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The problem of the distributed cooperative guidance law of multiple missiles attacking a stationary target with impact angle
constraint is investigated. A distributed cooperative guidance law, which consists of a nonsingular terminal sliding mode
component for ensuring finite time convergence to the desired LOS angle and a coordination component for realizing finite
time consensus of time-to-go estimates, is proposed. Analysis shows that the guidance law designed in this study can ensure
that missiles’ time-to-go estimates represent real times to go once all the missiles fly along the desired LOS. Therefore,
simultaneous arrival can be guaranteed. Furthermore, it is modified to accommodate the communication failure cases.
Compared with existing results, this guidance law owns faster convergence rate and can satisfy large impact angles. Numerical
simulations are performed to demonstrate the effectiveness of the proposed guidance law.

1. Introduction

Modern battleships are usually mounted with formidable
antimissile defensive systems, such as close-in weapon sys-
tems that have powerful fire capability. These defensive
weapons seriously intimidate the survivability of the conven-
tional antiship missiles. Hence, advanced missile guidance
technique is becoming important issue such as the impact
angle control guidance (IACG) and cooperative guidance,
which aims at, in a specific case, making multiple missiles
arrive at a single target simultaneously to saturate the tar-
get’s defence [1–5].

Up to now, there are two ways to achieve simultaneous
attack of a group of missiles, i.e., the “open loop” and the
“closed loop”. The first one usually refers to the impact time
control guidance (ITCG), in which a fixed impact time is
assigned to each missile, and each member tries to attack
the target at the prespecified impact time independently.
Some studies based on such method include [1, 6–8]. In
[1], a sliding mode control-based guidance law for the
impact time control is proposed. Firstly, a switching surface

is defined by considering the impact time constraint; then,
the guidance law is designed to drive the switching surface
to the sliding mode for fulfiling the impact time require-
ment. In [6], an optimal-theory-based guidance law is pre-
sented, in which the acceleration commands are composed
of two different commands: the first one serves to reduce
the miss-distance, and the second one serves to adjust the
impact time. In [7], a novel guidance law is proposed for
salvo attack which can satisfy the constraints of both impact
time and terminal impact angle. The control of impact time
and angle is achieved by making the states of the missile
reach a sliding surface within finite time and then stay on
it. On the sliding surface, the impact time and angle con-
straints will be satisfied, which can be verified through ana-
lyzing the system dynamic in state space. In [8], an impact
time control guidance law is also designed based on sliding
mode control. The interception and the desired impact time
can be achieved at the same time in the sliding mode. The
first approach requires a reasonable common impact time
that must be preprogrammed manually before homing.
However, choosing a proper common impact time is not
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an easy task because it is associated with the missiles’ flight
conditions in the future, which are usually varying and
unknown.

The second one usually refers to consensus-based coop-
erative guidance, in which the missiles communicate among
themselves through online data links to synchronize the
arrival times. Despite a number of papers, considering IACG
have been published [9–12], papers related to cooperative
guidance law for salvo attack are still rare. In [2], a guidance
law named cooperative proportional navigation (CPN) is
proposed for many-to-one engagements. The structure of
the CPN is the same to that of conventional proportional
navigation. The difference is that it has a time-varying navi-
gation gain which is adjusted based on the local time-to-go
and the time-to-go of all the other missiles. In [13], a mod-
ified cooperative guidance law is proposed to address the
singularity problems existing in the work of [2]. In [14],
optimal and cooperative control methods are used to design
the guidance law, in which the missiles need only to commu-
nicate with some of the neighboring missiles. In [15], a
cooperative guidance law for two pursuers against one
evader is derived, which is also based on optimal theory.
The approaches in [2, 13–15] can only guarantee the con-
sensus of arrival time but cannot control the impact angles.
Besides, the approaches in [2, 13] require that the global
information of the time-to-go is available to each missile of
the group. In [16], a distributed cooperative guidance law
is designed for cooperative simultaneous attack against a sta-
tionary target. Similar to [2], a PN structure with time-
varying navigation gain is also used to derive the guidance
law. However, the design does not take impact angle into
consideration. In [17], the derived guidance law consists of
two terms: a local term that takes charge of the target capture
and the desired impact angle, and a coordinate term to
achieve the consensus of impact time. In [18], the distributed
optimal tracking control problem for nonlinear multiagent
systems is investigated, and the derived method is applied
to the cooperative guidance problem. The guidance law
design does not take the simultaneous arrival as its control
object; instead, it only focuses on the consensus of the
impact angle of all the missiles.

Besides, there are some sliding mode control- (SMC-)
based cooperative guidance laws [19, 20]. In [19], a distributed
cooperative guidance law is presented to make multiple mis-
siles attack the same target simultaneously at the prespecified
angles. The guidance process under this guidance law can be
divided into two stages: in the first stage, the normal accelera-
tion which is designed based on SMC makes all missiles fly
along the desired line of sight (LOS) after a given time; then,
the designed tangential acceleration will make the consensus
variables reach agreement. In [20], a three-dimensional guid-
ance law is proposed based on the method in [19]. For the
approaches in [19, 20], the given time for the first stage needs
to be chosen as a large constant to reduce the control input;
contradictorily, too large given time will prevent the missiles
from arriving at the target simultaneously because the second
stage needs enough time to ensure that the consensus variables
converge to zero. Besides, the desired impact angles also need
to be selected carefully.

