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Traditional guidance algorithms for hypersonic glide vehicles face the challenge of real-time requirements and robustness to
multiple deviations or tasks. In this paper, an intelligent online multiconstrained reentry guidance is proposed to strikingly
reduce computational burden and enhance the effectiveness with multiple constraints. First, the simulation environment of
reentry including dynamics, multiconstraints, and control variables is built. Different from traditional decoupling methods, the
bank angle command including its magnitude and sign is designed as the sole guidance variable. Secondly, a policy neural
network is designed to output end-to-end guidance commands. By transforming the reentry process into a Markov Decision
Process (MDP), the policy network can be trained by deep reinforcement learning (DRL). To address the sparse reward issue
caused by multiconstraints, the improved Hindsight Experience Replay (HER) method is adaptively combined with Deep
Deterministic Policy Gradient (DDPG) algorithm by transforming multiconstraints into multigoals. As a result, the novel
training algorithm can realize higher utilization of failed data and improve the rate of convergence. Finally, simulations for
typical scenes show that the policy network in the proposed guidance can output effective commands in much less time than
the traditional method. The guidance is robust to initial bias, different targets, and online aerodynamic deviation.

1. Introduction

From the last few decades until now, hypersonic glide vehi-
cles (HGV) have attracted the attention of researchers [1–5]
due to their high velocity and wide flight airspace. Usually,
cooperative guidance has been widely studied as an effective
threat to valuable targets represented by hypersonic vehicles
[6–10]. HGV shows its superiority against cooperation for
its large flight envelope, consisting of the boost phase, initial
descend phase, glide phase, and dive phase. To achieve long-
range penetration, the glide phase plays an important role.
For different mission requirements, the guidance law of the
glide phase presents different results. This paper will focus
on the flight mission in that HGV flies to the neighborhood
of the target at a certain height, and the total time of the
glide phase is constrained.

Undergoing years of development, the most popular
methods of reentry guidance can be summarized in reference
tracking guidance [11–22] and predictor-corrector guidance

[23–29]. As far back as 1978, Harpold and Graves [11]
described the theoretical basis and guidance architecture of
reference tracking guidance, which has been successfully
applied in the guidance of space shuttles and other reentry
vehicles. The reference tracking guidance is composed of off-
line trajectory optimization and online trajectory tracking.
Commonly, the optimal or suboptimal trajectory is calculated
by planning or optimization and stored in an onboard com-
puter before the flight. Once entering the glide phase, the tra-
jectory tracker generates guidance commands according to
errors between the actual flight and the stored standard trajec-
tory. Not taking deviation and disturbance into account, the
trajectory planning problem can be seen as an optimal control
problem, which can be solved by the Legendre pseudospectral
method [13, 14], improved Gauss pseudospectral method [15,
16], etc. Other commonly used optimization methods in reen-
try flight mainly include particle swarm optimization [17] and
multiphase convex programming [18]. The trajectory tracking
methods mainly include linear quadratic regulator [19],
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sliding mode control [20], nonlinear geometric method [21],
and fuzzy approximation method [22]. Reference tracking
guidance is easy to realize, and the method does not consume
much onboard computing resource. Nevertheless, the method
is easily affected by initial state changes and kinds of distur-
bance such as aerodynamic errors, which means its robustness
is not good in some situations.

Oppositely, predictor-corrector guidance requires no ref-
erence trajectory, which makes it flexible in more flight mis-
sions with initial errors and onboard disturbance. The task
information stored in the onboard computer is merely ter-
minal constraints. The predictor computes the terminal
states by integrating dynamics equations. The corrector cal-
culates the command of AOA (angle of attack) and bank
angle to correct the errors between the calculated terminal
states and terminal constraints. By repeating the guidance
flow, the final errors of terminal constraints are limited to
a very small range. Based on different prediction methods,
predictor-corrector guidance is classified as analytical
predictor-corrector guidance (APCG) and numerical
predictor-corrector guidance (NPCG). Analytical prediction
reduces the computational work by making some assump-
tions and simplifying equations of flight states. Kluever
[23] proposed a guidance method for the skip-entry phase
based on closed-form expressions that are derived from a
matched asymptotic expansion analysis. Yu and Chen [24]
innovatively presented a method for the derivation of analyt-
ical solutions to hypersonic gliding problems by transform-
ing the equations into a linear system with variable
coefficients and solving it based on spectral decomposition.
Zhang et al. [25] established an auxiliary geocentric rotation
frame, simplified the complex dynamics, and got a series of
analytical expressions taking energy as the argument.
Though the calculation of this kind of prediction is rapid,
it faces the problem of insufficient accuracy. Numerical pre-
diction is widely used due to its high accuracy. Joshi et al.
[27] adopted NPCG at each guidance cycle to generate a fea-
sible trajectory and presented a guidance algorithm that can
satisfy path and terminal constraints. Lu [28] summarized
the methods of predecessors and developed a unified
predictor-corrector guidance method, based on a simple
and robust numerical predictor with an altitude-rate-depen-
dent, which is suitable for kinds of reentry vehicles. Cheng
et al. [29] designed a deep neural network in place of the
numerical integration and provided an intelligent multicon-
strained predictor-corrector guidance, which can be seen as
an improvement of NPCG. Methods based on NPCG
improve the accuracy, meanwhile causing the problem of
intensive computation. Limited by the computing power of
the onboard computer, NPCG is not operative in practical
use, especially in tasks with a short guidance cycle. Both
the reference tracking guidance and predictor-corrector
guidance have advantages and disadvantages. If there is no
deviation or disturbance, the reentry problem can be solved
under the framework of trajectory planning, which is widely
studied [30–33]. However, the complex online deviation and
rapidity requirement call for an intelligent online method.

