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A two-loop acceleration autopilot is designed using the twin-delayed deep deterministic policy gradient (TD3) strategy to avoid
the tedious design process of conventional tactical missile acceleration autopilots and the difficulty of meeting the performance
requirements of the full flight envelope. First, a deep reinforcement learning model for the two-loop autopilot is developed.
The flight state information serves as the state, the to-be-designed autopilot control parameters serve as the action, and a
reward mechanism based on the stability margin index is designed. The TD3 strategy is subsequently used to offline learn the
control parameters for the entire flight envelope. An autopilot control parameter fitting model that can be directly applied to
the guidance loop is obtained. Finally, the obtained fitting model is combined with the impact angle constraint in the guidance
system and verified online. The simulation results demonstrate that the autopilot based on the TD3 strategy can self-adjust the
control parameters online based on the real-time flight state, ensuring system stability and achieving accurate acceleration
command tracking.

1. Introduction

The autopilot is a critical component of the guidance and
control system, capable of producing control forces and tor-
ques by driving actuators in response to control commands.
Thus, the speed and direction of the missile’s flight can be
changed, the stability of the missile’s centroid and attitude
can be maintained, and the guided missile can hit the target
based on the required flight trajectory and attitude [1, 2].
The key to designing an autopilot is identifying the control
parameters that meet specific performance indices. Tradi-
tional autopilot design methods include pole placement [3,
4], optimal control [5, 6], sliding mode variable structure
[7], event-triggered attitude control policy [8], and active
disturbance rejection [9]. Due to the diversification of tacti-
cal missile combat scenarios and the intelligent development
of missiles, the design of autopilots must meet more strin-

gent requirements, such as improved mobility and stability
at large attack angles and large-scale flight scenarios [10,
11]. However, traditional autopilot design methods select
typical state feature points in the flight envelope to design
the control parameters [12]. Consequently, it is difficult to
meet the requirements for the entire control domain of the
flight envelope.

In recent years, deep learning (DL) and reinforcement
learning (RL) have become hot topics in artificial intelligence
technology, providing new design options for aircraft guid-
ance and control systems [13–15]. The principle of RL orig-
inates from the process of intelligent species learning new
things. For a specific task, agents learn through real-time
interaction with the external environment and continuous
trial and error; ultimately, a task-appropriate action strategy
is obtained [16]. Deep reinforcement learning (DRL) com-
bines the autonomous decision-making capability of RL with
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the feature extraction capability of deep neural networks
(DNNs) and has demonstrated outstanding performance in
high-dimensional data control problems. Unlike conven-
tional control methods, DRL is less dependent on models
and more transferable [17].

In order to solve the strong coupling problem between
the adaptive updating loop and the strict-feedback control
loop in traditional control, a low-frequency learning struc-
ture consisting of a low-pass filter, a state estimator, and a
multilayer perceptron (MLP) neural network was proposed
in [18], which reduced the computation complexity and
effectively avoided the update explosion problem. Literature
[19] designed a two-loop autopilot based on a missile longi-
tudinal channel model employing the RL principle and
solved the quadratic optimal tracking control problem
employing an actor-critic structure. The results demon-
strated that the designed controller possessed an excellent
tracking effect and dynamic performance. Different from lit-
erature [19], literature [20] transformed the aircraft control
procedure into a Markov decision procedure. Utilizing the
deep deterministic policy gradient (DDPG) algorithm [21],
the optimal PID controller control parameters were deter-
mined iteratively. Compared to the LQR controller, the
result of the PID controller exhibited better control effects
and robustness. Similar to literature [20], based on the
acceleration autopilot, literature [22] developed a control
parameter design method for acceleration autopilots using
the policy gradient algorithm [23]. In order to reduce the
time and workload for identifying model information during
the autopilot design process, literature [24] developed a
learning-based design method for UAV autopilot using the
DDPG algorithm by designing appropriate observation and
reward functions. In addition, literature [25] made a com-
parative analysis of PID neural network controller and
DDPG controller and also provided a conceptual proof that
reinforcement learning can effectively solve the adaptive
optimal control problem of nonlinear dynamic systems.
However, most of the methods in [19, 20, 22, 24] and [25]
were designed and analyzed based on nonglobal profile state
rather than entire flight envelope, which led to insufficient
consideration of global constraints and performance indica-
tors. When there was great uncertainty in the flight environ-
ment, the autonomy and robustness of the nominal
trajectory tracking guidance mode were poor.