In this paper, a distributed cooperative strategy for mul-
tiple missiles with impact angle constraint is proposed. The
guidance law consists of two components: a nonsingular ter-
minal sliding mode component for ensuring finite time con-
vergence to the desired LOS angles and a coordination
component for realizing finite time consensus of the time-
to-go estimates of all the missiles. The proposed strategy
can ensure that missiles’ time-to-go estimates represent the
real time-to-go once all the missiles fly along the desired
LOS. Furthermore, the guidance law is modified to accom-
modate the communication failure cases.

The proposed cooperative guidance scheme can provide
several advantages over the published works in the following
aspects.

(1) Compared with the guidance laws in [2, 13], which rely
on a centralized communication topology, the method
presented in this paper only employs neighbour-to-
neighbour communication, and thereby, it is fully dis-
tributed. Since the centralized communication topology
is difficult to be maintained in realistic situation, the
proposed method is more practical

(2) Unlike the guidance laws presented in [2, 13–15,
21–23], which only investigate the simultaneous
arrival problem of multiple missiles, this study pro-
vides a strategy that can guarantee that all groupmem-
bers arrive at the target at the same time by imposing
the preassigned impact angles. As a result, the mission
effectiveness can be greatly increased [24].

(3) Compared with the guidance laws in [2, 17], which
only focus on the convergence of LOS angle errors
or the consensus of time-to-go estimates, the method
proposed in this paper can achieve finite time con-
vergence of both LOS angle and consensus errors.
As we know, the systems with finite-time conver-
gence property usually possess some nice properties,
such as better robustness against uncertainties and
higher convergence precision

The organization of the paper is as follows. The problem
formulation and some preliminaries are provided in Section
2. In Section 3, the distributed guidance law for simulta-
neous attack of multiple missiles is constructed based on
finite control technique. Furthermore, the guidance law is
modified to adapt to communication failure cases in Section
4. The simulation results are given in Section 5. Finally, con-
cluding remarks are summarized in Section 6.

2. Problem Formulation and Preliminaries

In this section, we give the problem formulation and some
preliminaries.

2.1. Problem Formulation. Consider the scenario where a
group of m missiles cooperatively attack a stationary target
T as shown in Figure 1. The letter M represents the mis-
sile, and the numbers i, i = 1, 2,⋯,m denote the ith missile.
V denotes the velocity of missile. am and at denote the
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normal acceleration and the tangential acceleration, respec-
tively. r is the relative range along the LOS, and λ is the angle
between the LOS and the horizontal reference line. γ and θ
represent the flight path angle and the heading angle of the
missile. The kinematics equations for the ith missile attacking
a single stationary target can be described by

ri = −Vi cos θi, 1

riλi = −Vi sin θi, 2

Vi = at,i + di, 3

γi =
am,i
Vi

, 4

where θi = γi − λi and di stands for the lumped distur-
bance, which satisfies di ≤Di with Di denoting an
unknown positive constant. It should be noted that the
condition θi < π/2 is necessary for the extremization prob-
lem to make sense [24]; as implied by (1), the impact can
be indefinitely delayed, if this condition does not hold.

Remark 1. Similar to the work in [2], the target is modeled as
being stationary, since the maneuverability and the speed of
the surface ship are not comparable with those of antiship
missiles of high-subsonic or supersonic speed.

As shown in Figure 1, the impact angle, denoted by θimp,i,
is defined as the flight path angle at the final engagement and
is given by

θimp,i = γf ,i 5

When the ith missile hits the target with zero miss-dis-
tance, from (2) and (5), we can obtain

0 = −V f ,i sin θimp,i − λF,i , 6

which is equal to

λF,i = θimp,i 7

For the ith missile, (7) denotes the relationship between
the impact angle θimp,i and the final LOS angle λF,i.

2.2. Preliminary

2.2.1. Graph Theory. Let G = V , ε,A be used to describe
the communication topology among missiles, where V = 1,
⋯,m is a set of the node set denoting the index of missiles,
ε ⊆V ×V is the set of edges, and a weighted adjacency
matrix A = aij ∈ Rm×m. If there exists information
exchange between missiles i and j, i.e., V i,V j ∈ ε, then
aij = aji = 1, and zero otherwise. We assume that aii = 0 for
all i ∈V . The Laplacian matrix L = lij ∈ Rn×n is defined
as lii =∑m

j=1aij and lij = −aij for i ≠ j.
The following lemmas are needed in the subsequent

technical derivations.

Lemma 2 (see [25]). Zero is an eigenvalue of L , with 1 as a
right eigenvector, and all nonzero eigenvalues are positive,
where 1 represents a column vector whose entries are all equal
to one.

Lemma 3 (see [26]). The Laplacian matrix of a connected
undirected graph G has the following properties: for any x ∈
Rn satisfying 1Tx = 0, the inequation xTLx ≥ λxTx holds,
where λ denotes the smallest nonzero eigenvalue of L .