In recent years, deep reinforcement learning (DRL) has
made a great breakthrough [34–36]. Deep Q-learning

(DQN) [35] was first proposed in 2013, which shows great
performance in dealing with continuous states in the game
field. Then, the Deep Deterministic Policy Gradient (DDPG)
[36] further expands the action space from discrete to con-
tinuous, which aroused the rapid development of DRL
[37–39]. With the strong representation ability of deep
learning (DL) and the natural decision-making ability of
reinforcement learning (RL), DRL is widely applied in vari-
ous fields [40–42]. The sparse reward problem is common
in DRL tasks, which describes that the agent may only
receive a reward signal at the terminal time. To improve
the efficiency of training and avoid the sparse reward, based
on universal value function approximators [43], Andrycho-
wicz et al. [44] innovatively proposed the Hindsight Experi-
ence Replay (HER) method. The HER method replaces the
initial goal of the agent with an achieved goal, which greatly
leads to abundant reward signals. The original intention of
this design decides that the HER method is suitable for those
tasks with multigoals. Prianto et al. [45] applied HER to soft
actor-critic used for path planning for multiarm manipula-
tors, and the trained agent can generate the shortest path
for arbitrary scenarios. Manela and Biess [46] combined
HER with curriculum learning on three challenging throwing
tasks, which shows wonderful performance in multiple goals
and sparse reward functions. Considering that the terminal
constraints in the reentry task are similar to multigoals, we
can explore the HER method in the DRL guidance frame.

This paper is aimed at finding a real-time plan and guid-
ance scheme for reentry with the help of deep reinforcement
learning. Compared with previous studies, the main contri-
butions of this paper are as follows:

(1) The problem of reentry with multiple (path and ter-
minal) constraints is transformed into a Markov
Decision Process, which is the precondition of solv-
ing it in DRL. Different from the decoupling method
in most previous studies, the guidance command of
bank angle including magnitude and sign is com-
bined as an action. This makes the guidance logic
concise

(2) The HER method is introduced and improved in the
training of guidance commands. The HER condition
is presented creatively according to the peculiarities
of the reentry problem. The flow of this method is
easy to generalize to similar guidance problems with
other additional constraints

(3) The guidance network is trained offline and called
online. The guidance scheme provides an end-to-
end guidance command which is calculated by the
well-trained network rather than complex guidance
schemes. The engineering implementation of the
proposed algorithm is simple, and the real-time per-
formance is excellent

The remainder of the paper is organized as follows. Sec-
tion 2 describes the reentry problem with multiconstraints
and the bounds of control variables. Section 3 introduces
the basic theory of DRL and the benefit of the HER method.
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Section 4 proposes the intelligent multiconstrained guidance
algorithm and gives the architecture of two kinds of neural
networks. Section 5 gives the simulations and analysis to ver-
ify the efficiency of the method. Finally, the conclusions of
this paper are in Section 6.

2. Problem Formulation

2.1. Reentry Dynamics Equations. Considering the earth’s
rotation, the dynamics equations of the hypersonic glide
vehicle are given as follows:

where V represents the velocity, γ represents the flight
path angle, ψ represents the velocity heading angle, r rep-
resents the distance between the Earth center and the
vehicle, θ represents the longitude, ϕ represents the lati-
tude, m represents the vehicle mass, g represents the grav-
itational acceleration, ω represents the self-rotation rate of
the Earth, and σ represents the bank angle. The expres-
sions of lift L and drag force D are

D = 1
2 ρV

2CDSm,

L = 1
2 ρV

2CLSm,

8>><
>>: ð2Þ

where ρ represents the atmospheric density, Sm represents
the reference area, and CD and CL represent the drag coef-
ficient and lift coefficient, respectively, which can be
obtained by two interpolation functions for AOA and the
Mach number.

ρ is a function of height H (H = r − Re, Re is the radius of
the Earth):

ρ = ρ0e
−βH : ð3Þ

Given an initial state, the trajectory can be obtained by
integration based on Equation (1), command of AOA and
bank angle.

2.2. Multiple Constraints. To complete the flight mission, the
HGV must satisfy all the path constraints and terminal
constraints.

2.2.1. Path Constraints. During the reentry flight, the path
constraints can be expressed as

_Q = kQρ
0:5V3:15 < _Qmax,

q = 1
2 ρV

2 < qmax,

n =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 + L2

p

m
< nmax,

8>>>>>><
>>>>>>:

ð4Þ

where _Q is the heating rate of the stagnation point, q is the
dynamic pressure, n is the aerodynamic load, and kQ is a

constant. _Qmax, qmax, and nmax denote the maximum limits,
respectively.