In order to ensure that the missile can be well controlled
in the entire flight envelope, literature [26] used wavelet
analysis to monitor the incremental RL’s attitude control
stability online. Then, they adaptively modified the learning
rate of the RL algorithm based on the gradient descent prin-
ciple, which effectively enhanced the aircraft’s control
stability under large-scale dynamic changes. Literature [27]
remodeled the autopilot in the RL framework, trained a
two-degree-of-freedom- (DOF-) linearized dynamic model
for missiles using the DDPG algorithm. By taking into
account different flight conditions and uncertainties in the
aerodynamic coefficients, literature [27] validated the ability
of the designed controller to maintain closed-loop stability
in the presence of uncertain models. Literature [28] devel-
oped a method for aircraft control using the DDPG algo-

rithm, and the complete flight control was achieved by
controlling the position, speed, and attitude angle. By adding
a PD controller, the stability in the early stage of training was
effectively improved. Literature [29] proposed a model-free
coupling dynamic controller design method for jet aircrafts
capable of withstanding multiple types of faults. After offline
training, adequate results were achieved under highly
coupled maneuvers and were robust to various failure situa-
tions. To surmount the reliance on global position data in
hostile surroundings where GPS was being attacked or dis-
rupted, literature [30] designed a new GPS-free cooperative
elliptical circling controller, in which not only the energy
consumption was reduced but also the dependency on global
position was removed when multiple nonholonomic vehicles
moved together. Literature [31] fixes the autopilot structure
as typical three-loop autopilot, and deep reinforcement
learning is utilized to learn the autopilot gains, and the
state-of-the-art deep deterministic policy gradient algorithm
is utilized to learn an action policy that maps the observed
states to the autopilot gains. Influenced by literature [31],
literature [32] used the pole placement algorithm of a three-
loop autopilot as the foundation and designed an intelligent
training method for converting three-dimensional control
parameters into one-dimensional design parameters using
the proximal policy optimization algorithm. The simulation
results demonstrated that its control effect was good. How-
ever, these design methods had some problems such as
poor stability and low strategy learning efficiency. How to
improve the practicability of deep reinforcement learning
method in the field of autopilot has become an urgent
problem to be solved.

Motivated by the previous investigations, this paper
employs the DRL principle to design a parameter tuning
model for a two-loop autopilot using the TD3 algorithm
[33], which has the following striking advantages over exist-
ing autopilot design schemes:

(1) Contrasting to the previous alternatives [19, 20, 22,
24, 25] based on nonglobal profile state, herein the
proposed method takes the entire flight envelope
state space as the research object. The TD3 algorithm
is used to offline learn the control parameters for the
entire flight envelope, which can ensure the autopilot
has good performance during the flight envelope. In
addition, after offline training, a fitting model with
the real-time flight state of the aircraft as the input
and the autopilot parameters as the output is
obtained through the policy network, which can
ensure the rapid online tuning under the condition
of large-scale flight state changes

(2) Different from the reward design mechanism in
literatures [26–29] and [31], this paper considers
the stability margin when designing the reward
mechanism to ensure the autopilot has a desired
margin space in the entire flight envelope, which
makes the autopilot has stronger robustness. In addi-
tion, compared to [31, 32] which randomly selected
states during training, this paper arranges the flight
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states in an orderly manner and then samples them
sequentially, which can improve the strategy learn-
ing efficiency while ensuring the convergence of the
algorithm

The remainder of this paper is organized as follows.
Problem formulation is stated in Section 2. The specific pro-
cess of two-loop acceleration autopilot design method based
on TD3 strategy is given in Section 3. Section 4 is the simu-
lation analysis of the proposed method. Conclusion of this
paper is described in Section 5.

2. Problem Description

2.1. Two-Loop Autopilot Model. This paper uses an air-to-
ground guided missile as the research object. The missile
model is illustrated in Figure 1, where V represents the
velocity, Fy/Fx/Fg represent the lift, resistance, and gravity,
respectively, Mz is the pitching moment, θ denotes the bal-
listic inclination, ϑ is the pitch angle, α represents the angle
of attack (AOA), δz is the elevator deflection angle, L denotes
the reference length, D is the projectile diameter, c:p is the
pressure center position of the whole missile, and c:g is the
centroid position.

The expressions of aerodynamic force, moment, and
gravity are as follows:

Fx = cxqdS,

Fy = cyqdS,

Mz =mzqdSL,

Fg =mg,

8>>>>><
>>>>>:

ð1Þ

where cx, cy , and mz denote the resistance coefficient, lift
coefficient, and pitching moment coefficient, respectively, S
denotes the reference area, qd represents the incoming flow
pressure (qd = ρV2/2, where ρ represents the air density at
the flying altitude of the missile), m is the missile mass,
and g is the gravitational acceleration.

The projectile dynamics at the longitudinal plane can be
described as follows:

_α = ωz −
P + cαyqdS

mV
α −

cδyqdS

mV
δz + dα,

_ωz =
m�ω

z qdSL
Jz
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8>>>>>>>>><
>>>>>>>>>:

