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Rotor blades are one of the key components of helicopter. If the blades are damaged, the safety and reliability of the helicopter will
be seriously affected. Therefore, it is necessary to investigate the damage identification of the rotating blades. In this paper, a
rotating cantilever beam is used to model the rotor blade. Based on the assumed mode method and Hamilton’s principle, the
equation of motion is formulated, and the correctness of the model is verified by numerical and experimental studies.
Altogether, two methods are used to identify the damages on the blade. The first one is the cluster analysis method based on
the fuzzy C-mean theory. In order to reduce the dimension of the signal features, the singular value decomposition is
introduced. The second method is the curvature of frequency response function method that can be used to determine the
exact position of damages. Simulation results show that one can use fuzzy C-mean method to determine whether there is
damage on the blade firstly and then determine the exact position of the damage through the curvature of frequency response
function method.

1. Introduction

With the development of aerospace science and technology,
various types of rotor aircraft gradually have appeared. Their
rotor blades will be accompanied by many kinds of prob-
lems. As an important part of the rotor type aircraft, it is
necessary to monitor and identify the operating state of
blades. Serafini et al. [1, 2] presented an original approach
to shape-sensing structural health monitoring of helicopter
rotors based on strain measurement on the blades both from
time and frequency domains. Therefore, the researches on
damage identification of this part have gradually become
the focus of attention. Under long-term operation in com-
plex working environments of high speed, high strength,
and large torque, rotor blades will be affected by wear,
cracks, impact, corrosion, etc. Once the blade is damaged
by such effects and is not identified at once, it will lead to
very serious accidents.

The curvature of frequency response function is one of
the important damage identification methods. On the basis

of crack detection researches, a new method based on the
change of FRF is proposed by Zhou et al. [3]. Manring
et al. [4] provided a new method for matching dominant
features of frequency response functions (FRFs) and pro-
posed a slicing and shifting method where the key features
of a baseline FRF are compared with a similar FRF using
cross-correlation and a log-frequency shift (LFS). An
upgraded technique based on the finite element approach
was proposed by Alshalal et al. [5] for the identification
of the extent of the damage for a simply supported steel
beam via the frequency response function curvature and
its position. Ayisha et al. [6] presented an improved fre-
quency response function curvature method which is both
baseline-free and output-only. It employed the cepstrum
technique to eliminate decay of higher resonance peaks
caused by the temporal spread of real impulse excitation.
Sampaio et al. and Maia et al. [7, 8] utilized the FRF cur-
vature method to detect and localize damage in beam-type
structures. Instead of relying just on modal information,
the method worked over a broadband frequency range
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and proved that curvature-based methods were more effi-
cient than conventional frequency and mode shape-based
methods. The main limitation of the FRF curvature
method, however, is that its effectiveness is strongly
dependent on the frequency range on which it is applied.

In recent years, great progress has been made in damage
diagnosis using big data. Fuzzy clustering algorithm is an unsu-
pervised learning method for data classification automatically.
It can be used to determine the potential structural information
of data and decompose a given set of objects into subgroups or
clusters based on similarity. In the cluster analysis, signals
belonging to the same cluster are as similar as possible, whereas
signals belonging to different clusters are dissimilar. In recent
years, the damage identification based on fuzzy clustering
attracts the interests of researchers. Palomino et al. [9] proposed
a method combining probabilistic neural network and fuzzy
cluster analysis methods to identify, locate, and classify two
types of damage, namely, cracks and rivet losses in aluminum

aircraft window. Ling et al. [10] presented a novel methodology
based on fuzzy C-mean (FCM) clustering algorithm and mea-
sured FRF data to deal with vibration-based damage detection
in a truss bridge model. Liu et al. [11] proposed a two-stage
scheme for damage identification using the ratios of modal fre-
quency changes and uniform load surface curvature difference
(ULSCD) in damage region. FCM algorithm improved by
PSO algorithm (FCM-PSO) was employed to locate damage
and predict the damage extent.