Apart from the three hard constraints, there is a soft
QEGC (quasiequilibrium glide condition) constraint, which
can make the reentry trajectory smooth:

L cos σ − g + V2

r
≥ 0: ð5Þ

According to Equations (2)–(5), we can obtain the three
lower bounds and one upper bound of H vs. V , in which the

_V = −
D
m

− g sin γ + ω2r cos ϕ sin γ cos ϕ − cos γ sin ϕ cos ψð Þ,

_γ = L cos σ
mV

−
g
V

−
V
r

� �
cos γ + 2ω cos ϕ sin ψ + ω2r cos ϕ

V
cos ϕ cos γ + sin γ sin ϕ cos ψð Þ,

_ψ = L sin σ

mV cos γ + V
r
cos γ sin ψ tan ϕ − 2ω tan γ cos ϕ cos ψ − sin ϕð Þ + ω2r sin ϕ cos ϕ sin ψ

V cos γ ,

_r =V sin γ,

_θ = V cos γ sin ψ

r cos ϕ ,

_ϕ = V cos γ cos ψ
r

,

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð1Þ
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constraint of the upper bound is soft.

H ≥
2
β
ln kQρ0

0:5V3:15

_Qmax
,

H ≥
1
β
ln ρ0V

2

2qmax
,

H ≥
1
β
ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CD

2 + CL
2

p
ρ0V

2Sm
2nmaxmg

,

H ≤
1
β
ln CLρ0V

2Smr

2m gr −V2À Á :

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð6Þ

According to Equation (6), the H-V corridor in the glide
phase is obtained. Only if the flight trajectory of HGV is lim-
ited in the corridor, the path constraints can be satisfied.
Intuitively, the H-V corridor is shown in Figure 1.

2.2.2. Terminal Constraints. Assume that HGV is required to
reach the vicinity of the target at a specified height, the ter-
minal constraints (height error ΔH, distance error Δd) can
be summarized as

ΔH = Hf −Hre

�� �� < ΔHtd ,

Δd = Re arccos sin ϕf sin ϕtar + cos ϕf cos ϕtar cos θf − θtar
À Á� �

< Δdtd ,

8<
:

ð7Þ

where Hf , ϕf , and θf represent the final height, latitude, and
longitude at the terminal time, Hre is the required height,
ϕtar and θtar represent the latitude and longitude of the tar-
get, and ΔHtd and Δdtd are the thresholds of height and
distance.

In many practical application scenes, the terminal con-
straint on velocity is not so tight, which means that the
velocity constraint takes the form of

V f >Vre, ð8Þ

where Vf is the terminal velocity and Vre is the required
minimum velocity.

Compared to traditional reentry tasks, we consider more
terminal constraints in different tasks. For example, to arrive
at the required time Tre, there is another constraint:

ΔT = T f − Tre

�� �� < ΔTtd , ð9Þ

where T f is the flight time and ΔTtd is the threshold of time.
After this, we give the criterion for the success of a reen-

try flight. In cases where all the path constraints are satisfied,
if the terminal states Δd < 3 × 105 m, ΔH < 2000m, ΔT <
20 s, and V f > 2500m/s, then the flight mission is successful.

Similarly, if the reentry task requires HGV to arrive at a
desired terminal approach angle, the relevant constraint
condition is adaptively formulated:

Δψ = ψLOS − ψapproach

��� ��� < Δψtd , ð10Þ

where ψLOS is the LOS (line of sight) angle, ψapproach is the
desired approach angle, and Δψtd is the angle threshold.

2.2.3. Switch Condition. As is shown in Figure 2, HGV can-
not begin sliding from an arbitrary initial status so there is a
switch condition. The switch condition refers to the con-
straint condition at the junction of the initial descent phase
and glide phase.
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Figure 1: Height-velocity corridor of HGV during the reentry flight.
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Referring to [1], the switch condition is defined as that
the absolute value of the difference between the slope of
the QEGC at the current point and the actual slope of r-V
is less than a small preselected value.

dr
dV

−
dr
dV

� �
QEGC

�����
����� < δ0, ð11Þ

where δ0 is a small value.
The first slope can be derived from Equation (1):

dr
dV

= V sin γ

−D/m − g sin γ
: ð12Þ

The QEGC equation is rewritten as

ρV2CLSm
2m cos σ + V2 cos γ

r
− g cos γ = 0: ð13Þ

According to Equation (13), the derivate of ρ to V is
obtained:

dρ
dV

= dρ
dr

dr
dV

= −βρ
dr
dV

: ð14Þ

Both sides of Equation (13) take a derivative to velocity,
and then, we can obtain

ρV2CLSm cos σ
2m

2
V

− β
dh
dV

� �
+ 2V

r
−
V2

r2
dh
dV

+ 2g
r

dh
dV

= 0:

ð15Þ

Substituting Equation (13) into (15), then we can obtain

g cos γ − V2 cos γ
r

� � 2
V

− β
dh
dV

� �
+ 2V

r
= dr
dV

V2

r2
−
2g
r

� �
:

ð16Þ

Suppose that cos γ ≈ 1, Equation (16) is simplified as

2g
V

= dr
dV

V2

r2
−
2g
r

+ β g −
V2

r

� �� �
: ð17Þ

Then, the second slope is obtained:

dr
dV

� �
QEGC

= 2g/V
V2/r2
À Á

− 2g/rð Þ + β g − V2/r
À ÁÀ ÁÂ Ã : ð18Þ

Substituting Equations (12) and (18) into (11), the
switch condition is obtained.