ð2Þ

where ωz represents the pitch angle rate, P is the axial thrust
of the missile, cαy represents the derivative of the lift coeffi-

cient to the AOA, cδy denotes the derivative of the lift coeffi-
cient to the elevator deflection angle, mα

z represents the
derivative of the pitching moment coefficient to the AOA,
m�ω

z represents the derivative of the pitching moment coeffi-

cient to the dimensionless pitch angle rate, mδ
z denotes the

derivative of the pitching moment coefficient to the elevator
deflection angle, Jz is the pitching rotational inertia, and dα,
dω, and dq represent the aerodynamic noise interference. The
aerodynamic noise obeys the following bounded Gaussian
distribution:

dα/ω/q ~ clip N 0, σα/ω/q
À Á

,−eα/ω/q, eα/ω/q
À Á

, ð3Þ

where eα/ω/q is the upper bound of noise, σα/ω/q represents the
variance of the Gaussian distribution N ð0, σα/ω/qÞ, and the
clip function is defined as follows:

clip x1, y1, z1ð Þ =
x1 if y1 ≤ x1 ≤ z1,

y1 if x1 < y1,

z1 if x1 > z1:

8>><
>>: ð4Þ

The research object of this paper is a thrust-free missile;
thus, P = 0. Figure 2 shows the two-loop acceleration autopilot
model composed of an accelerometer and a velocity gyroscope
[34]. In Figure 2, ayc denotes the acceleration command based
on the guidance command, δzc is the actuator command with
the actuator dynamic delay being temporarily ignored, and kA
and kg are the control parameters to be designed.

The geometric relationship between the two-dimensional
missile plane and the target is illustrated in Figure 3, where
M represents the missile position, T is the target position, q
denotes the line-of-sight angle of the missile and the target,
φ is the lead angle, and R is the relative distance between mis-
sile and target.

For stationary targets,

m _V = −Fx − Fg sin θ,

_R = −V cos φ,

R _q = V sin φ:

8>><
>>: ð5Þ

It is well-known that the dynamics of the airframe
change with the flight state during the flight process. To
maintain control stability and accurate acceleration tracking
throughout the entire guidance procedure, the control
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Figure 1: Missile model and characteristic parameters.

3International Journal of Aerospace Engineering



parameters must be continuously adjusted based on the
flight state. A missile guidance control model was designed
in combination with the impact angle constraint guidance
(Figure 4). In this paper, a two-loop autopilot with self-
adjustable control parameters based on the model depicted
in Figure 4 will be developed.

2.2. Autopilot Parameter Design Method and Online
Application Framework. The key to the design of the autopi-
lot is to ensure that the control parameters kA and kg meet
the expected performance indices of the control system, so
that the aircraft can accurately and robustly track the guid-
ance acceleration command, accelerate the response speed,
and improve the damping of the missile. Among the fre-
quency domain indices of the system, the amplitude margin
hm and phase margin γm are often used as important indices
to assess the control system performance. In general, the
amplitude and phase margins of the autopilot should not
be less than 6.5 dB and 40°, respectively. Therefore, in this
paper, the amplitude margin hm and phase margin γm are
selected as the performance indices that must be satisfied
during the design process of the two-loop autopilot. Accord-
ing to Figure 2, the conventional open-loop system GðsÞ is
the transfer function from “in” to “out,” which is discon-
nected at the actuator. As a result, hm and γm can be calcu-
lated as follows:

hm =
1

G jωxð Þj j ,

γm = 180 ° +∠G jωcð Þ,

8><
>: ð6Þ

where ωx represents the phase crossover frequency, meeting

∠GðjωxÞ = −π, and ωc is the cut-off frequency, meeting
jGðjωcÞj = 1.

In this paper, the guidance control model described in
Section 2.1 is modeled by RL. The TD3 algorithm was uti-
lized to offline learn the driving control parameters for each
flight state across the entire flight envelope. At the same
time, a MLP neural network is used to model the nonlinear
relationship between different flight states and control
parameters in the TD3 algorithm model. As depicted in
Figure 5, the MLP neural network fitting can be directly
applied to the missile guidance control loop. The corre-
sponding autopilot control parameters can be self-adjusted
online during flight based on the real-time flight state.

3. DRL Design Method for the Autopilot

3.1. Markov Decision Process. The flight state of the missile at
two adjacent moments can be approximately regarded as the
transfer between the states under a given control command,
and the state of the next moment is only related to the state
at the current moment, so the flight state of the missile has
Markov property. By discretizing the flight process in the
time dimension, the guidance process of the missile can be
approximately modeled as a discrete-time Markov chain
(DTMC). When the guidance law is determined, the control
parameters determine whether the autopilot can follow the
guidance command. Therefore, the design process of the
autopilot is to add decision-making command to the
Markov chain of the missile flight process, so the design pro-
cess of the missile autopilot can be modeled as a Markov
decision process (MDP).

MDP is a sequential decision process, which can be
described by a 5-tuple hS,A, Pð:Þ,Rð:Þ, γi. The specific model
definition is as follows:

MDP

S : state set, S = s1, s2,⋯snf g,
A : action set, A = a1, a2,⋯anf g,
P st+1 st , atjð Þ: the state transition function of the environment,

R st , at , st+1ð Þ: the reward function of the environment,

γ : discount factor:

8>>>>>>>><
>>>>>>>>:

ð7Þ

In this paper, the agent cannot directly access the
transition function Pðst+1jst , atÞ and the reward function
Rðst , at , st+1Þ but can only obtain specific information about
the state st , action at , and reward rt by interacting with the
environment. The interaction process between the agent
and the environment in the MDP is depicted in Figure 6.