Suppose that the communication topology G among the
m missiles is undirected and connected, then, the problem
considered in this paper can be depicted as follows: to design
the missiles’ normal accelerations and tangential accelera-
tions am,i, at,i, i = 1,⋯,m, such that for some unspecified
final time of engagement t f ,

ri t f ⟶ 0,

λi t f − θimp,i ⟶ 0
8

3. Main Results

In this section, the special structure of the proposed guid-
ance law which contains two components is presented first;
then, the component concerning the impact angle control
is derived based on nonsingular terminal sliding mode, and
the sufficient condition for stability is given. Lastly, the other
component concerning the consensus of time-to-go esti-
mates will be designed based on the finite-time control tech-
nique and the consensus protocols.

3.1. The Structure of the Proposed Guidance Law. As men-
tioned in Section 2, the objective of the guidance law design
consists of two parts: the first one is achieving zero impact
angle error, and the other one is achieving the consensus
of time-to-go estimates. Naturally, we may consider the
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Figure 1: Guidance geometry on m to 1 engagement scenario.
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control form to embrace two components. On the one hand,
from (2), (3), and (4), we can see that the normal acceleration
has a direct effect on the LOS angle. On the other hand, if we
have a look at the coarse time-to-go equation t̂go = r/V , with
(3), we can say that the tangential acceleration has greatly
influence on the time to go. Therefore, we divide normal accel-
eration am,i into two parts:

am,i = a1,i + a2,i, 9

where the term a1,i is used to control the impact angle and
the term a2,i together with the tangential acceleration at,i is
used to guarantee the consensus of time-to-go estimates.

3.2. Design of the Impact Angle Control Term a1,i. From (2),
the relative degree of two dynamics between the control
term a1,i and the LOS angle λi, given by

λi = −
2riλi
ri

−
at,i sin θi + a2,i cos θi

ri
−
cos θi
ri

a1,i 10

is used to design a1,i to ensure that the λi = λF,i condition
is met at collision. As proved in [27], the θi = π/2 is not a
stable equilibrium for any ri ≠ 0 and, as a result, the compo-
nent of normal acceleration a1,i can be used to control λi.

Inspired by [9], the term a1,i is designed using the prin-
ciples on nonsingular terminal sliding mode control
(NTSMC). The sliding surface is selected as

si = λi − λF,i + βi λi − λF,i
αi , 11

where βi > 0, αi = pi/qi, and pi, qi are all odd integers sat-
isfying pi > qi. Then, the term a1,i that will ensure the exis-
tence of sliding mode can be designed as the sum of an
equivalent and a discontinuous controller:

a1,i = aeq1,i + adisc1,i , 12

where

aeq1,i = −
at,i sin θi
cos θi

−
ri

cos θi
2riλi
ri

−
λ
2−αi

αiβi
, 13

adisc1,i = Mi

sign cos θi
sign si , 14

where Mi is the positive constant, and it is chosen to satisfy
Mi >max a2,i .

Theorem 4. For the ith missile subjected to the kinematics
(1), (2), (3), and (4), if the sliding surface is selected as (11),
the control term a1,i is designed as (12), (13), and (14), and
control parameters are chosen to satisfy Mi >max a2,i ,
β > 0; pi and qi are two odd integers guaranteeing pi > qi;
then, λi, λi will converge to λF,i and 0 in finite time,
respectively.

Proof. Consider a Lyapunov function candidate as VL1 =
1/2 s2i on differentiating VL1, and substituting (10),
(12), (13), and (14) and simplifying, we obtain

VL1 = sisi = −αiβi si λ
αi−1
i

cos θi
ri

Mi −
a2,i

sign cos θi
sign si

≤ −αiβi si λ
αi−1
i

cos θi
ri

Mi − a2,i

15

Recall that the point θi = π/2 is not a stable equi-
librium, so we assume that for most time during the
engagement, cos θi has a nonzero value. Let

ζ λi, θi, ri = αiβiλ
α−1
i

cos θi
ri

Mi − a2,i 16

Then, (15) becomes

VL1 ≤ −ζ si , 17

where ζ > 0 with Mi >max a2,i for λi ≠ 0. There-
fore, VL1 is the negative definite, and hence, the condi-
tion for Lyapunov stability is satisfied for all λi ≠ 0, and,
consequently, the sliding mode occurs within finite time.
During the sliding mode si = 0, the sliding mode dynam-
ics is given by

xi = −βix
1/αi
i , 18

where the state xi = λi − λF,i. On integrating (18), it
can be shown that the time required for the state x to
reach 0 is Tc,i > 0 and is given by

Tc,i =
xi Ts,i

1− 1/αi

1 − 1/αi
, 19

where Ts,i is the time instant at which the sliding mode
occurs. It can be seen from (19) that xi will converge
to zero in finite time. Therefore λi = λF,i, λ = 0 can be
achieved within finite time.

