring. Firstly, consider
the subsystem for LOS angular rate and angle of azimuth
direction:

x3i = x4i,

x4i = −
2x2ix4i
x1i

+ 2x4ix6i tan θi −
aMϕi

x1i cos θi
+ dϕi

32

According to assumptions (i)-(iii) and the characteristics
of trigonometric functions, it can be obtained that the pertur-
bations dϕi are bounded. Therefore, it can be supposed that
there exist unknown scalars κϕi > 0 such that dϕi = aTϕi/
x1i cos θi ≤ κϕiΘϕi is fulfilled with Θϕi = 1/ x1i cos θi .
For accomplishing guidance task for each missile, novel
fixed-time SM surface is formulated as follows:

sϕi = x4i + ι11x3i + ι12gϕi x3i , 33

gϕi x3i =
x3i

p′+1

tanh x3i
, if sϕi = 0 sϕi ≠ 0&& x3i > εϕ ,

k11x3i + k12sig2 x3i , else sϕi ≠ 0&& x3i ≤ εϕ,

34

sϕi = x4i + ι11x3i + ι12
x3i

p′+1

tanh x3i
, 35

with ι11 > 0, ι12 > 0, k11 = 1 − p′ εp′ϕ /tanh εϕ, k12 = p′εp′−1ϕ /
tanh εϕ, and small positive constant εϕ.

Theorem 18. Consider guidance subsystem (32) for (33) sat-
isfying sϕi = sϕi = 0, and system states can converge to the

origin within the specified time Tsϕi = 1/p′ι12 ln 1 + ι12/ι11
+ 1/ ι11 1 − p′ ln 1 + ι11/ι12 .

Proof. If the sliding motion occurs, then sϕi = sϕi = 0 is kept
on the sliding mode surface. Select another Lyapunov
function Vsϕi = x23i, and its derivative can be written as

Vsϕi = −2ι11x23i − 2ι12sigp
′+2 x3i /tanh x3i. The remaining

proof is omitted, which is similar to Lemma 9.
By virtue of these analyses, fixed-time guidance law is

proposed as

aMϕi = x1i cos θi ⋅ anϕi + kϕ1sigp2 sϕi + kϕ2sigq2 sϕi +
κ∗ϕiΘ

∗
ϕisϕi

2ϖ2
i

,

36

anϕi = −
2x2ix4i
x1i

+ 2x4ix6i tan θi + ι11x4i + ι12gϕi x3i , 37

κ
∗
ϕi = γ1i

Θ∗
ϕis

2
ϕi

2ϖ2
i

− γ2iκ
∗
ϕi , 38

where positive constants kϕ1, kϕ2, γ1i, and γ2i are the selected
parameters. κ∗ϕi is the estimation of κ2ϕi; Θ

∗
ϕi is implemented

to denote Θ2
ϕi; the constant ϖi > 0 is satisfied.

Theorem 19. Consider subsystem (32) with sliding mode
surface (33), and adaptive fixed-time guidance law
(36)–(38) can guarantee that LOS angular rates and angle
errors converge to small regions around the origin within
the specified time.

Proof. Choose the following Lyapunov function:

V3 =
1
2
s2ϕi +

1
2γ1i

κ∗ϕi − κ∗ϕi
2

39

The time derivative of V3 is

V3 = sϕisϕi −
1
γ1i

κ∗ϕi − κ∗ϕi κ
∗
ϕi

= sϕi −
2x2ix4i
x1i

+ 2x4ix6i tan θi −
aMϕi

x1i cos θi

+ dϕi + ι11x4i + ι12gϕi x3i

− κ∗ϕi − κ∗ϕi
Θ∗

ϕis
2
ϕi

2ϖ2
i

− γ2iκ
∗
ϕi

= sϕi −kϕ1sigp2 sϕi − kϕ2sigq2 sϕi −
κ∗ϕiΘ

∗
ϕisϕi

2ϖ2
i

+ dϕi

− κ∗ϕi − κ∗ϕi
Θ∗

ϕis
2
ϕi

2ϖ2
i

− γ2iκ
∗
ϕi

≤ −kϕ1 sϕi
1+p2 − kϕ2 sϕi

1+q2 −
κ∗ϕiΘ

∗
ϕis

2
ϕi

2ϖ2
i

+ sϕi κϕiΘϕi

−
Θ∗

ϕis
2
ϕi

2ϖ2
i

κ∗ϕi − κ∗ϕi + γ2iκ
∗
ϕi κ∗ϕi − κ∗ϕi

40

Due to the inequality sϕi κϕiΘϕi ≤ κ∗ϕiΘ
∗
ϕis

2
ϕi/2ϖ2

i +
ϖ2
i /2 and (29), the above result can be further derived as
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V3 ≤ − min kϕ1, kϕ2 · sϕi
2 −

κ∗ϕiΘ
∗
ϕis

2
ϕi

2ϖ2
i

−
Θ∗

ϕis
2
ϕi

2ϖ2
i

κ∗ϕi − κ∗ϕi

+
κ∗ϕiΘ

∗
ϕis

2
ϕi

2ϖ2
i

+
ϖ2
i

2
−

2εϕi − 1
2εϕi

κ∗ϕi − κ∗ϕi
2

+
εϕi κ∗ϕi

2

2
≤ −k1V3 + Δ3,

41

with εϕi > 1/2, k1 = min kϕ1, kϕ2, 2εϕi − 1 /2εϕi , and

Δ3 = ϖ2
i /2 + εϕi κ

∗
ϕi

2/2 . On the basis of the boundedness

theorem, it can be concluded that sϕi and κ∗ϕi − κ∗ϕi are uni-
formly ultimately bounded (UUB). It can be assumed that
κ∗ϕi − κ∗ϕi ≤ δκϕi is fulfilled, where δκϕi are positive
constants.

According to the above analysis and inference, the for-
mula (40) can also be converted to the following form:

V3 ≤ −kϕ1 sϕi
1+p2 − kϕ2 sϕi

1+q2 −
2εϕi − 1
2εϕi

κ∗ϕi − κ∗ϕi
2

+
εϕi κ∗ϕi

2

2
+ ϖ2

i

2
≤ −kϕ1 s2ϕi

1+p2/2 − kϕ2 s2ϕi
1+q2/2

−
2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2

1+p2/2

−
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

1+q2/2

+ Δ3,

42

with Δ3 = 2εϕi − 1 /2εϕi λϕi κ∗ϕi − κ∗ϕi
2 1+p2/2 + 2εϕi − 1

/2εϕi 1 − λϕi κ∗ϕi − κ∗ϕi
2 1+q2/2 − 2εϕi − 1 /2εϕi κ∗ϕi − κ

∗
ϕi

2

+ εϕi κ
∗
ϕi

2/2 + ϖ2
i /2 and 1/2 < λϕi < 1. Now, further

analysis for Δ3 will be carried out. Consider the circum-
stance λϕi 2εϕi − 1 κ∗ϕi − κ∗ϕi

2/ 2εϕi ≤ 1, and then, one has

2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2

1+p2/2

+
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

1+q2/2

−
2εϕi − 1
2εϕi

κ∗ϕi − κ∗ϕi
2
≤

2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2

1+p2/2

−
2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2
< 1

43

When the case λϕi 2εϕi − 1 κ∗ϕi − κ∗ϕi
2/ 2εϕi > 1 ≥

1 − λϕi 2εϕi − 1 κ∗ϕi − κ∗ϕi
2/ 2εϕi appears, it has

2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2

1+p2/2

+
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

1+q2/2

−
2εϕi − 1
2εϕi

κ∗ϕi − κ∗ϕi
2
≤ 0

44

If the condition λϕi 2εϕi − 1 κ∗ϕi − κ∗ϕi
2/ 2εϕi ≥ 1

− λϕi 2εϕi − 1 κ∗ϕi − κ∗ϕi
2/ 2εϕi > 1 is satisfied, it follows

M1

M2 M3

Figure 2: Communication topology among the missiles.