The autopilot design problem is a continuous control
problem. In each round, the agent observes the state st
at each time t and decides the action at to be taken
according to the current strategy. The strategy π is the
mapping from the state to the action (π : a ∼ πðsÞ). Auto-
pilot model gets the next state under the action and gets a
reward from the environment. The trajectory generated by
the control loop from s0 to the termination state sT is
expressed as τ : ðs0, a0, r0Þ, ðs1, a1, r1Þ,⋯, ðs1, a1, r1Þ.

Fin
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ayc 𝛿zc
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𝜔z

InOut
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Figure 2: Two-loop autopilot structure.
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Figure 3: Missile-target geometric relationships.
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Formalizing the optimization objective, the reward is
defined as the weighted sum of all rewards in the trajectory:

R τð Þ = 〠
T

t=0
γtrt , ð8Þ

where γ ∈ ½0, 1� represents discount factor and T repre-
sents the state number of a scene data trajectory. The
objective function JðτÞ is defined as the expectation of
the trajectory return:

J τð Þ = Eτ∼π R τð Þ½ � = Eτ∼π 〠
T

t=0
γtrt

" #
: ð9Þ

With Qðst , atÞ defined as the state action-value func-
tion of JðτÞ, the Behrman equation of the state action-
value function can be expressed as

Q st , atð Þ = Eπ rt + γEπ Q st+1, at+1ð Þ½ �½ �: ð10Þ

Throughout the interaction between agent and envi-
ronment, the optimal policy is continuously updated to
maximize the state action-value function.

π∗ = arg max
π

Q st , atð Þ: ð11Þ

The Behrman optimal equation of the state action-
value function can be obtained through the Behrman opti-
mal principle:

Q∗ st , atð Þ = Eπ∗ rt + γEπ∗ Q∗ st+1, at+1ð Þ½ �½ �: ð12Þ

3.2. TD3 Algorithm. The TD3 algorithm is an off-policy
algorithm for continuous action space. Based on the DDPG
algorithm, the actor- and critic-networks are simultaneously
improved, thereby resolving the problem of the critic-
network overestimating the Q value and enhancing the algo-
rithm’s stability. To increase the agent’s ability to explore the
environment, the TD3 algorithm chooses actions based on
the current policy and exploration noise:

at = clip πϕ stð Þ + ϵ, amin, amax
À Á

, ð13Þ

where ϕ represents the actor-network parameter, amin is the
lower limit of the action space, amax denotes the upper limit
of the action space, and ϵ is the exploration noise which obeys
the Gaussian distribution: ϵ ~N ð0, σtÞ. In addition, to ensure
the algorithm convergence in the later stage, the Gaussian dis-
tribution variance σt obeys the following: σt+1 = σtð1 − εÞ,
where 0 ≤ ε ≤ 1 is the attenuation factor.

The experience replay mechanism is adopted for the TD3
algorithm. The agent inputs the trial data ðst , at , rt , st+1Þ into
the experience buffer pool R and then randomly selects the
data ðsi, ai, ri, si+1Þ of the batch N from R to train the network
and update its parameters. To solve the overestimation
problem of the Q value, the TD3 algorithm uses two sets of
critic-networks to represent different Q values and estimates
the target Q value using the following equation:

yi = ri + γ mink=1,2Qθk′ si+1, ~ai+1ð Þ, ð14Þ
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Figure 4: Guidance control model.
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where θk′ðk = 1, 2Þ is the parameters of the target critic-
network and ~ai+1 is expressed as follows:

~ai+1 = clip πϕ′ si+1ð Þ + ~ϵ, amin, amax

� �
, ð15Þ

where ϕ′ represents the parameter of the target actor-network.
Random noise ~ϵ is introduced to enhance the stability of the

target policy. The noise ~ϵ follows an independent distribution
controlled by parameters different from those of the explora-
tion noise ϵ, i.e., ~ϵ ~ clipðN ð0, ~σÞ,−e, eÞ, where e is the upper
limit of the noise.

The TD3 algorithm updates the critic-network parame-
ter θk by minimizing the temporal difference (TD) error:

θk ⟵ arg min
θk

1
N
〠
i

yi −Qθk
si, aið ÞÀ Á2, for k ∈ 1, 2f g, ð16Þ

where θkðk = 1, 2Þ is the critic-network parameter.
To reduce the number of incorrect updates and improve

the algorithm’s stability, the TD3 algorithm does not update
the actor-network until the Q value becomes stable. There-
fore, the actor-network in the TD3 algorithm has a slightly
lower update frequency than the critic-network. Through a
deterministic policy gradient, the TD3 algorithm updates
the actor-network parameters.