2.3. Control Variables. During the reentry process, the trajec-
tory is decided by the AOA α and the bank angle σ. Com-
monly, the AOA profile is set as the following piecewise
linear function:

α =

αmax, V ≥V1,

αbest +
αmax − αbest
V1 − V2

V −V2ð Þ, V2 ≤V <V1,

αbest, V <V2,

8>>><
>>>:

ð19Þ

where αmax is the max AOA limited by the aerodynamic and
αbest is the best AOA when the ratio of lift-to-drag takes the
maximum value, which is helpful to increase the flight range
of HGV.

Once the AOA profile is determined, the only control
variable is the bank angle σ. According to the QEGC con-
straint and the three hard path constraints, the upper magni-
tude bound of σ can be derived as follows:

σj j < arccos g −
V2

r

� � 2mV4:3k2Q

CLSm _Q
2
max

" #
= σ _Q max,

σj j < arccos g −
V2

r

� �
m

CLSmqmax

� �
= σq max,

σj j < arccos g −
V2

r

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2
D + C2

L

p
CLgnmax

" #
= σn max:

8>>>>>>>>>><
>>>>>>>>>>:

ð20Þ

The traditional approach to generating guidance com-
mand is to calculate the magnitude of σ iteratively to satisfy
longitudinal constraint and change the sign of σ in the hor-
izontal plane in the heading angle corridor to fly HGV
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Figure 2: The flight phases of HGV.
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toward the target. However, the application of neural net-
works allows us to generate both the magnitude and sign
of σ at the same time. If the output of a policy network is
a ∈ ½−1, 1�, the command of σ is as follows:

σcmd = sign að Þ σmin + aj j σmax − σminð Þ½ �, ð21Þ

where σmax = max fσQ ̇max, σq max, σn maxg, σmin = 0.

3. Deep Deterministic Policy Gradient with
Hindsight Experience Replay

3.1. Deep Reinforcement Learning. Based on Markov Deci-
sion Process (MDP), standard reinforcement learning con-
sists of an environment, an agent, and their interactions.
The environment is initiated as a state s1 ∈ S , which can
describe its initial features. The agent observes the state of
the environment and chooses an action a1 ∈A . The action
affects the environment to transfer to the next state s2 with a
certain probability p1 and generates a reward r1 ∈R to the
agent. Then, the agent interacts with the environment repeat-
edly, so there is a sequence of tuples <si, ai, pi, si+1, ri > . The
agent’s goal is to increase its accumulated rewards.

Gt = 〠
∞

i=t
λiri, ð22Þ

where λ is the discount factor, which is used to balance the
current and future reward.

Action-value function Qπðst , atÞ is set to evaluate how
good the action at is: Q

πðst , atÞ = EðGtjst , atÞ. And if the pol-
icy π is optimal, Qπðst , atÞ is the optimal action-value func-
tion, which satisfies the Bellman equation:

Q∗ s, að Þ = E r s, að Þ + λ max
a′∈A

Q∗ s′, a′
� �� �

: ð23Þ

In DRL, if the policy π is deterministic, it can be consid-
ered as a mapping from states to actions, commonly in a
form of neural network with the parameter θπ.

3.2. Deep Deterministic Policy Gradient (DDPG). The base-
line algorithm used for the training of neural networks is
Deep Deterministic Policy Gradient (DDPG), which belongs
to the family of model-free policy gradient DRL methods.
There are four neural networks in DDPG, which are called

the online actor network πðsjθπÞ, the target actor network π′
ðsjθπ′Þ, the online critic network Qðs, a ∣ θQÞ, and the target

critic networkQ′ðs, a ∣ θQ′Þ. The online actor network param-
eterized by θπ exports actions of the agent, and the online
critic network parameterized by θQ is designed to approximate
action-value function Qðs, aÞ. The actual behavior policy a of
the agent is presented from π with an added noise N .

The parameter θQ is optimized by decreasing the loss:

LθQ = E r st , atð Þ + λQ′ st+1, π′ st+1jθπ′
� �

θQ
′

���� �
−Q st , at jθQ

� �� �2
� �

:

ð24Þ

Figure 4: The overall design of the algorithm.
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The actor πðsjθπÞ is updated by the theory of policy
gradient:

∇θπ J = Est~ξ ∇θπQ s, ajθQ
� ����

s=st ,a=π st ,θπð Þ

� �

= Est~ξ ∇aQ s, ajθQ
� �

∇θππ sjθπð Þs=st
h i

,
ð25Þ

where ξ is the distribution of the state.
The existence of the target actor network and the target

critic network can make the process of training more stable.
Besides, the data is stored in a replay buffer to reduce the rel-
evance between experiences and deal with the experiences
effectively.