Based on the above literature review, it is noted that cluster
analysis can make full use of the advantages of big data, and
actually, it can be applied in real-time monitoring and damage
identification of rotor blades. However, the exact location of
damage is not easy to be determined by the cluster method.
Therefore, in this study, the combination of the fuzzy C-mean
cluster and FRF curvature methods is proposed to investigate
the damage identification for rotating blades. In the cluster anal-
ysis, singular value decomposition is adopted to reduce the
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Figure 1: Schematic diagram of the rotating cantilevered beam with damages.

Table 1: Dimensional and nondimensional statistical features and their physical meanings.

Dimensional Nondimensional
Expressions Physical meaning Expressions Physical meaning

X = 1/N〠N

i=1xi Describe the stability of signals
Sc = 1/N〠N

i=1 xi − X 3/σ3x Reflect the asymmetry of signal
amplitude

Mean value Skewness

Xrms = 1/N〠N

i=1x
2
i Describe the vibration energy of

the signal

K = 1/N〠N

i=1 xi − X 4/σ4
x

Reflect range of signal impact energy
Root mean square Kurtosis

σ2x = 1/N〠N

i=1 xi − X 2
Reflect the dynamic part in the

change of amplitude
SH x = N〠N

t=1 xi
2/〠N

i=1 xi Reflect the trend of fault signal
Variance Shape indicator

σx = 1/N〠N

i=1 xi − X 2 Describe the extent to which data
deviate from the mean

IM x =N max x /〠N

i=1 xi Describe the magnitude of signal
impact energy

Standard deviation Impulse indicator

Xf = max xi + min xi Describes the range of the change
of signals

CR x = N max x / 〠N

i=1x
2
i Describe the magnitude of signal

impact energy
Peak-to-peak value Crest indicator

Xp = E max xi
Describe the strength of the signal

CL x =N2 max x / 〠N

i=1 xi
2

Describe the magnitude change to
reflect the wear condition

Peak value Clearance indicator
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dimension of thematrix. The theoretical, simulation, and exper-
imental studies are carried out to verify the correctness and
effectiveness of the present method.

2. Theoretical Modeling

2.1. Structural Modeling of Rotating Beam. It is noted that
rotating beams are widely used in different engineering fields
in the forms of wind turbines, airplane rotors, helicopter
blades, etc. [12]. Therefore, the rotating Euler-Bernoulli
beam [13] is used to simulate the rotating rotor structure.
The schematic diagram of the rotating beam is shown in
Figure 1. It should be noted that the displacement field,
strain-displacement relation, and constitutive equation of
any point of the structure are the following [14]:

u x, t = u0 x, t − z
∂w
∂x

,

w x, t =w0 x, t ,

εx =
∂u0
∂x

− z
∂2w
∂x2

,

σx = Eεx ,

1

where u and w are the longitudinal and transverse displace-
ments in the x and z directions, σx and εx are the stress and
strain, and E is the elastic modulus of the material. When the
beam rotates around the fixed axis, the centrifugal axial force
Ft x generated by the rotation can be expressed as

Ft x =
L

x
mω2

Rςdς =
1
2m L2 − x2 ω2

R = F x ω2
R, 2

where m = ρbh is the mass of the beam per unit length, in
which b is the width, L is the length of the beam along the
x direction, and ωR is the angular velocity of rotation.

The dynamic equation for the rotating beam is estab-
lished according to Hamilton’s principle [15].

t2

t1

δ T −U + δW dt = 0, 3

where T and U represent the kinetic energy and poten-
tial energy of the beam, respectively, and they can be
computed by

T = 1
2 ρ V

u2 +w2 + ω2
R x + u 2 dV ,

U = 1
2 V

σxεxdV + 1
2

L

0
Ft x

∂w
∂x

2
dx,

4

where ρ is the mass density.
In this study, the assumed mode method [16] is used to

discretize the continuous beam structure, and the displace-

ments can be expressed by

u = 〠
n

i=1
ψi x qi t = ψTq,

w = 〠
n

i=1
φi x ri t = φTr,

5

where ψ and φ are column vectors of mode shapes and q and
r are the column vectors of generalized coordinates. For the
cantilevered beams, the mode shapes can be assumed as