∇ϕ J πϕ

À Á
≈

1
N
〠
i

∇aQθ1
si, að Þ a=πϕ sið Þ∇ϕπϕ sið Þ:

��� ð17Þ

TD3: Twin Delayed Deep Deterministic Policy Gradient
Randomly initialize the network parameters θ1, θ2, and ϕ
Initialize the target network parameters θ1′ ⟵ θ1, θ2′ ⟵ θ2, ϕ′ ⟵ ϕ
Initialize the replay buffer R
for episode = 1, M do
Initialize an exploration noise є ~N ð0, σÞ for action exploration
Receive the initial environmental state quantity s0
for t = 1, T do

Select an action according to the current policy and exploration noise:
at = clipðπϕðstÞ + є, amin, amaxÞ

Execute the action at and observe the reward rt and the next state st+1
Store the explored transition array ðst , at , rt , st+1Þ in R
Extract sample data ðsi, ai, ri, si+1Þ of the batch N from R
~ai+1 = clipðπϕ′ðsi+1Þ + ~є, amin, amaxÞ, ~є ~ clipðN ð0, ~σÞ,−c, cÞ
yi = ri + γ mink=1,2Qθk′ ðsi+1, ~ai+1Þ
Update the critic-network parameters:

θk ⟵ arg min
θk

ð1/NÞ∑iðyi −Qθk
ðsi, aiÞÞ2 for k ∈ f1, 2g

if t mod d then
Update the actor-network parameters through deterministic policy gradients:

∇ϕ JðπϕÞ ≈ 1/N∑i∇aQθ1
ðsi, aÞj a=πϕðsiÞ∇ϕπϕðsiÞ

Update the target network:
θk′ ⟵ μθk + ð1 − μÞθk′ for k ∈ f1, 2g

ϕ′ ⟵ μϕ + ð1 − μÞϕ′
end if

end for
end for

Algorithm 1: TD3 algorithm.
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Critic network

𝛼

𝛼
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1

Hidden
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Figure 7: TD3 algorithm network layer structure.
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To ensure the stability of training the neural network,
the soft update strategy is adopted for the target network
parameters:

θk′⟵ μθk + 1 − μð Þθk′ for k ∈ 1, 2f g,
ϕ′ ⟵ μϕ + 1 − μð Þϕ′,

(
ð18Þ

where 0 < μ < 1 is a smoothing constant that represents the
update speed. The pseudocode of the TD3 algorithm is given
in Algorithm 1.

3.3. RL Model for Autopilot Design. To use the TD3 algo-
rithm to solve the problem of two-loop autopilot parameter
design, it is necessary to transform the autopilot design pro-
cess into an RL problem and to design the various compo-
nents of the RL model, i.e., state, action, and reward. At
the same time, the algorithm’s network structure and hyper-
parameters must be determined to ensure its effectiveness.

The design of the two-loop autopilot requires informa-
tion regarding the flight state feature points in the full flight
envelope. The Mach number and α can affect the change of
aerodynamic characteristics, and the flight altitude and
Mach number can affect the change of dynamic pressure,
so the state vector can be designed as st : ½H,Ma, α�T,
where Ma represents the Mach number and H represents
the flight height. The objective of the design of a two-loop
autopilot is that the control parameters satisfy the perfor-
mance index requirements. Thus, the action vector is
designed as at : ½kA, kg�T.

The reward signal is the objective that must be
maximized by the agent. A reasonable reward mechanism

is crucial for training effectiveness. The frequency domain sta-
bility margin of the control system is selected as the perfor-
mance index, and the following reward function is designed:

r = − k1 hm − hm0ð Þ2 + k2 γm − γm0ð Þ2À Á
, ð19Þ

where hm0 is the expected magnitude margin, γm0 represents
the expected phase margin, and k1 and k2 are the influence
weights of the magnitude and phase margins on the reward,
respectively, meeting 0 ≤ k1, k2 ≤ 1, and k1 + k2 = 1.

As shown in Figure 7, both the actor- and critic-
networks of the TD3 algorithm employ an MLP neural
network with four layers, and an activation function is
connected behind the neurons of each layer besides the
input layer. To prevent control input saturation, the tanh
function activates the actor-network of the TD3 algorithm:

Tanh xð Þ = ex − e−x

ex + e−x
: ð20Þ

The critic-network is activated by the ReLu function:

Re Lu xð Þ =
x if x > 0,

0 if x ≤ 0:

(
ð21Þ

The dimensions of each layer of the actor- and critic-
networks are defined in Table 1.

The inputs of the actor- and critic-networks include state
vectors. The state vectors must be normalized to eliminate
the effect of input data dimensions on the neural network
training procedure. In this paper, the state vectors were
processed by (0,1) normalization:

�H =
H −Hmin

Hmax −Hmin
,

�Ma =
Ma −Mamin

Mamax −Mamin
,

�α = α − αmin
αmax − αmin

,

8>>>>>>><
>>>>>>>:

ð22Þ

where �H, �Ma, and �α are the normalized network input
values, in which H ∈ ½Hmin,Hmax�, Ma ∈ ½Mamin,Mamax�,
and α ∈ ½αmin, αmax�.