Table 1: The initial conditions of the missiles.

Mi r 0 r 0 ϕ 0 ϕ 0 θ 0 θ 0
M1 10000 -417.57 π/6 -0.0056 π/6 -0.0028

M2 9491.63 -380.35 0.5408 -0.0141 1.1491 -0.0059

M3 9587.51 -409.80 0.3733 -0.0107 1.1274 -0.0046
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Figure 3: The engagement trajectories under the proposed scheme.
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2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2

1+p2/2

+
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

1+q2/2

−
2εϕi − 1
2εϕi

κ∗ϕi − κ∗ϕi
2

≤
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

1+q2/2

−
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

45

From UUB analysis of adaptive parameter κ∗ϕi, the above
results can be summarized as

2εϕi − 1
2εϕi

λϕi κ∗ϕi − κ∗ϕi
2

1+p2/2

+
2εϕi − 1
2εϕi

1 − λϕi κ∗ϕi − κ∗ϕi
2

1+q2/2

−
2εϕi − 1
2εϕi

κ∗ϕi − κ∗ϕi
2

≤max 1,
2εϕi − 1
2εϕi

1 − λϕi δ
2
κϕi

1+q2/2

− 1

46

Then, the inequality (42) can be furthermore expressed as

V3 ≤ −k1V
1+p2/2
3 − k1V

1+q2/2
3 + Δ3, 47

with k1 = min 21+p2/2kϕ1, 2εϕi − 1 λϕiγ1i/εϕi
1+p2/2 , k2 =

min 2kϕ2, 21−q2/2 2εϕi − 1 1 − λϕi γ1i/εϕi
1+q2/2 , and Δ3 =

max 1, 2εϕi − 1 /2εϕi 1 − λϕi δ
2
κϕi

1+q2/2 − 1 + εϕi κ
∗
ϕi

2/
2 + ϖ2

i /2 .
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Figure 4: Relative distances under the proposed scheme.
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Figure 5: Time-to-go under the proposed scheme.
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By using Lemma 4, V3 will converge to the following
small region:

ΦV3
= sϕi, κ∗ϕi − κ∗ϕi V3 ≤min

Δ3

k1 1 − θq

2/1+p2

,
Δ3

k2 1 − θq

2/1+q2

, 0 < θq ≤ 1 ,

48

within the fixed time T3 = 2/ k1 1 − p2 + 2/ k2 q2 − 1 ,
while fixed-time sliding mode variable (33) can be steered
to the set

Φsϕi
= sϕi sϕi ≤ 2 min

Δ3

k1 1 − θq

1/1+p2

,
Δ3

k2 1 − θq

1/1+q2

49

Since sϕi is bounded after fixed-time convergence, it can be
inferred that sϕi ≤ δsϕi holds with the constant δsϕi > 0. Then,
it can be furthermore discussed about the neighbourhoods of
the equilibrium point LOS angular rates and angle errors.
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Figure 7: LOS angular rates under the proposed scheme.
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Figure 8: Acceleration commands under the proposed scheme.
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Therefore, from Theorem 16, it can be inferred that the closed-
loop guidance subsystem is practical fixed-time stable.