Here, a problem remains (i.e., V1 is negative-semidefi-
nite), which implies that the sliding mode cannot occur
when λi = 0 in the reaching phase. Therefore, it is necessary
to show that λi = 0 is not an attractor. To show this, analyze
the dynamics of λi. On substituting (12), (13), and (14) into
(10), we get

λi = −
cos θi
ri

Mi

sign cos θi sign si
+ a2,i + λ

2−αi
i cos θi
αiβiri

20
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Now, for λi = 0, (20) reduces to

λi = −
cos θi
ri

Mi

sign cos θi
sign si + a2,i 21

Since ri, cos θi have nonzero values, and Mi >max
a2,i , for si > 0 and si < 0, it can be seen from

(21) that λi ≠ 0, which implies that λi = 0 is not an attractor.
Therefore, from any arbitrary initial point, the desired LOS
angle λF,i can be achieved within finite time with a1,i.

This completes the proof.

3.3. Design of the Coordination Terms a2,i and at,i. In this
subsection, the terms a2,i and at,i which will ensure the con-
sensus of time-to-go estimates are designed based on con-
sensus protocols and finite-time control technique, and a
proof for the stability is given by the Lyapunov theory.

The well-known PN structure is given as

a = N0 + ρ Vλ, 22

where N0 ∈ 3, 5 [28] and ρ > 0. Note that the gain ρ can
be used to modify the curvature of the flight trajectory while
attacking a specified final position. In general, the missiles
located far from the target should use a high gain ρ to reduce
the flight time, whereas those closer should use a low gain ρ
to provide a detour intentionally. Therefore, the time-
varying gain plays an important role not only for achieving
zero miss distance but also for tuning the time-to-go.

Let

a2,i =NiViλi, 23

where the time-varying gain N is defined as

Ni =N 1 −Ωi t , 24

where N is a navigation constant and Ωi is a time-
varying navigation ratio to be designed. Next, define the rel-
ative time-to-go estimate error of the ith missile as

ξi = 〠
m

j=1
aij t̂go,j − t̂go,i , i = 1,⋯,m, 25

which is regarded as a performance indicator for a coop-
erative simultaneous attack of multiple missiles. The t̂go,i in
(25) is defined as

t̂go,i =
ri
Vi

1 + θ2i
2 2N − 1 26

Based on the time-to-go estimates of each missile and its
neighbors, the time-varying navigation ratio of the ith mis-
sile is proposed as

Ωi t = k1i ξi
ϱ sign ξi , 27

where k1i and ϱ are positive constants that satisfy k1i > 0
and 0 < ρ < 1; the tangential acceleration at,i is proposed as

at,i = −k2iξi −
2k3iθi

2 2N − 1 + θ2i
sign θiξi − k4,i sign ξi ,

28

where k3i and k4i are positive constants that satisfy k3i
>max a1,i and k4i >Di. In the following, three lemmas
are given first, and then the finite time convergence of ξi is
validated in Theorem 8.

Lemma 5 (see Appendix A). If the control parameters αi and
βi are properly chosen, then the point θi = 0 will not be a sta-
ble equilibrium before ξi converge to zero.

Lemma 6 (see [29]). For positive variables a1, a2,⋯, an and
0 < p < 2, the following inequality holds

a21 + a22+⋯+a2n
p ≤ ap1 + ap2+⋯+apn

2 29

Lemma 7 (see [30]). If there exists a continuous positive func-
tion V x such that

V x + aV x + bVμ x ≤ 0, 30

where a > 0, b > 0, and 0 < μ < 1; then, V x will converge
to zero in finite time, and the settling time T satisfies

T ≤
1

a 1 − μ
ln aV1−μ x0 + b

b
31

Theorem 8. For the ith missile subjected to the kinematics
(1), (2), (3), and (4) and the communication graph G , if the
control term a1,i is designed as (12), (13), and (14), the term
a2,i is designed as (23), (24), and (27), and the tangential
acceleration at,i is designed as (28); then, the consensus of
the time-to-go estimates will be achieved in finite time, and
the m missiles will arrive at the target simultaneously with
imposing the desired impact angles.

Proof. Expand sin θi and cos θi in the Taylor series as

sin θi = θi +O θ3i ,

cos θi = 1 − θ2i
2 +O θ4i

32

In general cases, the heading angles of each missile are
small. Hence, the high-order terms in the above equations
can be neglected. Then, the governing equations of the ith
missile can be expressed as

ri = −Vi 1 − θ2i
2 , 33
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θi = −
N −Nk1i ξi

ρ sgn ξi − 1 Viθi
ri

+ a1,i
Vi

, 34

Vi = −k2iξi −
2k3iViθi

2 2N − 1 + θ2i
sign θiξi − k4,i sign ξi + di

35

On differentiating t̂go,i and substituting (33), (34), and
(35) into it, we get

t̂go,i =
riVi − riVi

V2
i

1 + θ2i
2 2N − 1 + riθiθi

Vi 2N − 1

= −1 + Nk1i ξi
ρ sign ξi θ

2
i

2N − 1 + riθi
Vi 2N − 1

× k3i sign θiξi + a1,i + 1 + θ2i
2 2N − 1

× k2iri
V2

i

ξi +
ri
V2

i

1 + θ2i
2 2N − 1 k4,i sign ξi − di

36

Let t̂go = t̂go,1,⋯, t̂go,m
T and ξ = ξ1,⋯, ξm . Then, (25)

can be written as ξ = −L t̂go. Consider the following Lyapu-
nov function candidate:

VL2 =
1
2 〠

i,j ∈ε
aij t̂go,j − t̂go,i

2 = 1
2 t̂

T
goL t̂go 37

Differentiating VL2 with respect to time and substituting
(36) into it yields

VL2 = t̂TgoL t̂go = −
N

2N − 1〠
m

i=1
k1iθ

2
i ξ

2
i

1+ϱ
− 〠

m

i=1
1 + θ2i

2 2N − 1

× k2iri
V2

i

ξ2i − 〠
m

i=1

ri θi ξi
Vi 2N − 1 k3i + a1,i sign θiξi

− 〠
m

i=1
1 + θ2i

2 2N − 1
ri ξi
V2

i

k4i − di sign ξi ,

38

where L1 = 0 is used. According to Lemma 5, and with-
out loss of generality, we assume mini=1,⋯,mθ

2
i > 0. Define

ι1 =
N

2N − 1 mini=1,⋯,mθ
2
i min k11,⋯, k1m ,

ι2 = 1 + θ2i
2 2N − 1 min k21,⋯, k2m

39

Then, by using Lemma 6, we can obtain

VL2 ≤ −ι1 〠
m

i=1
ξ2i − ι2 〠

m

i=1
ξi

1+ϱ ≤ −ι1ξ
Tξ − ι2 ξTξ

1+ ϱ/2

40

Since 1TL1 = L1/21 T
L1/21 = 0, L1/21 = 0 holds. It

follows that 1TL1/2 t̂go = 0. According to Lemma 2 and

Lemma 3, we have t̂TgoLL t̂go ≥ λ t̂TgoL t̂go, i.e., ξ
Tξ ≥ 2λVL2.

Hence, (38) can be written as

VL2 ≤ −2λι1VL2 − 2λ 1+ϱ/2ι2V
1+ϱ/2
L2 41

According to Lemma 7, VL2 converges to zero within

Tr1 ≤
1

λι1 1 − ϱ
ln 2λι1V1−ϱ/2

L2 0 + ι2 2λ 1+ϱ/2

ι2 2λ 1+ϱ/2 , 42

which means ξ will converge to zero in finite time.
Therefore, the finite time consensus of the time-to-go esti-
mates of all missiles can be guaranteed.

Remark 9. Note that (26) only represents time-to-go esti-
mates, so it is important to show how all the missiles hit the
target simultaneously with the proposed guidance law. From
(2), it can be seen that θi = 0 when λi = 0. Assume that
mini=1,⋯,m Tc,i > Tr1, which can be guarranteed by the prop-
erly selected control parameters; then, we have am,i = 0, at,i =
0, i = 1,⋯,m for any t >maxi=1,⋯,m Tc,i , which means all
the missiles will flight toward the target straightly along the
desired LOS. Besides, the velocities of the missiles no longer
change. For t >maxi=1,⋯,m Tc,i , the time-to-go estimate in
equation (26) reduces to tgo,i = ri/Vi, i = 1,⋯,m, which repre-
sents the real time-to-go. As a result, all the missiles will arrive
at the target simultaneously, and the impact angle constraint
can be satisfied.

4. Modified and Extended to Communication
Failure Cases

In the design process of a2,i and at,i mentioned above, we have
assumed that the communication graph among the missiles is
undirected and connected. In this section, communication fail-
ure cases will be investigated, and the guidance law is modified.

Consider the situation that there exists at least one mis-
sile undergoes communication failure due to electromag-
netic interference or some other things, which means some
missiles discontinuously cannot send/receive the informa-
tion to/from its neighbors. Figure 2 shows one of the possi-
ble scenarios, in which M4 cannot exchange information
with its neighbors during a time period. Then, to make the
salvo remain robust to such conditions, the control term
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a2,i and the tangential acceleration at,i is modified as

a2,i =
N 1 − k1i ξi

ϱ sign ξi Viλi, ifG =G ,

NViλi, if otherwise,
43

at,i =

−k2iξi −
2k3iθi

2 2N − 1 + θ2i
sign θiξi , ifG = G ,

2θiadisc1,i − 2θiri/cos θi 2riλi/ri − λ
2−αi
i /αiβi

2 2N − 1 + θ2i + 2θi tan θi
, if otherwise,

44

where G denotes the communication topology among the
missiles.

Theorem 10. For the ith (i = 1,⋯,m) missile subjected to the
kinematics (1), (2), (3), and (4) and the communication graph
G . If the control term a1,i is designed as (12), (13), and (14),
the term a2,i is designed as (43), and the tangential accelera-
tion at,i is designed as (44); then, the consensus of time-to-
go estimates of all the missiles will be achieved in finite time,
and the m missiles will arrive at the target simultaneously
with imposing the desired impact angles.