ψi = sin 2i − 1 πx
2L ,

φi = cosh γix − cos γix −
cosh γiL + cos γiL
sinh γiL + sin γiL

sinh γix − sin γix ,

6

where γi could be obtained from

cos γiL ⋅ cosh γiL + 1 = 0, i = 1, 2,⋯, n 7

By substituting Equation (5) into Equation (4), and
according to the Hamilton principle, the equation of motion
of the rotating beam can be obtained:

Mz + Ks + Kc − Kr z = F0 t eiωt , 8

Vibration date
collection

Cluster analysis by
fuzzy C-means

Fault assessment

Yes

Frequency responses
curvature

Determine the location
of the damage

Finish

No

Figure 2: Technical identification process.
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where z = qT , rT T
, F0 t is the external load vector,M is the

structural mass matrix, Ks is the structural stiffness matrix,
Kc is the stiffness caused by the prestressing due to the iner-
tial force, and Kr is stiffness produced by the rotation soften-
ing effect, and they are computed by

M =
m

L

0
ψψTdx 0

0 m
L

0
φφTdx + ρbh3

12
L

0

∂φ
∂x

∂φT

∂x
dx

,

Kr =
ω2
Rm

L

0
ψψTdx 0

0 ρbh3

12 ω2
R

L

0

∂φ
∂x

∂φT

∂x
dx

,

Ks =
Ebh

L

0

∂ψ
∂x

∂ψT

∂x
dx 0

0 Ebh3

12
L

0

∂2φ
∂x2

∂2φT

∂x2
dx

,

Kc =
0 0

0 ωR
2m
2

L

0
x2

∂φ
∂x

∂φT

∂x
dx

9

The solution of Equation (8) is assumed to be

z = z0e
iωt , 10

where z0 is the vibration amplitude. Substituting Equation
(10) into Equation (8), one can have

z0 = Ks + Kc − Kr − ω2M
−1
F0 t 11

As a result, the frequency responses can be obtained as

u xf , ω = ψT xf zu0 ω ,

w xf , ω = φT xf zw0 ω ,
12

where xf is the location of the response point.

2.2. The Curvature of Frequency Response. The curvature of
FRF can be used as the identification parameter [7], from
which we can achieve the goal of identifying damage
through the change of FRF curvature of damaged and
undamaged structures. Therefore, it can be noted that the
advantage of the FRF curvature method is that the location
of the damage can be determined. However, there must be
an undamaged beam that works as the judgment basis,
which is the disadvantage of the FRF curvature method.

Circle pit 

(a)

Rectangular notch

(b)

Figure 3: Two damages on the beam in the experiment: (a) circle pit and (b) rectangular notch.

LMS SCADAS mobile

LMS test lab

(a)

Specimen

Acceleration sensors

(b)

Figure 4: Equipment in the experiment: (a) test equipment and (b) specimen.
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The curvature of any point on the frequency responses can
be calculated by the central difference method as

α″ i = w i + 1 − 2w i +w i − 1
d2

, 13

where d is the distance from the point i + 1 to the point i – 1
and w i denotes the amplitude of the ith point on the fre-
quency response curve.

Based on the curvature given in Equation (13), a damage
index is introduced:

β = α″ − αd″
α″

, 14

where the subscript “d” denotes the curvature of the dam-
aged structure.

From Equation (14), the location of damage can be iden-
tified, i.e., when the structure is damaged, there will be a sud-
den change in curvature at the damage location.

2.3. Fuzzy C-Means. It can be noted from the above analysis
that the curvature of FRF method can easily be used to locate

the damage. But the vibration behavior of an identical struc-
ture without damage should be known in advance. In addi-
tion, the FRF curves are not easy to obtain in the practical
working condition. Based on these defects of the FRF curva-
ture method, the present study introduces the fuzzy C-mean
method to determine whether the structure is damaged
using the time-domain response data. By using such a big
data method to process and identify the structural damages
[17], it is necessary to redefine the vibration data of many
collected signals and analyze whether the data can well
reflect the damage from different perspectives. At present,
the dimensional and nondimensional definitions of statisti-
cal characteristics of time-domain signals that are widely
used [18] are given in Table 1.