3.3. Hindsight Experience Replay (HER). The key idea behind
Hindsight Experience Replay (HER) is derived from univer-
sal value function approximators (UVFA) [43]. In UVFA,
there is a goal space G . For any goal g ∈ G , there is a pseu-
doreward Rg ðs, a, s′Þ: S ×A ⟶R. The first state-goal pair
in every episode is sampled from a distribution p ðs0, gÞ, and
in the same episode, the goal g is fixed. At every step in an
episode, the agent gets an action from the current state
and goal π : S ×G ⟶A . On this premise, the traditional
Q-function is expanded to Q ðst , at , gÞ = E ½Rt ∣ st , at , g�.

In a task where the agent needs to achieve multiple goals,
the designed reward is quite likely to be sparse. To deal with
sparse rewards, an effective trick is to exploit the failed data
samples too. In the method of HER, the states of the agent
are expanded to combinations of states and goals. The
essence of HER rests with designing a virtual goal g′, which
is achieved in a failed trajectory. For example, there is an RL
task in Figure 3, where the agent has a goal position. Only if
the agent arrives at the goal g ðM, 1Þ it gets a reward 1, oth-
erwise 0. In most episodes, the agent gets 0 rewards. It is
quite difficult for conventional RL algorithms to achieve
good results for the sparse reward problem especially when
M and N are large numbers. In the HER method, if the final

position is ð3,NÞ, we can define the position as a virtual goal
g′, and then, the final reward Rt ∣ st , at , g = 0, but Rt ∣ st ,
at , g′ = 1. By doing this, the algorithm can learn from
failed experiences, and the reward is changed from sparse
to dense.

With the help of virtual goals, the efficiency of experi-
ence is improved, which makes the convergence of neural
networks significantly ameliorated.

4. Design of Intelligent Guidance and
Training of Neural Networks

4.1. Overall Design. In this section, the HER-DDPG-based
guidance is proposed. First of all, we normalize the reen-
try simulation into two segments (scenario initialization
and guidance step) and open two corresponding inter-
faces to the intelligent algorithm. In the segment of sce-
nario initialization, the position and velocity of HGV
are randomly initialized within a certain range. The sim-
ulation starts from the specified point at the initial phase
and continues to the switch point decided by Equation
(11). After entering the glide phase, at each decision step
later, HGV receives the guidance command of bank angle
via the interface to the intelligent algorithm and calcu-
lates AOA according to the profile given by Equation
(19). The simulation proceeds until distance error Δd <
Δdtd or the velocity V f < Vre or any path constraint is
not satisfied.

After constructing the two segments, the transformation
from simulation to MDP is accomplished. The kinematical
parameters of HGV are mapped to states, and the guidance
command of bank angle is designed as the action. Based
on the theory of HER, the terminal constraints are trans-
formed into multigoals and the expanded states are defined.
The reward function is designed as a combination of several
linear functions of terminal height, terminal distance error,
and flight time error, which is used for generating dense sig-
nals of policy gradient. Finally, based on HER and DDPG,
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the algorithm goes into operation as is shown in Figure 4.
When the neural networks converge, the training process is
terminated.

4.2. Markov Decision Process Variables. The fundamental
variables in MDP are defined as follows.

4.2.1. States. The basic state of the HGV agent is defined as
s = ½V , γ, ψ, r, θ, ϕ�, which can uniquely express the features
of the motion.

4.2.2. Goals. Goals describe the terminal constraints of HGV
with a certain fixed tolerance of position and time. The

Dense
300 × 600

Batch
normalization

Batch
normalization

Dense
600 × 400

Dense
400 × 1

Dense
10 × 300

Input 1 × 10 Output 1×1

Activation functions

Layers

Figure 7: The architecture of the actor network.
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Run the Scenario Initialization Function, sample a basic state s0 = ½V , γ, ψ, r, θ, ϕ�
for t = 0, NTdo

Combine basic state and goal to expanded state set = ½st kg�
Sample an action from actor and noise: at = π ðsetjθπÞ +N t
Execute the action in the Policy Step Function and observe a new state st+1
Combine basic new state and goal to expand new state set+1 = ½st+1 kg�
Store the transition ðset , at , rt , set+1Þ in RB and RHER
if the episode is done
Judge whether the HER condition is met and record it

end if
end for
if the HER condition is met

for t = 0, NT in RHERdo
Calculate gHER = ½θHER

tar , ϕHER
tar ,HHER

re , THER
re � and ΔHHER , ΔdHER , ΔTHER

Recalculate reward rHER
t according to Equations (30)–(33)

Combine basic states and goal to expand states:
sHER
et = ½set kgHER�, sHER

et+1 = ½set+1kgHER�
Store the transition ðsHER

et , at , rHER
t , sHER

et+1 Þ in RB
end for
Clear data in RHER

end if
for t = 0, N traindo

Sample a minibatch B from the replay buffer RB
Update critic by Equation (24), update actor by Equation (25)

Update target network periodically: θπ′ ⟵ τθπ + ð1 − τÞθπ′ , θQ′
⟵ τθQ + ð1 − τÞ θQ′

end for
end for

Algorithm 1: Training of multiconstrained reentry guidance based on HER.
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initial goal is defined as g = ½θtar, ϕtar,Hre, Tre�. In this paper,
Δdtd = 300 km, if the final distance error Δd < 300 km then
the terminal distance constraint is satisfied. If the loose con-

straint Δd < ΔdHER = 2000 km, we decide that the HER con-
dition is met.