Table 1: Dimensions of each layer of the actor- and critic-networks.

Layer Actor-network Critic-network

Input layer 3 (state dimension) 5 (state dimension+action dimension)

Hidden layer 1 256 256

Hidden layer 2 256 256

Output layer 2 (action dimension) 1 (action value function dimension)

Table 2: TD3 algorithm hyperparameters.

Parameter Value

Maximum permissible episodes 1600

Maximum permissible steps of each episode 572

Actor-network learning rate 10-4

Critic-network learning rate 10-4

Regularization constant 6 × 10−3

Discounting factor γ 0.99

Sampling size N 256

Variance σt for the initial exploration noise ϵ 0.25

Variance fading factor ε 0.005

Variance ~σ for random noise ~ϵ 0.2

Upper limit e of the random noise ~ϵ 0.25
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Since the tanh activation function limits the output of
the actor-network to the range (-1, 1), the output value of
the actor-network needs to be denormalized to obtain the
action vector value:

kA =
�kA kA max − kA minð Þ + kA max + kA minð ÞÂ Ã

2
,

kg =
�kg kg max − kg min
À Á

+ kg max + kg min
À ÁÂ Ã

2
,

8>>><
>>>:

ð23Þ

where �kA and �kg are the output values of the actor-network,
kA max, kA min are the maximum and minimum values of the
control parameters, respectively, and kg max, kg min are the
maximum and minimum values of the control parameters,
respectively.

To prevent the overfitting problem, both the actor- and
critic-networks are trained by the Adam optimizer with L2
regularization. The hyperparameter settings significantly
affect the performance of the TD3 algorithm. Table 2 shows
the hyperparameters suitable for the application scope of
this paper.

3.4. Offline Training Framework. Before training, computa-
tional fluid dynamics (CFD) software was used to calculate
the missile’s pneumatic parameters throughout its entire
flight envelope, and a library of pneumatic parameters
was compiled.
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Table 3: Flight state at three different feature points.

H (m) Ma α (°)

Feature point 1 600 0.5 6

Feature point 2 200 0.4 2

Feature point 3 1600 0.6 -2
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In the offline training process, the flight speed V can be
obtained using the following atmospheric model:

ρ = ρ0e
− g/287:05Tð ÞH ,

c =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:4 × 287:05T

p
,

(
ð24Þ

where c represents acoustic velocity and ρ0 = 1:225 kg/m3 is
the atmospheric density in the sea level. The correlation
between the temperature T and the troposphere H can be
approximately expressed as

T = T0 − 0:0065H, ð25Þ

where T0 = 288:15K is the reference temperature at sea level.
Firstly, the actor-network and the critic-network are ini-

tialized. Then, the experiment begins, the initial state st is
selected and brought into the library of pneumatic parame-
ters to obtain the corresponding pneumatic parameters,
and the dynamic coefficient of the two-loop autopilot is com-
puted. In this paper, thrust P = 0, so the dynamic coefficient
is defined as follows: aα = −mα

z qSL/Jz , aω = −m�ω
z qSL/Jz , bα =

cαy qS/ðmVÞ, bδ = cδyqS/ðmVÞ + dα, and aδ = −mδ
z qSL/Jz + dω.

According to the structure of the two-loop autopilot,
the open-loop transfer function GðsÞ can be derived as
follows [34]:

G sð Þ = M2s
2 +M1s +M0

s2/ω2
m + 2μms/ωm + 1

, ð26Þ

where ωm =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aα + aωbα

p
and μm = ðaω + bαÞ/ð2ωmÞ. M0,

M1, and M2 are expressed as follows:

M0 =
aδbα − aαbδð Þ kg + kAV

À Á
aα + aωbαð Þ ,

M1 =
kgaδ − kAaωbδV
À Á

+ aδbα − aαbδð ÞckA
aα + aωbαð Þ ,

M2 =
kA caδ − bδVð Þ
aα + aωbαð Þ :

8>>>>>>>>><
>>>>>>>>>:

ð27Þ

At the same time, the flight state st determined the
control parameters kA and kg through the actor-network
and exploration noise ϵ and output the action at . Then,
the system stability margin is calculated according to
Equation (6) and Equation (26), and the real-time reward
rt is calculated according to Equation (19).

It is worth noting that the offline design of the autopilot
parameters in the whole flight envelope is not a traditional
sequential decision-making problem but can be regarded as
a problem to obtain the optimal value of control parameters
in the flight envelope. Therefore, the acquisition of the next
flight state st+1 in the interaction with the environment
needs to be designed. After several tests, it is determined
that, compared to random sampling for training, the orderly
arrangement of flight states and sequential sampling can
improve the efficiency of the TD3 algorithm and the rate
of convergence of the reward function. Therefore, in this
study, all flight states in the library of pneumatic parameters
are sequentially sorted. The ranking rule is fixed H first, and
then, Ma and α are determined in turn. The next flight state
st+1 is determined according to the ranking rule.

