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Stochastic disturbances are everywhere. The influence of stochastic factors on the modeling and simulation of aircraft flight
dynamics should be considered. Therefore, a stochastic differential equation for aircraft flight attitude is modeled based on the
traditional one in this paper. After that, an identification method based on the idea of sparse recognition for unknown
parameters and stochastic disturbance is proposed. Finally, a set of measured flight data is used to verify that the identified
stochastic model has obvious advantages over the traditional deterministic model when the aircraft is maneuvering in flight.
This method can improve the accuracy and reliability of the aircraft flight dynamic model.

1. Introduction

The flight dynamic model of the aircraft plays an important
role in aircraft design. It can provide accurate and reliable
data for aircraft modification design, flight control system
optimization, ground simulation experiment, flight quality,
and combat effectiveness evaluation. And it can reduce the
number of costly and time-consuming flight tests and
shorten the data processing time and the flight test cycle.
However, the accuracy of the flight dynamic model is limited
by complex aerodynamics. The system identification based
on the measured flight data has provided technical support
for improving the confidence of the model.

Modeling aircraft flight dynamics using the system identifi-
cation method began in the 1950s. In 1951, Greenburg [1] and
Shinbrot [2] first used the system identification method to
study aircraft and proposed the least squares method to deter-
mine the stability derivative of aircraft based on flight tests.

Before the 1990s, the identification methods developed
mainly include time domain identification and frequency
domain identification. And the algorithm is no longer only
for single-parameter identification; it has been developed
to identify the structure of the model. The basic framework
for model identification of aircraft flight dynamics has been
gradually developed through the continuous efforts of
scholars. This framework is roughly divided into the follow-
ing three steps. First, the initial value of unknown parame-
ters in the model is estimated. Second, the model structure
is identified. Third, unknown parameters in the model are
identified. Molusis [3] used the Kalman filter to identify
the stability derivatives of helicopters. Kaletka [4] summa-
rized the key technologies to be solved in the identification
of the helicopter flight dynamic model system. Guy and
Williams [5] identified the MK-50 Sea King helicopter by
using the least squares method, the output error method,
the maximum likelihood method, and the augmented
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Kalman filter algorithm, which have been successfully
applied to fixed-wing aircraft. Klein and Tischler et al. [6,
7] proposed the frequency domain identification algorithm
of the helicopter, which was used for the flight dynamic
model identification of the UH-60 helicopter. The develop-
ment of frequency domain identification has laid a solid
foundation for the identification of high-order flight
dynamic models.

Since the 1990s, model identification has been mainly
based on the high-order flight dynamic model, which has
been extended to the nonlinear field at the same time. The
identification accuracy and computational efficiency have
been greatly improved. Most importantly, model identifica-
tion has gone beyond the theoretical level to a variety of
practical applications. Tischler and Cauffman et al. [8]
developed a multiwindow spectrum optimization method
to improve the accuracy of spectrum calculation and
improve the identification ability of the high-order flight
dynamic model. Jategaonkar and Plaetschke [9] carried out
the early work of nonlinear model identification for BO-
105 helicopter. Zhang et al. [10] proposed an aircraft’s
parameter identification algorithm, which optimizes the
ML function with the cloud model optimization theory in
accordance with the ML estimation principle, thus obtaining
the values of the parameters to be identified. Majeed and
Vikalp [11] build a neural model of an aircraft from flight
data and online estimation of the aerodynamic derivatives
from the established neural model. Bagherzadeh [12] pro-
vided a novel method that extracts observable flight modes
from flight test data and uses them in the identification pro-
cess by conducting a gray box time domain method. Wu and
Chen [13] developed an online system identification method
for tiltrotor aircraft flight dynamic modeling by establishing
a weighted recursive least squares algorithm.