Proof. If there exists a time interval tn1′ , tn2′ when some
group members undergo communication failures, then the
control terms a2,i and at,i of all the missiles are switched to

a2,i =NViλi,

at,i =
2θiadisc1,i − 2θiri/cos θi 2riλi/ri − λ

2−αi
i /αiβi

2 2N − 1 + θ2i + 2θi tan θi
45

Then, the governing equations (33), (34), and (35)
change into

ri = −Vi 1 − θ2i
2 , 46

θi = −
N − 1 Viθi

ri
+ a1,i

Vi
, 47

Vi =
2θiadisc1,i − 2θiri/cos θi 2riλi/ri − λ

2−αi /αiβi

2 2N − 1 + θ2i + 2θi tan θi
48

Differentiating t̂go,i and substituting (46), (47), and (48)
into it yields

t̂go,i = −1 49

Hence, the integral of (49) can be computed as

t̂go,i = tgo,i tn1′ − t 50

As a result, the Lyapunov function VL2 can be denoted as

VL2 t = VL2 tn1′ = 〠
m

i=1
aij t̂go,j tn1′ − t̂go,i tn1′

2
, t ∈ tn1′ , tn2′ ,

51

where we assume that the graph G always shares the
same adjacency matrix A = aij ∈ Rm×m with G , so as to ana-
lyze the dynamics of VL2 in the communication failure situ-
ation. (51) shows that the Lyapunov function candidate VL2
keeps invariant when some missiles are undergoing commu-
nication failures.

Otherwise, if there exists a time interval tn1 , tn2 when
the communication among the missiles is normal, which
means the communication topology G is equal to G , we will
have

a2,i =N 1 − k1i ξi
ϱ sign ξi Viλi,

at,i = −k2iξi −
2k3iθi

2 2N − 1 + θ2i
sign θiξi ,

52

which are identical to (23), (24), (27), and (28). Following
the analysis in Section 3.3, we can have

VL2 t ≤ −2λι1VL2 − 2λ 1+ ϱ/2 ι2V
1+ ϱ/2
L2 , t ∈ tn1 , tn2

53

Let t0, t1 be the first time interval when such
case occurs. Then, ∃η0, η1 > 0, such that ι1 t > η0, ι2 >
η1, t ∈ t0, t1 . Likewise, let t2, t3 be the second time
interval when such case occurs. Then, ∃η2, η3 > 0, such that
ι1 t > η2, ι2 > η3, t ∈ t2, t3 . Continuing this way, from (53),

M1 M2

M3 M4

Figure 2: Communication failure case.
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we can obtain

VL2 t ≤ −2λη0VL2 − 2λ 1+ϱ/2η1V
1+ϱ/2
L2 , ∀t ∈ 0, t1 ,

VL2 t ≤ −2λη2VL2 − 2λ 1+ϱ/2η3V
1+ϱ/2
L2 , ∀t ∈ t2, t3 ,

VL2 t ≤ −2λη4VL2 − 2λ 1+ϱ/2η5V
1+ϱ/2
L2 , ∀t ∈ t4, t5

⋮
54

Then, one can deduce that integrating the inequalities in
(54) over each time interval yields (see Appendix B)

f t1 ≤ f t0 e−t1 = f 0 e−t1 ,

f t3 ≤ f t2 e− t3−t2 = f t1 e− t3−t2 ,

f t5 ≤ f t4 e− t5−t4 = f t3 e− t5−t4 ,
⋮

55

where f ti = 1/ 2ληi−1V
1−ϱ/2
L2 ti + 1 1/ 2ληi−1 ϱ/2

. From
(55), one can imply that ∃0 < t1 <⋯ < tn−1, such that

f t ≤ f 0 e
− t−tn−1+ 〠

n−2

i=1
−1 i+1ti

= f 0 e− t−tsum 56

for all t > 0, where tsum =∑n−1
i=1 ti denotes the total commu-

nication failure times. Therefore, from (56), we can say that
VL2 converges to zero at a finite time Tr2 bounded as

Tr2 ≤ tsum − ln 1

2λη0V
1−1+ ϱ/2
L2 0

1/ 2λη0 ϱ/2 57

Hence, the consensus of time-to-go estimates can be
achieved in finite time. By following Remark 9, we can con-
clude that all the missiles that participated in the cooperative
attack will arrive at the target simultaneously, and the desired
impact angles can be achieved.

5. Simulation and Results

In this section, simulations are conducted to illustrate the
performance of the proposed FTDCG-IAC law. In the simu-
lations, four missiles are expected to attack a stationary tar-
get located at the origin with different initial conditions. The
initial parameters for the missiles are listed in Table 1. As we
see in the last column of Table 1, the maximum disagree-

ment of the time-to-go estimate at the initial time is
13.27 s, which is rather large. For all simulations, the mis-
sile’s normal acceleration commands are bounded by 100.
Further, the discontinuous functions sign ξi and sign θi ,
when ξi ≤ σ1, θi ≤ σ2, are approximated by the sigmod
functions.

sgmf ξi = 2 1
1 + exp−b1,iξi

−
1
2 , 58

sgmf θi = 2 1
1 + exp−b2,iθi

−
1
2 , 59

where b1,i and b2,i are both chosen as 40. Parameters
employed in the FTDCG-IAC law are chosen as follows:
Mi = 120, pi = 9, qi = 7, βi = 9, N = 3, k1i = k2i = 1, and k3i =
124. Under the proposed guidance law, the missiles synchro-
nize their arrival times via exchanging real-time time-to-go
estimates with the neighbors through a communication
topology. The communication topologies shown in
Figure 3 are selected to demonstrate the following
simulations.