For the dimensional indicators, they are affected by the
working conditions including loads, speeds, and other exter-
nal conditions. Therefore, there are still certain limitations in
practical applications. Dimensionless indicators are evolved
from dimensional indicators, which can avoid the influence
of these external conditions.

The feature extraction method is the key of the mechanical
health monitor and fault diagnosis technology. A good signal
process method can extract feature information that will fully
express the fault. So firstly, a large eigenvalue matrix is formed
by extracting eigenvalues from vibration signals. Due to the
huge data, it is necessary to reduce the dimension of thematrix
to save the clustering time. In this investigation, the singular
value decomposition (SVD) [19] is adopted to reduce the
dimension of the matrix. This method basically does not lose
the information contained in the matrix, so as to achieve the
effect of matrix compression.

Suppose we have n sets of vibration signals x =
x1, x2,⋯, xn T , and based on the features given in Table 1,
a matrix of feature can be obtained as

X =

x11 x12 ⋯ x1d

x21 x22 ⋯ x2d

⋮ ⋮ ⋱ ⋮

xn1 xn1 ⋯ xnd n×d

, 15

where d is the number of features that are selected from
Table 1. Based on the SVD, the matrix X can be expressed as

X =UΣVT , 16

where U ∈ Rn×n and V ∈ Rd×d are left and right singular vec-
tors and are both orthogonal matrices and Σ ∈ Rn×d is the
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Figure 5: Comparisons of frequency response between different
methods.

Table 2: Natural frequencies (Hz) of beams with and without damages obtained by different methods.

Normal beam Damaged beam
Present COMSOL Experiment Present COMSOL Experiment

Mode 1 16.45 16.56 15.63 16.44 16.48 15.63

Mode 2 103.08 103.79 101.60 103.07 102.89 101.30

Mode 3 288.57 290.57 285.90 288.59 290.78 282.90
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singular value matrix whose elements are all zero except for
the elements on the principal diagonal. In fact, U and V are
eigenvectors of matrices XXT and XTX. From Equation (16),
one can have

XTX =VΣUTUΣVT =VΣ2VT , 17

from which, the element in the singular value matrix Σ can
be obtained as

σi = λi, 18

where λ is the eigenvalue of matrix XTX. It is well known
that in matrix Σ, the singular value is arranged from large
to small, and the reduction of singular values is particularly
fast. In many cases, the sum of the first 10% or even 1% sin-
gular values accounts for more than 99% of the sum of all
singular values. In other words, we can use the maximum
k k < <d singular values and the corresponding left and
right singular vectors to approximately describe the matrix
X as

X ≈Un×kΣk×kV
T
k×d , 19
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Figure 6: Cluster analysis results of beam without rotation: (a) experimental and (b) theoretical.
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Figure 7: Curvature of frequency response curve by different methods: (a) present result and (b) COMSOL.
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Figure 8: Schematic diagram of beams with damages and measuring points.
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from which, a compressed matrix can be obtained as

X̂n×k = Xn×dVd×k 20

It can be seen from the above equation that the number
of columns is compressed. That is to say, the d signal fea-
tures shown in Table 1 can be compressed to k, where k
can be 2. Thus, we can draw the features of each set of vibra-
tion signals in a two-dimensional coordinate system.

Next is the clustering analysis based on the fuzzy c-mean
method, an algorithm to minimize the objective function
[20–22]. The objective function of the FCM is

J u, v = 〠
n

j=1
〠
c

i=1
umij X̂ j − vi

2, 1 ≤m ≤∞, 21

where X̂ j is the jth signal in X̂, u is the matrix of degree of

membership, vi is the cluster center, dij = X̂ j − vi
2
is the

Euclidean distance between the ith cluster center and the
jth data point, and m is the weighted index whose experi-
ence range is from 1.1 to 5 [23, 24].

For the matrix of degree of membership, its form is

u =

u11 u12 ⋯ u1k

u21 u22 ⋯ u2k

⋮ ⋮ ⋱ ⋮

un1 un2 ⋯ unk

, 22

in which,

∀i, 〠
c

j=1
uij = 1;∀i, j, uij ∈ 0, 1 , 23

which indicates that each cluster, the summation of the
degrees of membership is 1 [25].