Simmons [14] established a mathematical model of the
propulsion system by using the flight data of isolated propel-
lers collected on the flight envelope line of aircraft. Ayyad
et al. [15] proposed a new comprehensive method, DNN-
MRFT, to complete the real-time identification and tuning of
multirotor UAV. Rohr et al. [16] completed the modeling, sys-
tem identification, and nonlinear model predictive control
design of the longitudinal full envelope speed control of a
small hybrid UAV. Ivler et al. [17] extracted the flight dynamic
model of a hovering six-wing UAV through the state-space
system identification method. Verma and Peyada [18] esti-
mated and optimized unknown variables of the aircraft
dynamic model by combining the recursive mechanism learn-
ing machine network and the Gauss-Newton method. Finally,
the maximum likelihood method was used to verify estimated
parameters and demonstrate the effectiveness of this method.
Avcolu [19] identified and verified unknown aircraft aerody-
namic parameters through an improved subspace identifica-
tion method, and the identification results were satisfactory.
Cao et al. [20] proposed system identification method based
on interpretable machine learning for unknown aircraft
dynamics. These model recognition methods are based on a
definite model.

However, random noise is widely existed in practical
problems and has an important effect on the real system

[21–25]. Stochastic disturbance will affect simulation accu-
racy and efficiency and increase fragmentation, proximity,
and shape complexity of simulation results [26, 27]. With
the further improvement of the accuracy of aircraft flight
dynamic model, it is necessary to consider the influence of
stochastic factors on flight dynamics. In the study of
infectious disease system identification, Tutsoy et al. [28]
extended the SpID-N model as in the form of multi-input-
multi-output structure by adding the multidimensional
unknown uncertainties and proposed identification method
of the system. For flight dynamic research, the calculation
shows that the stochastic factors have a significant impact
on the flight posture, and the stochastic response of the sim-
ulation model considering the uncertainty factors can more
accurately simulate the flight state in the real environment
than the deterministic response. Moreover, the existing
deterministic identification methods cannot fully meet these
requirements; stochastic identification methods came into
being [29–32]. The main purpose of this paper is to identify
the stochastic model of flight attitude dynamics based on the
sparse identification algorithm and measured flight data.

The paper is organized as follows. In Section 2, we refine
the deterministic model and obtain the stochastic model we
studied. In Section 3, the identification procedure for the
stochastic model obtained in Section 2 is fully showed. In
Section 4, measured data of a particular type of aircraft is
used as an example to validate the effectiveness of the
method and the accuracy of the identified stochastic model.
The concluding remarks are given in Section 5.

2. The Establishment of the Stochastic Model of
Aircraft Flight Dynamics

2.1. The Traditional Deterministic Flight Attitude Dynamic
Model. The traditional deterministic aircraft flight attitude
dynamic model is a three-dimensional nonlinear motion
equation, which is established under ideal assumptions. The
deterministic model has good applicability when the aircraft
is not subjected to any stochastic disturbance. However, the
aircraft is inevitably affected by various stochastic loads, and
this deterministic model is not enough to accurately describe
the dynamic behavior of the aircraft in the actual flight. It
can be used as prior information to provide some reference
for the establishment of the stochastic model. The traditional
deterministic model equation is shown in [32]
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whereωx,ωy, andωz are the angular velocity of the body shaft-
ing, respectively;Ix, Iy, and Iz are the moment of inertia of the
aircraft on the body shafting, respectively;Mx,My, andMz are
the projection of the combined torque on the body shafting; L
and S are the wingspan and reference area, respectively; C is
the mean aerodynamic chord; ρ is the air density; α and
β are the angle of attack and sideslip, respectively; δx, δy,
and δz are the aileron angle, rudder angle, and elevator angle,

respectively; mδx
x , m

δy
y , and mδz

z are manipulation derivatives;

mα
z and mβ

y are the statically stable derivatives; mωx
x , m

ωy
y , and

mωz
z are the derivatives of the damping moment and the deriv-

atives of the washout time difference; and V is the velocity of
the aircraft. For any variable x in this paper, the operator x
stands for x = x ⋅ L/V .

This paper mainly studies axisymmetric aircraft, and it
can be considered that the aircraft has no asymmetry
between error and shape, that is, mx0 =mz0 = 0. In actual
analysis, the influence of β, ωy, and δy onMx can be ignored.