The HER condition is shown in Figure 5, which means
that despite its failure of arriving at the given target, HGV
has arrived at the terminal position successfully. Here, we
define θHER

tar , ϕHER
tar , HHER

re , and THER
re as target longitude, tar-

get latitude, required height, and required time on the
HER condition. The intention of HER is to efficiently
increase the sampled data of failed episodes, which means
that they may be successful in other target tasks. Therefore,
the required height and time are modified as the actual
values at the terminal time when the errors concerning ini-
tial goals are in a specifically designed range. The concrete
values of them in this paper are given as

θHER
tar = θf , ϕHER

tar = ϕf  

HHER
re =Hf , ΔH ≤ 8 km,

HHER
re =Hre, ΔH > 8 km,

THER
re = T f , ΔT ≤ 200 s,

THER
re = Tre, ΔT > 200 s:

8>>>>>>>>><
>>>>>>>>>:

ð26Þ

Table 4: The hyperparameters in the training.

Hyperparameter DDPG PPO DDPG+HER

Discount factor λ 0.99 0.99 0.99

Batch size 64 64 64

Replay buffer size 20000 — 20000

Actor learning rate 10−4 10−3 10−4

Critic learning rate 10−3 10−3 10−3

Target update rate τ 0.001 — 0.001

Maximum number of steps 1000 1000 1000

Exploration policy OU — N 0,0:1ð Þ
GAE factor — 0.98 —

Clip factor — 0.2 —

Table 1: The architecture of the actor network.

Number Layer type Layer nodes Activation function

1 Dense 10 × 300 Leaky ReLU

2 Dense 300 × 600 Leaky RELU

3 Batch normalization 600 —

4 Dense 600 × 400 Leaky ReLU

5 Dense 400 × 1 —

6 Batch normalization 1 Tanh

Table 2: The architecture of the critic network.

Number Layer type Layer nodes Activation function

1 Dense 11 × 300 Leaky ReLU

2 Dense 300 × 600 Leaky RELU

3 Batch normalization 600 —

4 Dense 600 × 500 Leaky ReLU

5 Dense 500 × 1 Tanh

Table 3: Parameters of initial reentry point and target point.

Initial parameters Value

Initial height H0 60~64 km
Initial velocity V0 6200~6800m/s

Initial path angle σ0 −0.02~−0.01 deg
Target longitude θtar 60~65 deg
Target latitude ϕtar −7~7 deg
Required height Hre 26~32 km
Required time Tre 1200~1500 s
The error of drag coefficient ΔCD 0~10%
The error of lift coefficient ΔCL 0~10%

Dense
300 × 600

Batch
normalization

Dense
600 × 500

Dense
500 × 1

Dense
11 × 300

Input 1 × 11 Output 1 × 1

Activation functions

Layers

Figure 8: The architecture of the critic network.
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Then, the new goal is defined as gHER = ½θHER
tar , ϕHER

tar ,
HHER

re , THER
re �.

In this case, the new terminal errors can be expressed as

ΔHHER = Hf −HHER
re

�� ��,
ΔdHER = Re arccos sin ϕf sin ϕHER

tar + cos ϕf cos ϕHER
tar cos θf − θHER

tar

� �� �
,

ΔTHER = T f − THER
tar

�� ��:

8>>>><
>>>>:

ð27Þ

By doing this, lots of failed data is transformed into suc-
cessful data with new terminal constraints. The reward signal
is more abundant in the training process, and the average
reward can increase. In DRL training, the more abundant
the reward signal, the faster the rate of convergence.

4.2.3. Expanded States. The expanded state can be defined as

se = skg½ � = V , γ, ψ, r, θ, ϕ, θtar, ϕtar,Hre, Tre½ �: ð28Þ

On the HER condition, the expanded state is modified
accordingly:

sHER
e = skgHERÂ Ã

= V , γ, ψ, r, θ, ϕ, θHER
tar , ϕHER

tar ,HHER
re , THER

re

h i
:

ð29Þ

4.2.4. Rewards. In the paper where HER is proposed [44], the
success of the task is merely relative to the position of a
robotic arm, so it is feasible to learn from rewards that are
sparse and binary. However, the number of terminal con-
straints in the reentry task is so up to 4 that the binary
reward is no longer suitable. For the reentry task, the prior-
ities of satisfying different terminal constraints are not at the
same level. Intuitively, the range constraint is the most
important, for it requires the agent to adjust both the magni-

tude and the sign of the bank angle to arrive in the vicinity of
the target. Secondly, the height constraint is also important.
After the two constraints are under consideration, the time-
related reward is added. Considering the following dive
phase after the glide phase, the constraint thresholds are
defined: Δdtd = 3 × 105 m, ΔHtd = 2000m, and ΔTtd = 20 s.