Secondly, consider the subsystem for LOS angular rate
and elevation angle

x5i = x6i,

x6i = −
2x2ix6i
x1i

− x4i sin θi cos θi −
aMθi

x1i
+ dθi

50

From assumptions (i)-(iii), it can be inferred that the
perturbations dθi are also bounded. Similarly, it can be
supposed that there exist unknown scalars κθi > 0 such
that dθi = aTθi/x1i ≤ κθiΘθi is satisfied with Θθi = 1/x1i.
Furthermore, fixed-time SM surface is constructed by

sθi = x6i + ι21x5i + ι22gθi x5i , 51

gθi x5i =
x5i

p′+1

tanh x5i
, if sθi = 0 sθi ≠ 0&& x5i > εθ ,

k21x5i + k22sig2 x5i , else sθi ≠ 0&& x5i ≤ εθ,
52

sθi = x6i + ι21x5i + ι22
x5i

p′+1

tanh x5i
, 53

with ι21 > 0, ι22 > 0, k21 = 1 − p′ εp′θ /tanh εθ, k22 = p′εp′−1θ /
tanh εθ, and small positive constant εθ. Then, fixed-time
guidance law can be designed as

aMθi = x1i ⋅ anθi + kθ1sigp3 sθi + kθ2sigq3 sθi +
κ∗θiΘ

∗
θisθi

2μ2i
,

54

Table 2: Simulation results under different guidance laws.

Guidance law Mi Impact time (s) Miss distance (m) ϕLi − ϕLd (°) θLi − θLd (°)

The proposed scheme

M1 24.1240 0.0601 0.2133 0.0036

M2 24.1240 0.0627 0.2384 -0.0211

M3 24.1240 0.0634 0.2976 0.0068

Guidance law in [30]

M1 24.1300 0.1428 0.6437 0.1420

M2 24.1190 0.1431 0.5980 0.0870

M3 24.1280 0.1460 0.6920 -0.7650

Guidance law in [15]

M1 24.1900 0.2218 1.4225 1.3627

M2 24.1901 0.2109 1.4871 1.3657

M3 24.1900 0.2118 -1.3456 -1.2766

APN

M1 23.8371 0.1792 2.3308 3.8237

M2 24.8946 0.3764 -8.3068 2.8637

M3 23.2901 0.3225 -7.3357 -7.9786
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Figure 9: The trajectories of 3D engagement under APN guidance
law.
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anθi = −
2x2ix6i
x1i

− x4i sin θi cos θi + ι21x6i + ι22gθi x5i ,

55

κ
∗
θi = ρ1i

Θ∗
θis

2
θi

2μ2i
− ρ2iκ

∗
θi , 56

with the chosen positive constants kθ1, kθ2, ρ1i, and ρ2i. κ
∗
θi

is the estimation of κ2θi; Θ
∗
θi is implemented to denote Θ2

θi;
the constant μi > 0 is satisfied.

Theorem 20. Consider subsystem (50) with SM variable (51),
and adaptive fixed-time guidance law (54)–(56) can steer
LOS angular rates and angle errors to small regions around
the origin within the fixed time.

Proof. The relevant proof is similar to that of Theorem 18,
which is omitted here.

Remark 21. Adaptive laws are implemented to estimate the
square of the upper bound for target acceleration. Due to
nonexistent sign function, the chattering phenomenon is
also properly solved. Consequently, the continuous control
scheme can effectively improve the bombardment effect,
only by relying on the information on the detected position
and velocity of manoeuvring target.

Remark 22. Adaptive fixed-time consensus law and guidance
law are in essence adaptive ISM and NTSM control algo-
rithms, and therefore, fixed-time performance criterions
are determined by the convergent time of sliding mode var-
iables and system states. Moreover, the adaptive switch gains
can reduce miss distance but then can also increase energy
consumption. Therefore, these characteristics should be
noticed in the process of the design of control laws and
parameter selections.