Similarly, the influence of β and δy onMy and influence of α

andδz on Mz can be ignored; thus, Eq. (2) can be simplified
to Eq. (3). A more detailed derivation is given in Ref. [33].
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Among the above variables, aircraft ontology parame-
ters, flight status parameters, flight environment data, and
flight status parameters can be measured in real time by sen-
sors and other equipment in the flight experiment process,
while the aircraft ontology parameters and flight environ-
ment are set in the aircraft design process.

2.2. The Establishment of a Stochastic Flight Attitude
Dynamic Model. In the previous section, the traditional
model (Eq. (1)) of aircraft attitude dynamics is presented.
A stochastic model is obtained by adding a random term
to the torque term of the traditional model.

Ixωx

Iyωy

Izωz

=
Mx + Ixη1 t

My + Iyη2 t

Mz + Izη3 t

+
Iy − Iz ωyωz

Iz − Ix ωzωx

Ix − Iy ωxωy

, 4

where Mx, My , and Mz are represented by Eq. (2).
Insight 1: the uncertainties in the actual situation are

complex and diverse, and a stochastic model is obtained by
adding a random term to the torque term of the determinis-
tic model.

Insight 2: Eq. (4) is a stochastic differential equation. It
is worth noting that stochastic terms η1 t , η2 t , and η3
t are completely unknown. Unlike other identification

methods that treat random items as Gaussian white noise,
we do not make any assumptions about stochastic terms
in advance.

Insight 3: on the right-hand side of Eq. (4), except for the
stochastic terms η1 t , η2 t , andη3 t , the remaining terms
can be obtained by in-flight experiments. The derivative
term on the left-hand side of Eq. (4) needs to be solved by
some methods, which will be covered in Section 3.

3. The Identification of the Stochastic Model of
Aircraft Flight Dynamics

In this section, the actual measurement data of the aircraft and
the traditional deterministic flight dynamic model (Eq. (1))
are taken as the priority information, and the process of con-
structing the flight dynamic stochastic model based on the
sparse identification idea and the identification method of
the model parameters is proposed.

3.1. TV Algorithm for Solving Derivatives. The derivative X
in Eq. (10) of the measured data X is crucial for the
identification of the stochastic model. The central difference
method performs well for smooth data without disturbance.
But during the actual flight, aircraft may be affected by
stochastic factors such as air pressure, temperature, atmo-
spheric density, turbulence, aircraft main parameters, and
pilot control, which lead to random fluctuations in the atti-
tude dynamics of the aircraft. Therefore, the derivatives of
flight attitude data obtained by using the central difference
method have great disturbance, and it is not satisfactory to
use these derivatives for model identification.

In order to solve the problem, we can use total variation
(TV) method to obtain the relatively smooth derivative
values of the measured data. A brief introduction of TV
algorithm is as follows.

In 1992, Rudin, Osher and Fatemi [34] first proposed the
TV method, which can obtain relatively smooth derivative
values without losing the jump information of the original
data. The TV method needs to adjust the parameters so that
the derivatives have good regularity. The derivative of the
function f can usually be obtained by solving the following
equation:

min F u = αR u + DF Au − f 5

Here, R u is the penalty term, A u = x
0u is the integral

of u, and the upper limit x is a variable; in other words, the
integral result A u is the expression about x. α is a regular-
ization parameter that controls the balance of the penalty
term and fidelity term. DF Au − f is a data fidelity item,
which tries to reduce the differences between Au and f .
The data fidelity item is usually the square of L2 norm, that
is, DF = L

0 ·
2.

The TV method solves the derivative of f in 0, L as the
minimum of the function [35].

F u = α
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We assume that f ∈ L2 (a null hypothesis in the discrete
case), and let f 0 = 0; F is defined in BV 0, L . Actually, F is
continuous on BV BV ⊂ L2 , and it exists minimum value
due to the compactness of BV on L2 and the lower semicon-
tinuous of BV seminorm. Meanwhile, F is strictly convex
enough to ensure that F has a unique minimum u∗. A is
the integral operator with a bounded kernel, and it is contin-
uous on L2.