In order to obtain u and vi, a Lagrange function is con-
structed by introducing a Lagrange multiplier as [26, 27]

L u, v = 〠
n

j=1
〠
c

i=1
uij

md2ij + 〠
n

i=1
λi 〠

c

j=1
uij − 1 24

According to the extremal problem of functional, one
should have

∂L
∂uij

= 0,

∂L
∂vi

= 0
25

By solving which, the membership degree and cluster
center can be obtained as

uij = 〠
c

q=1

dij
dqj

2/m−1 −1

,

vi =
∑n

j=1u
m
ij X̂ j

∑n
j=1u

m
ij

26

Finally, the membership and cluster centers are iterated
until the results are stable as

max u t+1
ij − u t

ij < ε 27
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Figure 9: Curvature of frequency response curve obtained by
experiment.
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Table 3: Natural frequencies (Hz) of rotating beam with damages
obtained by different methods.

Present results COMSOL

Mode 1 23.866 23.951

Mode 2 110.74 110.68

Mode 3 296.28 298.21
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3. Results and Discussions

In above, we have talked about the key calculation steps, and
here, we will present the flowchart of the key steps in details
that can be seen from Figure 2.

Prior to the main topic of this investigation, the verifica-
tion is carried out by comparing the present vibration
behaviors of a damaged beam with those obtained by simu-
lation and experiment. There are two man-made damages
on the beam as shown in Figure 3, i.e., a circle pit with a
diameter of 0.005m, and a rectangular notch whose width
and depth are 0.002m and 0.0015m. The two damages are
located at 0.11m and 0.235m from the fixed end. The geo-
metrical dimensions and material parameters of the beam
are L = 0 5m, b = 0 025m, h = 0 005m, ρ = 2700 kg/m3, and
E = 70GPa. The equipment and the specimen used in this
experiment are shown in Figure 4. Comparisons of natural
frequencies of normal and damaged beams between different
methods are shown in Table 2, and the frequency responses
of the beam are displayed in Figure 5.

It can be noted from the table and figure that both the nat-
ural frequencies and frequency responses obtained by the
present study agree well with those from the experiment and
simulation. Moreover, time-domain responses of the beams
with and without damages are computed by the Runge-
Kutta method, and the cluster analysis is then carried out
using the FCM. The results are shown in Figure 6. It can be
seen from the figure that the cluster centers for beams with
and without damages can be obtained, and all the vibration
signals can be clustered into two categories no matter for the
experimental results and the theoretical results, which indi-
cates the correctness and effectiveness of the cluster analysis.

In the above investigation, from the cluster analysis, the
damages on the beams are detected. In order to determine
the exact positions of the damages, the curvature of fre-
quency response function is applied. The theoretical and
simulation results are shown in Figure 7. According to the
theory of FRF curvature, the curve of curvature will mutate

at positions of damage. Judging from Figures 7(a) and
7(b), the damages occur near point 3 and point 6, where
the real positions for the two damages can be observed
through the schematic diagram (Figure 8). The experimental
result is shown in Figure 9. In the experiment, more measur-
ing points are applied. The damage positions determined by
the experimental results agree well with those by theoretical
analysis and numerical simulation.

The above examples verify the correctness and effective-
ness of FCM and curvature of FRF methods. When the rota-
tion of the beam is considered, firstly, the cluster analysis is
carried out. Using the FCM, two cluster center of the vibra-
tion signals can be obtained, i.e., (0.0101, 0.0059) and
(0.0026, 0.0013), as shown in Figure 10, which indicates that
damages may occur on the rotating beam.
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Figure 11: Frequency responses of beams with and without rotation: (a) present results and (b) COMSOL.
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Next, the exact positions of damages on the rotating beam
will be determined. Natural frequencies of the rotating beam
are calculated and compared with those obtained by COM-
SOL to verify the correctness of the formulations considering
rotation. The results are shown in Table 3. It can be seen from
the table that the present results agree well with the simulation
results. It is also found that when the rotation is taken into
account, the natural frequency increases compared with that
of the beam without rotation. This is the stain-stiffening effect
due to matrix Kr in Equation (8). The corresponding fre-
quency responses are shown in Figure 11, from which we
can get the same conclusion as Table 3 shown.