Remark 23. When the designed fixed-time guidance law is
applied to engagement geometry, the choice of guidance
parameters can comply with the following procedure.
Firstly, roughly evaluate the interception time between
each missile and target on the basis of relative distance
and velocity. Then, select control parameters to establish
fixed-time consensus and guidance law and guarantee that
the settling time of cooperative and guidance subsystem is
kept within reasonable ranges. In addition, it is necessary
to balance control energy consumption, miss distance,
and settling time of closed-loop system. In terms of spe-
cific details, one standard procedure can be implemented
by trial and error until the specified indicators are satisfac-
torily acquired for choosing these parameters.
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Figure 11: Time-to-go under APN guidance law.
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4. Simulation Results and Discussion

To verify the guidance performance of the designed algo-
rithm, numerical simulations are performed to show that
three tactical missiles from different battle fields jointly
intercept aerial manoeuvring target. Therein, the connected

communication topology of three missiles is provided in
Figure 2, and initial conditions are listed in Table 1. The rel-
evant parameters of the proposed guidance law are selected
as follows: α = β = γ = 0 2, p = 0 5, q = 1 2, λi = 1/2, εri = 3/4,
p1 = 0 8, q1 = 1 2, η1 = 0 21, η2 = 0 34, c0i = 32, c1i = 0 4, ι11 =
0 4, ι12 = 0 6, p′ = 0 6, kϕ1 = 0 32, kϕ2 = 0 42, ϖi = 0 5, γ1i =
12, γ2i = 3, p2 = 0 8, q2 = 1 4, ι21 = 0 4, ι22 = 0 6, kθ1 = 0 32,
kθ2 = 0 42, μi = 0 5, ρ1i = 12, ρ2i = 3, p3 = 0 8, and q3 = 1 4.
The maximum accelerations along aMri, aMϕi, and aMθi are,
respectively, limited to 40g, 60g, and 60g, where g denotes
gravitational acceleration. The initial positions of the missiles
and target are (0, 0, 0), (1000, 500, 0), (500, 1000, 0), and
2500 3, 2500, 5000 3 , respectively, while the initial
velocity of incoming target is (20, -15, 18) m/s. The corre-
sponding acceleration of the target is presumed as aTx =
10 sin 2t m2/s, aTy = −18 cos t/2 m2/s, and aTz = −17 sin
3t m2/s, and target acceleration in other frames can be
obtained by transformation matrix. In addition, comparison
simulations are provided with augmented proportional
guidance (APN), similar guidance law [15, 30] to test the
merits of the proposed scheme.

The simulation results are provided in Figures 3–8.
Three-dimensional engagement trajectories are described
in Figure 3, while the relative distances are shown in
Figure 4. Final miss distances and interception time are
shown in Table 2 between each missile and manoeuvrable
target. It can be seen that all the interceptors can effectively
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Figure 14: Acceleration commands under APN guidance law.
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hit manoeuvring target. In addition, each missile adjusts its
azimuth and elevation angles at the initial stage and ulti-
mately strikes the incoming target at the desired impact
angles.

The consensus of tgoi is achieved after 3.5 s, which is
given in Figure 5, and fast fixed-time convergence can be
guaranteed in the beginning. LOS angles and angular rates
are depicted in Figures 6 and 7, respectively. It can be
obtained that the LOS angles are forced to the desired values
under the proposed algorithms, while fixed-time stabiliza-
tion can also be achieved. Acceleration commands are exhib-
ited in Figure 8. It can be seen that the initial values are
relatively large since initial errors of time-to-go and LOS
angle are large. After these errors converge to the neighbour-
hoods of the equilibrium point, acceleration commands
become smaller and nearly sinusoidal due to target manoeu-
vre. From the above simulation results, it can be concluded
that simultaneous arrival with the setting LOS angles is
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Figure 16: Relative distances under cooperative guidance law [15].
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Figure 17: Time-to-go under cooperative guidance law [15].
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Figure 18: LOS angles under cooperative guidance law [15].
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realized, and the performance of the proposed scheme is
effectively validated.

To further demonstrate the effectiveness of the proposed
scheme, the comparative simulations are provided for the
conventional APN guidance law and similar guidance law
[15]. The initial engagement conditions are the same as
described in the previous paragraph. Therein, the APN guid-
ance law is given as aMϕi = −Nriϕi +NaTϕ/2 and aMθi = −N
riθi +NaTθ/2, where N is navigation ratio, which can be cho-
sen as in the range of 3~5.