3.2. The Identification Process of the Stochastic Model. The
traditional identification method should traverse the func-
tional basis composed of state variables to realize model
identification. However, the method of traversing the basis
will bring some problems to model identification. For exam-
ple, going through all the functional basis will greatly
increase the time cost of the computation. When the func-
tional basis is less, the accuracy of the model may be insuffi-
cient. The model is more complicated when the functional
basis is more. The sparse identification method can well bal-
ance the accuracy and complexity of the model [36].

Based on the idea of sparse identification, this paper
establishes a stochastic model with the traditional determin-
istic model as the prior information. In this paper, ωx, ωy , ωz

, δlx, δrx, δy, δlz , δrz , ρ, α, β, V , and related combinations in
model (1) are taken as the basis. Then, stochastic noise is
introduced to build a stochastic flight dynamic identification
model with unknown coefficients and unknown noises. The
general form of the stochastic model is shown in
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2δrz + c5ρVωz + Izη3 t ,

7

where a1, a2, a3, a4, b1, b2, b3, c1, c2, c3, and c4are the
unknown parameters and η1 t , η2 t , and η3 t are the
independent stochastic disturbances. The meanings of the
remaining parameters are given in Eq. (1).

Next, the stochastic model will be divided into a deter-
ministic part and a stochastic perturbation part for identifi-
cation, respectively. To facilitate description, the model is
written in the following form:

Φ = Φ +Φs,
Φ = Ixωx Iyωy Izωz

T ,

Φ =
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Φs = Ixη1 t Iyη2 t Izη3 t T ,

8

where Φ denotes the deterministic part of the stochastic
model (7) and Φs is the stochastic perturbation part. In the
following, Ê = ωx ωy ωz

T represents the measured

data; E = ωx ωy ωz
T represents the solution of Φ = Φ ;

ΔE is the difference between E and Ê, that is, ΔE = Ê − E,
which represents the stochastic disturbance contained in the

measured data; and ΔE = Δωx t Δωy t Δωz t T is
recorded here.

The solution of equation Φ = Φ can well represent the
dynamic behavior of aircraft flight without stochastic fac-
tors. Therefore, we firstly identify the unknown parameters
in equation Φ = Φ based on the measured data Ê and the
least squares method. A brief introduction to the least
squares method is as follows.

First, construct the data matrix:

Φ1 = ωyωz ρV̂
2
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2
δ rx ρV̂ωx ,

Φ2 = ωxωz ρV̂
2
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Φ3 = ωxωy ρV̂
2
α ρV̂

2
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2
δrz ρV̂ωz

9

An important step in the sparse identification method is
to select the correct model terms and construct data matrix.
The general method is to extract the terms as the base
according to some physical equations that the system may
satisfy. The deterministic flight attitude dynamic model
(Eq. (1)) can describe the flight attitude of the aircraft well
without disturbance. Thus, it is credible to add the items
contained in this deterministic model into the base library.

The equation Φ = Φ is split into overdetermined

ωx =Φ1a,

ωy =Φ2b,

ωz =Φ3c,

10

Table 1: Some parameters of an aircraft.

Symbol Description Numerical Units

L Wingspan 15.08 m

S Wing area 70 m2

Ix Inertia moment 50000 kg·m2

Iy Inertia moment 300000 kg·m2

Iz Inertia moment 300000 kg·m2
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where a = a1 Iy − Iz a2 a3 a4
T , b = b1 Iz − Ix

b2b3b4
T , and c = c1 Ix − Iy c2 c3 c4 c5

T . Solving
Eq. (5) is equivalent to finding a, b, and c, which satisfy

a = arg min
a

ωx −Φ1a 2
,

b = arg min
b

ωy −Φ2b 2
,

c = arg min
c

ωz −Φ3c 2

11

The solution (12) of the system (10) can be simply
expressed as Eq. (11) by using the optimal solution in the
sense of two-norm.