Piecewise linear functions are applied to design the
range-relative reward RR, height-relative reward RH , and
time-relative reward RT :

RR =
0 + 0 − −90ð Þ

3 − 70ð Þ × 105 Δd − 3 × 105
À Á

, Δd > 3 × 105,

0, Δd ≤ 3 × 105,

8><
>:

ð30Þ

RH =

60 + 60 − 10
0 − 2000 ΔH − 0ð Þ, ΔH ≤ 2000,

10 + 10 − 5
2000 − 5000 ΔH − 2000ð Þ, 2000 < ΔH ≤ 5000,

5 + 5 − 0
5000 − 10000 ΔH − 5000ð Þ, 5000 < ΔH ≤ 10000,

0, ΔH > 10000,

8>>>>>>>>><
>>>>>>>>>:

ð31Þ

RT = RH =

80 + 80 − 0
0 − 20 ΔT − 0ð Þ, ΔT ≤ 20,

0 + 0 − −10ð Þ
20 − 100 ΔT − 20ð Þ, 20 < ΔT ≤ 100,

−10 + −10 − −12ð Þ
100 − 500 ΔT − 100ð Þ, 100 < ΔT ≤ 500,

−12 + −12 − −20ð Þ
500 − 10000 ΔT − 10000ð Þ, ΔT > 500,

8>>>>>>>>>>><
>>>>>>>>>>>:

ð32Þ
The 3 subrewards are shown in Figure 6.
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Figure 9: Contrast curves of the average return in the latest 100 episodes.
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Then, the total reward R is designed as follows:

R =
RR, Δd > 3 × 105,
RR + RH , Δd ≤ 3 × 105, ΔH ≥ 2000,
RR + RH + RT , Δd < 3 × 105, ΔH < 2000:

8>><
>>: ð33Þ

RR is designed to reduce the terminal distance error in
the range of Δdtd , which means that if the distance error Δ
d > 300 km then the subreward RR < 0, and if Δd ≤ 300 km,
then the total reward is determined by RH and RT . RH is
designed to reduce the terminal height error, so the smaller
the ΔH, the larger the RH . And in the whole training process,
the number of samples with larger ΔH is more than smaller
ΔH, so as ΔH decreases, the slopes of piecewise linear func-
tions increase. Finally, only if the height error ΔH < ΔHtd is
the subreward RT added in R. The design of RT is similar, so
the smaller the ΔT , the larger the RT . And as ΔT decreases,
the slopes of piecewise linear functions increase too.

If the terminal states Δd < 3 × 105 m, ΔH < 2000m, ΔT
< 20 s, and V f > 2500m/s, then the flight mission is success-
ful. According to Equations (30)–(33), the reward of a suc-
cessful episode is in the range of 10 ~ 140. For some
successful episodes, the average reward value will be in the

range of 10 to 140, which depends on the final data distribu-
tion of ΔH and ΔT .

4.2.5. Actions. Different from the widely used decoupling
methods in current guidance algorithms, the magnitude
and sign command of the bank angle are provided at the
same time in this paper. Commonly action A is calculated
by a policy network. In DDPG, the output of the policy net-
work is a continuous value A ∈ ½−1, 1�. The action is mapped
to the bank angle command in the form of Equation (21).

4.3. Algorithm Flow for Training. Based on HER, the training
algorithm of multiconstrained reentry guidance is given in
Algorithm 1.

4.4. Neural Network Design. The designed actor network
model and critic network model are shown in Figures 7
and 8. And the details of every layer are listed in Tables 1
and 2.

5. Simulations and Analysis

5.1. Simulation Settings. The HGV model used in this paper
is the common aero vehicle (CAV-H). In Equation (1), m =
907 kg and g = 9:8066m/s2. In Equation (2), Sm = 0:4839m2.
In Equation (3), ρ0 = 1:2250 kg/m3, β = 0:00014065, and Re

= 6378004m. In Equation (4), kQ = 5 × 10−5, qmax = 100 kPa,

Table 5: Computing time of NPCG.

Order 1 2 3 4 5 6 7 8 9

Time (s) 3.387 2.796 2.411 2.220 2.002 1.397 1.072 0.628 0.291

Table 6: Contrast simulation results.

Method Computing time (s) Range error (km) Height error (km) Time error (s)

NPCG 6.431 299.998 2.487 16.6

HERG 0.0937 299.999 0.326 10.3
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nmax = 3, and _Qmax = 2000kW/m2. In Equation (8), Vre =
2500m/s. In Equation (19), αmax = 20 deg, αbest = 10 deg, V1
= 6000m/s, and V2 = 5000m/s. The initial longitude and lati-
tude of HGV are 0deg. The size of the integral step is 0.01 s, and

the size of the guidance (policy) step is 150 s. All used random
variables in Table 3 are subject to the uniform distribution.