Besides, the lumped disturbances are assumed as d1 =
2 2 sin 2 4t , d2 = 1 5 sin 4 5t , d3 = 3 4 sin 1 4t , and
d4 = 1 2 sin 3 2t .

5.1. Case 1: Undirected and Connected Communication
Topology. For this case, the communication topology is
assumed to be fixed at G as shown in Figure 3(a). Simulation
results for case 1 are presented in Figure 4. Figure 4(a)
depicts the ranges to go ri, which demonstrates that the

Table 1: Initial parameters for missiles.

Missile number Initial position Initial heading angle Speed Designated impact angle Initial impact time

Missile 1 (-7000, 2000) m 40 deg 260m/s -80 deg 29.36 s

Missile 2 (-9000, -4500) m 20 deg 290m/s -30 deg 35.12 s

Missile 3 (-6000, -6500) m -20 deg 210m/s 70 deg 42.63 s

Missile 4 (-3000, -10100) m 10 deg 320m/s 120 deg 33.02 s

M1 M2

M3 M4

(a)

M1 M2

M3 M4

(b)

M1 M2

M3 M4

(c)

M1 M2

M3 M4

(d)

Figure 3: Communication topologies.
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FTDCG-IAC law can achieve simultaneous attacks under an
undirected connected communication topology, and the
arrival time is 42.34 s. The trajectories are shown in
Figure 4(b). For comparison, the trajectories under the
NTSMCG-IAC law [9], which are represented by lines in
pink, are also included. It can be seen from Figures 4(c)–
4(e) that the condition λi = λF,i, θi = 0, i = 1,⋯, 4 is achieved
about at 40s. After that, the tangential acceleration at,i and
the normal acceleration am,i keep zero values, which is
demonstrated in Figures 4(f) and 4(g). As a result, the
FTDCG-IAC law degrades into the NTSMCG-IAC law
and then steers the missiles to flight toward the target.
This verifies the analysis in Remark 9. Note that the final
LOS angles for the four missiles read -80.002°, -29.9959°,
69.9998°, and 119.9830°, respectively. Compared with the
designated final LOS angles listed in Table 1, the final
LOS angle errors are negligible. Figures 4(h) and 4(i) show
the consensus errors of time-to-go estimates ξi and time-

to-go estimates tgo,i, respectively. As we see from
Figures 4(h) and 4(i), the time-to-go estimates achieve a
fast consensus in finite time.

5.2. Case 2: Study on Communication Failure Situations with
First-Order System Lag and LOS Rate Measurement Noise.
For this case, we assume that communication failure situations
occur during the time interval (2 s and 4 s; 12 s and 16 s; and
24 s and 26 s), and the corresponding communication topolo-
gies are represented in Figures 3(b)–3(d), respectively. For the
rest time of the engagement, the communication topology can
still be represented in Figure 3(a). The autopilots are modeled
as first-order lag systems with time constants τ1 = 1/3, τ2 = 1
/3, τ3 = 1/4, τ4 = 1/4. Besides, we assume the LOS ratemeasur-
ents are suffered by white noise. The simulation results for case
2 are presented in Figure 5. As we see from Figures 5(a) and
5(b), the FTDCG-IAC law can still achieve simultaneous
attacks for this case, and the arrival time is 40.24 s. From
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Figure 4: Simulation results for case 1.
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Figures 5(c)–5(e), we can observe that the condition λi = λF,i,
θi = 0 can also be achieved, which is important for the simulta-
neous attacks. Figures 5(f) and 5(g) depict the histories of nor-
mal acceleration am,i and the tangential acceleration at,i,
respectively. It can be seen that, once the communication
topology among the missiles is back to normal, the control
inputs suddenly change. This is due to the switching mode
of the controllers and is important to reduce the consensus
errors ξi as we see in Figures 5(h) and 5(i). From
Figure 5(h), we can also observe that during the communica-
tion failure time intervals, the consensus errors ξi only
change slightly, which is due to the sigmoid functions (58)
and (59).

5.3. Case 3: Comparative Analysis. This set of simulations
aims at providing comparative studies between the
FTDCG-IAC law and the approaches outlined in [19, 20]
(two-stage DCG-IAC) and [17] (DCBPNG-IAC). For fair
comparison, the initial conditions for the missiles are the
same with that in case 1 and case 2, except that the desired
impact angles are reset as follows: θimp,1 = −30∘, θimp,2 = 40∘,

θimp,3 = 60∘, θimp,4 = 55∘. The control parameters of the com-
parison methods are listed in Table 2. To achieve a fair com-
parison, the lumped disturbances di are set as zeros.
Simulation results for case 3 are presented in Figure 6. In
Figure 6(a), we can see that all three methods can achieve
simultaneous attack, and the achieved arrival times are
37.692 s,34.08 s, and 42.72 s. Figure 6(b) shows the trajectories
of missiles. As we can see from this picture, the missiles under
DCBPNG-IAC take larger detours after the control begins;
thus, the shaped trajectories are more curved. This is due to
the fact that DCBPNG-IAC cannot adjust the magnitude but
only the direction of the speed to synchronize the missiles’
arrival times. Although the generated homing trajectories are
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Figure 5: Simulation results for case 2.