The explored data ðst , at , rt , st+1Þ are imported into the
experience buffer pool R. Then, the data ðsi, ai, ri, si+1Þ of
the batch N are selected from the experience buffer pool R
to train the network according to the TD3 algorithm. It
should be noted that this sampling method does not affect
the neural network’s ability to generalize, as the network
model can “remember” the order of the samples. This is
because the TD3 algorithm employs the experience replay
mechanism, and random selection of data from the experi-
ence pool during training breaks the correlation between
sequences. The offline training framework for the two-loop
autopilot parameter design based on the TD3 algorithm is
illustrated in Figure 8.

4. Simulation Analysis

The sample space for the two-loop autopilot parameter
training process was determined based on the application
scene of the selected missile in this project. Subsequently,
the TD3 algorithm is used to train the model offline, and
the training results are analyzed. Finally, in conjunction with
the impact angle constraint guidance problem, the neural
network fitting model obtained after training was directly
implemented in the guidance control loop for trajectory sim-
ulation to demonstrate its performance.

Table 4: Design results of the TD3 algorithm at the feature points.

Feature point 1 Feature point 2 Feature point 3

kA 0.001590 0.002485 0.001822

kg 0.10344 0.12109 0.108623

kdc 3.6646 3.5354 3.5850

hm 8.6694 8.5004 8.5971

γm 79.9758 79.7898 79.8691

Table 5: Pole assignment results at the feature points.

Feature point 1 Feature point 2 Feature point 3

kA 0.003824 0.00663 0.004038

kg 0.08471 0.10398 0.08859

kdc 2.0789 1.9312 2.1368

hm 3.6045 3.1859 3.8796

γm 59.0424 55.6092 60.9565
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4.1. Autopilot Design Simulation Based on the TD3
Algorithm. First, the design state space of the autopilot
parameters is determined: S : ½H,Ma, α�T, H ∈ ½0m, 3000m�,
Ma ∈ ½0:3, 1�, and α ∈ ½−12 ° , 12 ° �. Then, the design action
space of the autopilot parameters is set as follows: at :
½kA, kg�T, kA ∈ ½0, 0:01�, and kg ∈ ½0, 0:5�.

Subsequently, the expected performance indices are
selected, hm0 = 8:5dB, γm0 = 80 ° , k1 = 0:5, and k2 = 0:5, and
the hyperparameters are set according to Table 2 for offline
training. The change process of the episode cumulative
reward during the offline training process is exhibited in
Figure 9.

It can be seen that compared with random sampling,
sequential sampling improved the strategy learning effi-
ciency of the algorithm, and the stable value of cumulative
reward was higher than random sampling. This is because
random sampling in the training process leads to no correla-
tion in state transfer, which makes the agent unable to deter-
mine how the state transfers through learning, so that there
will be a large difference in each calculation of the Q value,
and it is difficult to obtain a stable Q value. However, with
sequential sampling, the state transition is determined,
which greatly reduces the learning difficulty of the agent
and enables faster convergence of cumulative reward. In
the early stages of training, the cumulative reward value
was small, with relatively large fluctuation due to the ran-
dom selection of actions within the set range. Nevertheless,
as the training progressed, the agent gradually chose better
actions; as a result, the cumulative reward value gradually
increased, and the fluctuation decreased. At 600 epochs of
training, the cumulative reward value of sequential sampling
was greater than -60 but still exhibited an upward trend.
When the training reached 1550 epochs, the cumulative

reward value was stable at approximately -9.9, with a small
fluctuation range. It can be considered that the training pro-
cess achieved the ideal results.

The design results of three characteristic points in the
flight envelope are selected for analysis.

The feature points 1 and 2 in Table 3 are selected accord-
ing to the predicted trajectory. To verify the generalization
ability of the algorithm, feature point 3 with a negative
AOA is selected for analysis. Table 4 lists the design results
and stability margin of the TD3 algorithm for the autopilot
control parameters at the feature points.

According to Table 4, the autopilot design results at the
feature points met the design requirements of the amplitude
and phase margins. Subsequently, the pole placement [27]
method is used to determine the autopilot control parame-
ters at the feature points, the damping coefficient μ is taken
as 0.7, and the natural frequency ω is taken as 35 rad/s. The
design results are listed in Table 5.

The autopilot actuator adopts the second-order actua-
tor model:

Wδ sð Þ = ω2
act

s2 + 2μactωact + ω2
act

, ð28Þ

where ωact = 220 rad/s represents the actuator natural fre-
quency and μact = 0:65 is the damping coefficient.

The design results of the control parameters at the fea-
ture points are incorporated into the two-loop autopilot
model, and Figure 10 depicts the step response curves.
According to the simulation results, the performance of the
autopilot designed by the TD3 algorithm was superior to
that obtained by the conventional pole placement method.
Under the RL framework, the autopilot designed by the
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TD3 algorithm can obtain the control parameters that satisfy
the ideal performance indices through autonomous learning,
and the actuator’s performance requirements are more
reasonable.