a = Φ1
TΦ1

−1
Φ1

Tωx,

b = Φ2
TΦ2

−1
Φ2

Tωy,

c = Φ3
TΦ3

−1
Φ3

Tωz ,

12

where Φi
−1 is the inverse of Φi and Φi

T is the transpose of Φi.
After obtaining equation Φ = Φ with known parameters,

we can get the behavior data E of aircraft without stochastic
factors. Further, the stochastic disturbances contained in the

measured data can be calculated by using equation ΔE =
Ê − E. Note that model (7) is a differential equation, and
ΔE is the increment of the disturbance part Φs of the sto-
chastic model. It is worth mentioning that the Gaussian
white noise is expressed as a formal derivative of the Wie-
ner process. This expression is very common in the field
of stochastic dynamical systems. The stochastic process
usually does not have strictly mathematical theoretical
derivatives; its formal derivative is typically expressed as
a noise. In this paper, ΔE is the increment of the stochas-
tic response within a sampling time interval Δt, and Φs is
a formal derivative of the stochastic process, which can be
referred to as noise. To sum up, the relationship between
ΔE and Φs can be expressed as

ΔE
Δt

=
Δωx t Δωy t Δωz t T

Δt
=Φs = Ixη1 t Iyη2 t Izη3 t T

13

After the above steps are performed, the aircraft flight
stochastic dynamic model can be identified. In the follow-
ing, we will demonstrate the effectiveness of our method
through the numerical example.
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Figure 1: (a)–(c) represent the time history diagram of training data of angular velocity ωx , ωy , and ωz , respectively.
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4. Numerical Example

In this section, we will illustrate the identification process in
actual application and demonstrate the effectiveness of our
method on the basis of actual data from a certain type of
aircraft.

4.1. Real Data Preprocessing. Some parameters of this air-
craft are shown in Table 1. Next, the stochastic model is
identified based on the measured flight data, and the sam-
pling frequency of the measured data here is 32Hz. The
measured data is divided into training data and prediction
data. The training data is used to identify the stochastic
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Figure 2: (a)–(c) represent the time history diagram of training data of rudder angle δx , δy , and δz , respectively.
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Figure 3: (a) and (b) represent the time history diagram of training data for attack angle α and sideslip angle β, respectively.
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model, and the prediction data is used to verify the effective-
ness of the identified model.

Figure 1 is the time history diagrams of the training data
of the angular velocity component of the aircraft. Figure 2
draws the time history diagrams of the training data of the
three rudder declination angles according to the measured
data. Figure 3 represents the time history diagram of training
data for the attack angle α and sideslip angle β.

In addition, according to the actual situation, the rudder
deflection angles δlx and δrx of the aircraft during flight
should be roughly symmetric about 0, and δlz and δrz should
be roughly equal. However, the measured data show differ-
ent characteristics, which may be caused by measurement
errors such as the accuracy of the measuring instrument.
In order to make the model identified closer to reality, the
rudder deflection angles δlx and δrx were slightly shifted to
make them roughly symmetric about 0, and δlz and δrz were
equal through δz = 1/2 δlz + δrz . After data processing, the
training data Ê used for model identification are shown in
Figures 1 and 2.

Finally, it should be noted that when the least squares
method is used to identify the parameters of the equation,
it is necessary to solve the derivative of angular velocity.
For the data without noise, the central difference can be
used to solve this problem. However, the measured data

contains a lot of random information, and the direct der-
ivation will lead to large fluctuations in the derivative
value. Therefore, the TV algorithm mentioned in the pre-
vious section is combined to obtain the derivative of ωx,
ωy, and ωz .
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Figure 4: (a)–(c) represent the probability density plots of the stochastic disturbance Δωx t contained in ωx , Δωy t contained in ωy , and
Δωz t contained in ωz , respectively.
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Figure 5: Comparison plot of solution results of ωx .
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4.2. The Identification of the Stochastic Model. First, we iden-
tify the deterministic part Φ = Φ of Eq. (7) based on Ê and
the least squares method. The identification results of the
equation Φ = Φ using the TV algorithm and the least
squares method are as follows.