Simulation results of APN guidance law are provided
in Figures 9–14. The motion trajectories are shown in
Figure 9, and only the third missile hit the target. At the
moment of the third missile collision with the target, from
Figure 10, it can be seen that there are still some distances
between the other missiles and the target. That is to say,
simultaneous arrival is not realized. Due to the lack of
consensus protocol, time-to-go cannot be steered to the
same value in Figure 11. LOS angles and rates are pro-
vided in Figures 12 and 13, respectively, and it can be
obtained that each missile can adjust its LOS angles and
rates under APN guidance law, but the expected LOS
angles can be kept to attack the target. Acceleration com-
mands are depicted in Figure 14, and it can be obtained
that guidance laws are always changing due to the target
manoeuvring. Although APN guidance law does not play
a role in simultaneous attack and impact angle constant,
this law is concise and highly versatile.

Simulation results of similar cooperative guidance law
[15] with adaptive law, ISM, and TSM are exhibited in
Figures 15–20. From Figure 15, it can be observed that these
missiles can intercept the manoeuvring target. The relative
distances and time-to-go are shown in Figures 16 and 17,
respectively. It can be obtained that simultaneous arrival
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can be achieved, and miss distances are slightly larger but
still more reasonable as shown in Table 2. In addition,
time-to-go consensus is guaranteed, while the convergent
time is longer than that of the proposed scheme compared
with Figures 5 and 17. In elevation and azimuth directions,
it can be obtained that LOS angles can be forced to the
expected values in Figure 18, and LOS angular rates can con-
verge the equilibrium points in Figure 19. Hence, the mis-
siles are capable of hitting the target with the desired
impact angles. However, the settling time of 14.2 s is longer
that those of the proposed scheme. Acceleration commands
are described in Figure 20, and it can be obtained that guid-
ance law decreases to zero after LOS angle errors and angu-
lar rates converge to the origin. Due to the fact that the
parameters of adaptive supertwist algorithm only increase
without decreasing, the acceleration commands fluctuate
continuously.

Simulation results of similar cooperative guidance law
[30] with disturbance observer and TSM are exhibited in
Figures 21–26. From Figure 21, it can be obtained that all
the missiles can hit the manoeuvring target. The relative
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Figure 22: Relative distances under cooperative guidance law [30].
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Figure 24: LOS angles under cooperative guidance law [30].
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distances and time-to-go are described in Figures 22 and 23,
respectively. It can be seen that time-to-go synchronization
can be achieved, and miss distances are reasonable as shown
in Table 2. In addition, time-to-go consensus is guaranteed,
while the settling time is slightly longer than that of the pro-
posed scheme as shown in Figures 5 and 23. In elevation and
azimuth directions, it can be obtained that the expected LOS
angles can be reached as shown in Figure 24, and LOS angu-
lar rates can converge the origin as shown in Figure 25.
Hence, the missiles could intercept the target with the
desired impact angles. However, the convergent time of
7.6 s is longer that those of the proposed scheme. Accelera-
tion commands are shown in Figure 26, and it can be
obtained that the change curves of the guidance law [30]
are similar to those of the proposed algorithm. The cooper-
ative guidance law is relatively concise, but low-pass filters
and disturbance observer have certain impact on the inter-
ception time and guidance accuracy.

5. Conclusions

In this paper, distributed 3D fixed-time cooperative guid-
ance scheme has been presented to accomplish salvo attack
at the desired impact angles. The average value of time-to-
go is achieved through information interaction in fixed time,
and therefore, the bombardment is finally completed at the
same time. In the azimuth and elevation direction of the
LOS, novel adaptive fixed-time guidance commands are pro-
posed to guarantee that LOS angular rates are driven to the

neighbourhood of the origin in the specified time. The whole
guidance process only needs the information from adjacent
missiles and the position and speed of an incoming target.
In the future, more constraints or realistic environments will
be considered in the cooperative attack of multiple missiles
against manoeuvring target.
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