4.2. Online Application of the Autopilot Parameter Fitting
Model. After offline training of the TD3 algorithm, the
MLP neural network fitting model with the flight state ½H,
Ma, a� as input and the autopilot control parameters ½kA,
kg� as the output in the full flight envelope is obtained by
the actor-network. This model can be directly incorporated
into the guidance control loop to automatically adjust the
autopilot control parameters based on the current flight
state. To further validate the effectiveness and adaptability
of the proposed method, a flight experiment was designed
with the guidance and impact angle constraint control prob-
lem in mind. The three-DOF motion equation in the plumb
plane from Ref. [35] is chosen as the model for the theoret-
ical flight simulation. To ensure the end impact angle, pro-
portional guidance plus an offset term is required to meet
the end impact angle constraint:

ayc = Ny _q + ab
À Á

V , ð29Þ

where ab represents the control item to be designed and Ny

is the proportional coefficient, for which Ny ≥ 2. The follow-
ing relationship can be easily obtained:

_θ =Ny _q + ab: ð30Þ

Assuming that t f is the end time of guidance, Equation
(30) can be integrated on the interval ½t, t f �, and the follow-
ing relationship can be obtained:

θ t f
À Á

= θ tð Þ +N q tf
À Á

− q tð ÞÀ Á
+
ðt f
t
abdt: ð31Þ

Then, θd is set to a specified impact angle, and it
must meet

θ t f
À Á

= q t f
À Á

= θd: ð32Þ

From Equations (31) and (32), the following relation-
ship can be deduced:

ðt
t f

abdt = N − 1ð Þθd + θ tð Þ −Nq tð Þ: ð33Þ

Consequently, ηðtÞ = Ð t
t f
abdt and ηðt f Þ = 0 can be

obtained. It is known that, as long as η converges to zero
during the guidance process, the impact angle require-
ments can be met. Therefore, the following equation
can be formulated [36]:

_η = −
KV cos φ

R
η, ð34Þ

where K is an adjustable parameter, K ≥ 0. Based on
Equation (33), the following relationship can be obtained:

_η = _θ −Ny _q =
ayc
Vy

−Ny _q: ð35Þ
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The offset proportional guidance relationship with the
impact angle constraint can be obtained by combining
Equations (34) and (35):

ayc =NyV _q −
KV2 cos φ

R
η: ð36Þ

Based on the structure of the two-loop autopilot, the
expression for the actuator command can be deduced as
follows:

δzc = − ayc − ay
À Á

KA − kgωz

À Á
: ð37Þ

Set the initial missile position to (X0 =0m,Y0= 500m), the
initial pitch angle to ϑ0= 0

°, and the initial velocity to
V0= 200m/s. Set the target position to (Xt=2000m,
Yt=0m), Ny=3, K=3, and the acceleration command is con-

strained to [-50m/s2, 50m/s2]. The desired attack angles are
set to -15°, -45°, and -80°, respectively. The simulation results
are obtained and exhibited in Figure 11.

According to simulation results, the missile can consis-
tently strike the target at the preset impact angle.
Figure 11(f) illustrates that during the flight process, the
control parameters obtained by the online adjustment of
the real-time flight state via the neural network fitting model
are able to effectively implement acceleration tracking. This
indicates that the autopilot parameter fitting model trained
by the TD3 algorithm is robust and capable of completing
the flight task specified.

Figure 12 depicts the change processes of the control
parameters and stability margins.

Figure 12 demonstrates that the autopilot parameter fit-
ting model trained by the TD3 algorithm can self-adjust the
autopilot control parameters online based on the real-time
flight state, ensuring that the amplitude margin hm and
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phase margin γm of the control system are within the
expected range. In addition, it has strong generalizability
and can be implemented in the guidance control loop to
implement acceleration instruction tracking.

5. Conclusions

In this paper, the TD3 algorithm is used to design a two-loop
autopilot for the full flight envelope that can be deployed
directly to the guidance control loop, allowing online self-
adjustment of the control parameters. First, a deep reinforce-
ment learning model is constructed, with the flight state
½H,Ma, α�T taken as the state and the control parameters
to be designed ½kA, kg�T taken as the actions. According to
the amplitude and phase margins in the frequency domain
index of the control system, a reasonable reward mechanism
is designed. The TD3 algorithm is then used offline to learn
the control parameters of the complete flight envelope, and
an MLP neural network fitting model is obtained. Finally, a
verification study for the designed autopilot is conducted in
combination with the impact angle constraint guidance prob-
lem. The results indicate that the TD3 algorithm-based auto-
pilot can satisfy the performance index requirements. The
fitting model can self-adjust the control parameters of the
autopilot based on the real-time flight state, ensuring that
the control system’s stability margin is within the expected
range and can accurately track acceleration. In addition, the
fitting model has strong generalization capability and robust-
ness, eliminating the robustness problem of the conventional
overload autopilot, which is insufficiently robust to meet the
performance requirements for the entire flight envelope. The
method proposed in this paper for designing two-loop autopi-
lots based on the TD3 algorithm is also applicable to the
design of three-loop autopilots.
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