The influences of the degree of damage on the vibration
behaviors are also studied. An index S is introduced here,
i.e., S = he/h, where he is the depth of the notch. Three differ-
ent ratios, i.e., S = 30%, 50%, and 60%, are compared. The
frequency responses are shown in Figure 12. It can be noted
from the figure that the influences of the damage degree on
the lower-order mode are relatively tiny. As for the higher-
order modes, the natural frequency decreases with the
increase of the damage degree.

The above figure visually illustrates the comparison
between numerical calculation and COMSOL solution, further
demonstrating the correctness of numerical calculation. It can
be seen from the above figure that due to the rotation softening
effect, the natural frequency of the structure will increase,
causing the image to shift to the right.

At last, the exact positions of damages on the rotating
beam are determined by the curvature of FRF. The results
obtained by theoretical analysis and numerical simulation
are shown in Figure 13. According to the theory of FRF cur-
vature, the curve of curvature will mutate at positions of
damage. Judging from Figures 13(a) and 13(b), the damages
occur near point 3 and point 6, where the real positions for
the two damages are shown in Figure 8.

4. Conclusion

In this paper, damage identification of rotating beams is
studied based on FRF curvature and fuzzy C-mean cluster

methods. Compared with other article, this article will apply
both FRF curvature and fuzzy C-mean cluster methods to
damage identification of blade structures. The identification
method based on fuzzy C-mean cluster will determine
beams in different states, and then, the identification tech-
nology based on FRF curvature will determine the damage
location of the beams. At the same time, this article success-
fully identifies and determines the damage location when the
model is in rotation. The dynamic model of the rotating
beam is constructed by the assumed mode method, and
the stress stiffening effect is observed. Theoretical, numerical
simulation and experimental studies are carried out to verify
the correctness and effectiveness of the present method. The
flowing conclusions can be drawn

(1) When damage occurs to the structure, the frequency
response curve shows that with the increase of dam-
age to the structure, the stiffness and natural fre-
quency of the structure will decrease gradually

(2) By detecting the time-domain responses of the rotat-
ing beam, different states of structure can be sepa-
rated by FCM-based clustering method

(3) When one or more damage occurs to a structure, the
FRF curvature-based identification method can
accurately identify the damage locations

(4) The combination of the fuzzy C-mean cluster and
the FRF curvature methods are effective in damage
identification for rotating blades

5. Prospect

This article modeled the structure of helicopter blades by
rotating a cantilever beam and conducts relevant research
on damage identification methods based on fuzzy C-mean
cluster and the FRF curvature methods. There are some
shortcomings in the research, and I hope to solve these prob-
lems in the near future:
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Figure 13: FRF curvature of rotating beam by different methods: (a) present result and (b) COMSOL.
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(1) In the study of cantilever beam simulation in this
article, the influence of torsion on the simulation
was not considered. The actual rotor model has a
torsion angle, and the influence of bending torsion
coupling effect on motion should be considered at
the beginning of establishing the dynamic model.
In addition, there are still some shortcomings in
the experimental aspect, and a complete control
should be conducted with sufficient and extensive
experiments. However, due to the lack of corre-
sponding single damage beams and horizontal rotat-
ing turntables, it is impossible to simulate, and there
is a lack of comparison results with numerical calcu-
lations and simulations

(2) The arrangement of sensors also has shortcomings:
in practical engineering applications, a reasonable
arrangement of sensors can not only obtain accurate
signals but also save some research funds to a certain
extent. During the arrangement process, it is often
necessary to establish corresponding finite element
models and compare them with the actual structure
to optimize the arrangement of sensors

(3) The fuzzy C-means cluster method should be an
unsupervised machine learning algorithm, but due
to insufficient research on cluster method, this
research goal has not been achieved, the recognition
of fluctuations has certain limitations
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