Table 2: Control parameters for comparison methods.

Method Parameters

DCBPNG-IAC
[17]

Ni = 3, ki = 16 3, Ki = 2, Kci = 0 3

Two-stage DCG-
IAC [19]

Tc = 24, k0 = 4, kσ = 0 5, ρσ =
7
9 , kξ = 6, ρξ =

3
5
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Figure 6: Continued.
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different, the desired terminal constraints are satisfied as
shown in Figure 6(c). In Figure 6(d), which shows the normal
acceleration histories, it is observed that the two-stage DCG-
IAC generates larger control inputs than the other two
methods during the first stage 0, Tc , and DCBPNG-IAC does
so to satisfy the impact angle constraints during 20 s and
42.72 s. In general, the two-stage DCG-IAC law and
DCBPNG-IAC law demand much more control effort in nor-
mal acceleration than the proposed FTDCG-IAC law does as
shown in Figure 6(e), which depicts the cost function J = t F

t0
a2mdt variations. Note that, in the two-stage method, the time
interval 0, Tc stands for the first stage, during which the
desired final LOS angles will be ensured, and the time interval
Tc, tF stands for the second-stage, during which the time-to-
go estimates will reach an agreement. In order to reduce the
control inputs in the first stage, the parameter Tc should be
chosen as a large constant. The contradictory thing is that
the second stage needs enough time as well to drive the
consensus error to its origin. Besides, the initial LOS angle
errors should not be allowed to be very large. Figure 6(f)
shows the tangential acceleration histories. One can observe
that the two-stage DCG-IAC law also generates larger con-
trol inputs during the first stage 0, Tc . As mentioned
above, large normal accelerations are generated to achieve
the desired LOS during the first stage; therefore, large tan-
gential accelerations are needed to counteract the effects
brought by the normal accelerations. Figures 6(g)–6(i) show
the speed variations of the missiles, the consensus errors ξi,

and the time-to-go estimates tgo,i, respectively. As we see
from the last two pictures, consensus errors of the time-
to-go estimate under the FTDCG-IAC law converge to zero
faster than the other two methods, and those under the
two-stage DCG-IAC law are only kept bounded during
the time interval 0, Tc .

6. Conclusion

This paper studies the finite-time distributed guidance law
design for cooperative simultaneous attack against a single
target of multiple missiles with impact angle constraint.
First, the guidance law which consists of two components
is proposed. Wherein, a nonsingular terminal sliding mode
component is designed for ensuring finite time conver-
gence to the impact angle constraint, and a coordination
component is designed for realizing finite time consensus
of the time-to-go estimates. The guidance law can ensure
that missiles’ time-to-go estimates represent the real time
to go once the LOS errors converge to zero. Therefore,
all missiles will hit the target simultaneously along the
desired LOS. Then, the guidance law is modified and
extended to communication failure cases. Compared with
existing results, this guidance law owns better performance
and is more flexible in assigning impact angles. In the
future, we will expand this work to three-dimensional
cooperative guidance law by considering more practical
factors, such as overload constraints.
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Figure 6: Simulation results for case 3.
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Appendix

A. Proof of Lemma 3

Substituting θi = 0 and a1,i into (34), yields

θi =
ri
Vi

2riλi
ri

+ λ
2−αi

αiβi
+ Mi

Vi
sign si A 1

From (A.1), it is clear that θi = 0 is not a stable equilib-
rium for si ≠ 0. From (16) and (17), it can be seen that the
convergence rate of VL1 depends on the control parameters αi
and βi. Therefore, if the parameters αi and βi are properly cho-
sen, then θi = 0 will only happen momentarily when ξi ≠ 0.

B. Proof of Eq. (55)

Assume that the Lyapunov candidate VL2 satisfies

VL2 t ≤ −aVL2 t − bVμ
L2 t B 1

for t ∈ tn1 , tn2 , where a, b, and μ are positive constants.
By separating variables on (B.1), one can obtain

dVL2
aVL2 + bVμ

L2
≤ −dt B 2

Using the relationship 1/aVL2 + bVμ
L2 = 1/aVL2 −

bVμ−2
L2 /a a + bVμ−1

L2 , integrating both sides of (B.2) yields

ln 1

aV1−μ
L2 + 1

1/a μ−1

t

tn1

≤ −t t
tn1
, B 3

which equals to

1

aV1−μ
L2 t + 1

1/a μ−1 ≤
1

aV1−μ
L2 tn1 + 1

1/a μ−1 e− t−tn1

B 4

For simplicity, we define f t = 1/ aV1−μ
L2 t + 1 1/a μ−1

;
then, the inequality (B.4) changes into

f t ≤ f tn1 e− t−tn1 B 5
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