Ixωx = 43 297ρv2δlx − 43 297ρv2δrx − 1956 074ρvωx ,
Iyωy = −0 584ωxωz + 8 683ρv2β − 5 245ρv2δy − 612 120ρvωy ,

Izωz = 0 477ωxωy + 4 489ρv2α + 0 374ρv2 δlz + δrz − 126 454ρvωz

14

Then, the fourth-order Runge-Kutta method is used to
solve the deterministic part Eq. (5). In order to keep consis-
tent with the sampling frequency 32Hz of the measured
data, the fourth-order Runge-Kutta iterative step is selected
Δt = 1/32. Thus, we can obtain solutions of ωx, ωy, and ωz

by numerically solving Eq. (14). Then, the difference
between the training data ωx, ωy, and ωz and the simulation
results ωx , ωy, and ωz can be used to obtain the probability
density function of stochastic disturbances Δωx t , Δωy t ,
and Δωz t , as shown in Figure 4, respectively.

We can carry out numerical simulation of stochastic distur-
bances Δωx t , Δωy t , and Δωz t by the probability density
function of stochastic disturbances. Then, the stochastic model
(15) can be obtained by using Ixη1 t Iyη2 t Izη3 t ≈
1/Δt Δωx t Δωy t Δωz t .

Ixωx = 43 297ρv2δlx − 43 297ρv2δrx − 1956 074ρvωx + Ixη1 t ,
Iyωy = −0 584ωxωz + 8 683ρv2β − 5 245ρv2δy − 612 120ρvωy + Iyη2 t ,

Izωz = 0 477ωxωy + 4 489ρv2α + 0 374ρv2 δlz + δrz − 126 454ρvωz + Izη3 t

15

4.3. Numerical Simulation of the Stochastic Model. To verify the
accuracy of the identified model, we solve the dynamic
response of this model (15). It should be emphasized that the
response of the stochastic system is different from the solution
of the deterministic model. The response of a stochastic system
is a stochastic process (or a stochastic variable), which cannot
be directly compared with the measured data. Therefore, we
consider extracting the numerical characteristics of the stochas-
tic response, that is, the sample means, and comparing it with
the deterministic result and training data to show whether
the stochastic system can more accurately describe the actual
flight problem.

The comparison diagrams of numerical simulation
results of flight dynamic responses ωx, ωy, and ωz with mea-
sured data ωx, ωy , and ωz are, respectively, drawn below.
The red line represents the solution result of the determinis-
tic model (1). The blue line represents the solution of sto-
chastic model (15). The black line represents measured
training data.

It can be seen from Figures 5–7 that ωy and ωz only show
small fluctuations, while ωx rolls due to the pilot’s control in
the actual flight process. Small fluctuations may be caused by
small changes in the environment, such as height, tempera-

ture, or wind, and such stochastic factors have relatively little
influence on the response of the system. The large fluctua-
tions are caused by the pilot’s large maneuvering action,
which has a great influence on the flight dynamic behavior
of the aircraft. Therefore, we mainly analyze the solution
result of ωx , which contains more complex stochastic
information.

Figures 5–7 show the comparison of solution results of
the deterministic model, stochastic model, and measured
training data. It can be seen that the simulation result of
the stochastic model is more precise than that of the deter-
ministic model when the aircraft is maneuvering. However,
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Figure 6: Comparison plot of solution results of ωy .
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Figure 7: Comparison plot of solution results of ωz .

Table 2: The mean square error analysis of the solution results of
the stochastic model, the deterministic model, and the measured
training data.

The deterministic model The stochastic model

ωx 0.1930 0.0685
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there are some errors between the results of the stochastic
model and deterministic model and the measured training
data. After all, the stochastic result is the average value of
multiple groups of samples, while the measured data is only
one group of samples. It is difficult to ensure that the sample
has the same value as the mean, but the mean can well reflect
the characteristics of the sample. The error analysis table of
the solution results of the stochastic model and deterministic

model and training data is given below to observe the advan-
tages of the stochastic model from qualitative and quantita-
tive perspectives. The stochastic model shows good
simulation results in the case of aircraft maneuvering flight.
The mean square error of the solution results and the mea-
sured training data is calculated when 0 5 < ωx.