After setting the above parameters, the networks are
trained by Algorithm 1.
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5.2. Training Process of Neural Networks. Comparative
experiments are made at the same time to verify the superi-
ority of DDPG+HER method. DDPG algorithm [36] and

Proximal Policy Optimization (PPO) algorithm [37] are
selected as control groups. The hyperparameters of the three
algorithms used in the training process are set in Table 4.
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After the training, the average returns and success count
in the latest 100 episodes are shown in Figures 9 and 10. The
total episode number is 23161.

It can be seen from Figure 9 that the average return of
the DDPG+HER method begins rising first and gets more
rewards than other methods. The sparse reward problem is
effectively alleviated. At the end time of training, the success
rate of the DDPG+HER method in Figure 10 converges to
100%, which implies that the policy given by the actor is

operative. The best success count of DDPG is less than 75
and the best success count of PPO is less than 60, which
powerfully illustrates that the proposed DDPG+HER
method is more effective in the training of the policy
network.

In Figure 11, the loss of actor and critic in the
DDPG+HER method is given.

It can be seen from Figure 11 that the loss of the critic is
decreasing to zero along with the progress of training.
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Table 7: Terminal constraints of the Monte Carlo simulations.

Terminal constraints Distance error (km) Height error (km) Time error (s)

Mean value 299.850 1.084 9.907

Minimum value 299.652 0.0002 0.0301

Maximum value 299.999 1.993 19.961
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Figure 23: Terminal height-time error.
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Meanwhile, the magnitude of actor loss is increasing in the
process, which means that the score of the agent is on a
trend of improvement.

5.3. Random Single Trajectory Analysis. After the conver-
gence of neural networks, the typical simulation is per-
formed randomly. To evaluate the performance of the
proposed guidance, a contrast simulation based on NPCG
is also performed. The proposed method in this paper is
called HERG for short.

The terminal constraints are set as target longitude λtar
= 63:505 deg, latitude ϕtar = 3:976 deg, required height Hre
= 30:429 km, and required time Tre = 1370:0 s. The errors
of aerodynamics are set as ΔCD = 3:5% and ΔCL = 4:5%.
For the trajectory of HERG, the terminal height is
30.755 km, and the terminal time is 1359.7 s. For the trajec-
tory of NPCG, the terminal height is 32.916 km, and the ter-
minal time is 1386.6 s.

The results are shown in Figures 12–14.

Figure 12 shows that the HGV can arrive at the required
target area. Figure 13 shows that the policy decision is exe-
cuted 9 times, and terminal height and time are in the
required range. The reverse number of the bank angle is
reduced greatly for HERG than NPCG. And as is seen in
Figure 14, all of the path constraints are satisfied.

The simulations are performed in a system with a 12th
Gen Intel Core i5-12600KF CPU and 16GB RAM. In the
NPCG method, the corrector works a total of 9 times. As
the time of integration decreases, the computing time
decreases. The computing time of NPCG is listed in
Table 5, and the total computing time is 6.431 s. In the
HERG method, the policy network is called 9 times and
the total computing time is 0.0937 s.

The contrast simulation results are shown in Table 6. It
is obvious that with similar terminal errors, the calculation
time of the proposed method is less than 1/68 of NPCG.
By contrast with NPCG, the proposed method makes a
breakthrough in real-time performance.
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5.4. Verifications on Monte Carlo Simulations. To evaluate
the effectiveness of the proposed guidance, 1000 Monte
Carlo simulations are performed, whose initial states and
errors of aerodynamic coefficients are set according to
Table 3. The results are shown in Figures 15–22.

As is seen in Figure 15, all of the 1000 trajectories of the
glide phase are in the range of the H-V corridor, and natu-
rally, in Figures 16–19, all of the path constraints are satis-
fied. Moreover, the AOA and bank angle in different
trajectories take on a continuous trend as is shown in
Figures 17 and 18, which indicates that the output of the pol-
icy network is steady and robust.

The statistical data of terminal constraints is shown in
Table 7.

The detailed data is shown in Figures 23–25.
Figure 23 shows the terminal time error and height

error, which implies that all the time errors are in the
required range of 20 s and all the height errors are in the
required range of 2 km. Figures 24 and 25 show histograms
of the terminal time error and height error, which implies
that the proposed method can satisfy all the terminal
constraints.

6. Conclusions

In this paper, an intelligent multiconstrained reentry guid-
ance is developed to generate super real-time guidance com-
mands with no need for a decoupling method. First, the
magnitude and sign of the bank angle are combined as the
sole guidance command rather than the form of longitudinal
guidance and lateral guidance. Then, a policy network is
constructed to output the guidance command with the help
of DRL. Based on DDPG and HER, the terminal constraints
are transformed into multigoals. The improved HER
method shows more excellent performance in the training
simulation. In simulations, the policy network in the pro-
posed guidance can give commands online in less than 1/
68 of NPCG time. The robustness to initial state bias and
online aerodynamic errors is excellent. However, the deflec-
tion of bias and errors is limited in the range of the training
phase. If online parameters are beyond the range, the policy
network should be retrained. The relation between the scale
of the network and the deflection range deserves further
study, and the method proposed in this paper can be used
as a reference.
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