As can be seen from Table 2, the accuracy of the solution
results of the stochastic model is significantly improved
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Figure 8: (a)–(c) represent the time history diagram of predicted data of rudder angles δx , δy , and δz , respectively.
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Figure 9: (a) and (b) represent the time history diagram of predicted data for the attack angle α and sideslip angle β, respectively.
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compared with that of the deterministic model. From the
value of the mean square error, the mean square error of
the stochastic model pair is obviously smaller than that of
the deterministic model. This shows that the stochastic
model has good accuracy from a quantitative point of view.

The above comparison between the solution results of
the stochastic model and the measured training data shows
the accuracy of the stochastic model and the effectiveness
of the algorithm in this paper. To further confirm the
robustness of the stochastic model (15), its ability to predict
the flight attitude of the same aircraft will be verified below.

4.4. Prediction Results of the Stochastic Model. In this section,
the stochastic model (15) will be used to predict the flight
attitude of the aircraft in a certain period, and the prediction
results of the model will be compared qualitatively and
quantitatively with the measured data to further illustrate
the practicality of the stochastic model (15).

Figures 8 and 9 show the data required by stochastic
model (15) to predict flight attitude ωx , ωy, and ωz .
Figures 8(a)–8(c) show the time history diagrams of pre-
dicted data representing the rudder angles δx, δy, and δz ,
respectively, and Figures 9(a) and 9(b) represents the attack
angle α and sideshow angle β, respectively. Then, the sto-
chastic Runge-Kutta method was used to solve the dynamic
response of model (15), and the iteration step was still 0.01.

The comparison diagram of the predicted results ωx, ωy,
and ωz and measured data is drawn below. The red line rep-
resents the solution result of the traditional deterministic
model (1). The blue line represents the prediction results
of the stochastic model (15). The black line represents the
measured data.

The results of Figures 10–12 show that the prediction
results of the stochastic model fit well with the flight mea-
sured data when the aircraft rolls. However, the prediction
results of the traditional deterministic model (1) have great
errors with the flight measured data. In particular, the com-
parison is particularly obvious at the larger maneuvering
peak in Figure 10. The prediction results of the stochastic

model are closer to the measured data, while the solution
results of the deterministic model have a large error, which
highlights the higher accuracy of the stochastic model when
the aircraft does large maneuvers.

Table 3 shows the comparison of the mean square error
of the solution results of the deterministic model, the
stochastic model, and the measured predicted data. From
the numerical perspective, it can be seen that the stochastic
model has better prediction ability. From a quantitative
point of view, the stochastic model is closer to reality than
the deterministic model, which further confirms the
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Figure 10: Comparison of the predicted results of ωx .
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Figure 11: Comparison of the predicted results of ωy .
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Figure 12: Comparison of the predicted results of ωz .

Table 3: The mean square error analysis of the solution results of
the stochastic model, the deterministic model, and the measured
predicted data.

The deterministic model The stochastic model

ωx 1.0844 0.7463

10 International Journal of Aerospace Engineering



effectiveness of the recognition algorithm and the good
robustness of the stochastic model.

In general, the stochastic model is more close to the mea-
sured data from qualitative and quantitative perspectives. The
stochastic model shows more precise prediction results com-
pared with the deterministic model when the aircraft is rolling.
Therefore, the model considering stochastic factors is more
consistent with the real flight state and can effectively improve
the reliability of flight dynamic simulation model.

5. Conclusion

In this paper, we use the idea of sparse identification to
establish the stochastic model of flight attitude dynamics.
Based on the measured data of aircraft flight attitude
dynamics containing stochastic disturbances, the stochastic
model is divided into the deterministic part and random dis-
turbance part for identification, respectively, and then, the
stochastic model of flight dynamics is obtained by using
the least squares method. Furthermore, we compare and
analyze the solutions of the stochastic model and the tradi-
tional deterministic model with the measured data, respec-
tively. The comparison results show that the calculation
results of the stochastic model are in good agreement with
the measured data, especially when the aircraft is maneuver-
ing in flight, and the stochastic model has obvious advan-
tages compared with the traditional deterministic model.
This demonstrates that the algorithm in this paper is effec-
tive for the identification of stochastic models driven by
measured data. It also shows that it is necessary to consider
the influence of stochastic factors when modeling and simu-
lating aircraft flight dynamics.
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