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A modified, robust adaptive fault compensation design is proposed for rigid spacecraft systems with uncertain actuator failures
and unknown disturbances. The feedback linearization method is first introduced to linearize the nonlinear dynamics, and a
model-reference adaptive controller is designed to suppress the unknown external disturbances and stabilize the linearized
system. Then, a composite adaptive controller is developed by integrating multiple controllers designed for the corresponding
actuator failure conditions, which can handle the essentially multiple uncertainties (failure time, values, type, and failure
pattern) of actuator failures simultaneously. To further improve the transient performance problem in the failure
compensation control, an H∞ compensator is introduced as an additional item in the basic controller to attenuate the adverse
effects on tracking performance caused by parameter estimation errors. From the theoretical analysis and simulation results, it
is obvious that the designed scheme can not only guarantee the stability of the closed-loop system is stable and asymptotical
tracking properties for a given reference signal but also greatly improve the transient performance of the spacecraft system
during the process of failure compensation.

1. Introduction

Component (actuator or sensor) failures and external distur-
bances are common in performance-critical systems, which
can lead to loss of performance and even cause catastrophic
accidents. Hence, to maintain an acceptable level of perfor-
mance and guarantee system stability in the event of uncer-
tain component failures, remarkable progresses have been
made in the area of fault-tolerant control (FTC) and distur-
bance suppression [1–7].

Reaction wheels are commonly used in spacecraft as the
actuators, whichmay fail in the course of system operation. Pre-
cise attitude control in the case of disturbances and uncertain
actuator failures have widely studied in the existing literature.
Excellent overviews were provided by the survey papers [8, 9]
to make FTC designs for spacecraft control system. In [10], a
fault tolerant control scheme was proposed for spacecraft atti-
tude stabilization by integrating learning observer and back-
stepping control design. A novel adaptive event-triggered
controller was designed to handle disturbances, model uncer-
tainties, actuator failures, and limited communication, simulta-

neously [11]. In this paper, only loss of actuator effectiveness
fault was considered in the control system design. Adaptive
observer-based fault-tolerant tracking control schemes were
widely used to deal with the attitude tracking problem for space-
craft experience disturbances and actuator failures [12, 13].
Fault detection and identification based FTC scheme was
designed for spacecraft control system subject to multiple actu-
ator faults, parameter uncertainties, and external disturbances
[14]. Nonlinear model predictive control approach was used
to control the coupled translational-rotational motion of a
spacecraft in the presence of one actuator failure [15]. In
[16], a new adaptive attitude tracking control scheme was
developed for a flexible spacecraft system subject to external
disturbances and uncertain failures. The sliding mode control
(SMC) technology is insensitive to some disturbances and
uncertainties very much [17]. Numerous works related to
SMC-based spacecraft FTC design were reported in [18]
and the references therein.

For the recently advanced space missions, the system
performance either in the stable state and the instantaneous
one are equally important. Bad transient performance may
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exist although the steady performance can be obtained success-
fully finally, which are potentially dangerous to performance-
critical systems. The problem of transient performance
improvement has been widely researched based on several
inspired control approaches, such as model reference adaptive
control (MRAC) [19], H∞ control [20], adaptive control [21,
22] and sliding mode control [23]. To improve the transient
dynamics through modifying MRAC design, [24, 25] have
used fuzzy logic and genetic algorithm, illustrated some simu-
lations without analytical support to manifest the effectiveness
of the designed scheme. Dynamic regressor extension and the
technique of mixing parameter estimation were introduced by
[26], which removed the assumption of some prior knowledge
with high-frequency gain, whereas such a scheme may cause a
complicated task for issues of practical interests. Considering
that actuator saturation, together with the excessive tracking
error of the closed-loop system’s trajectory may also be led
by large adaptive rates, with the exception of the plant’s refer-
ence model, [27] introduced an auxiliary reference model with
the characterization of the classical MRAC framework. How-
ever, the simulation results show that the larger values of the
user-defined rate parameter will cause larger overshoots. Most
of the aforementioned schemes deal only with system param-
eter uncertainties without considering the uncertainties of
actuator failure.

Recently, more attention has been paid to the study of
FTC designs with guaranteed transient performance [28].
Investigating the prescribe performance fault tolerance con-
trol for chaser spacecraft. The uncertainties of model, actua-
tor failure, and external disturbances were summarized as
lumped disturbances, which were estimated by a finite-
time extended state observer. Based on the estimated infor-
mation from the observer, an adaptive backstepping control-
ler was designed to achieve the desired trajectory [29].
Addressed the problem of finite-time attitude-tracking con-
trol for a rigid spacecraft with inertial uncertainties, external
disturbances, actuator saturations, and faults. A fast nonsin-
gular terminal sliding mode manifold integrating with fuzzy
approximation technique was constructed to develop an
enhanced FTC scheme. It can guarantee the real finite-time
stability instead of asymptotical stability. Similar to the study
in [29, 30], we proposed a fault-tolerant nonsingular fixed-
time control scheme based on neural networks for spacecraft
maneuver mission, which can accelerate the convergence
rate and improve control accuracy. A robust FTC algorithm
was synthesized by employing a low-pass filter and an auxil-
iary dynamic system along with adaptive backstepping
design, which achieved attitude tracking despite the presence
of disturbances, actuator faults, and input saturation [31]. In
[32], a fault-tolerant controller, based on dynamic surface
design and nonlinear extended state observer, was developed
for attitude tracking dynamics of the combined spacecraft in
the presence of inertia uncertainty, actuator failure, and
external disturbance. Such a scheme can drive the attitude
tracking error to converge to one small neighborhood of
zero. However, the uncertainties of both actuator failure
and external disturbance were considered to be lumped dis-
turbances by the previous literatures, and fuzzy logic system,
neural networks, or observers were investigated to estimate
the lumped disturbance. As [33] pointed out in most condi-

tions, actuator failure and disturbance cannot be handled in
the same way due to their different mechanisms.

As has been pointed out by [34], the parameter estima-
tion error of the adaptive controller is one of the most signif-
icant factors that lead to the undesired transient. It is widely
known that unanticipated actuator failures will bring about
parametric uncertainties in the system. And the parameter
estimation error is inevitable no matter which adaptive con-
trol scheme is adopted. Despite recent advances in transient
performance improvement design for spacecraft fault-
tolerant control system, it is still a challenging problem on
how to guarantee transient performance for spacecraft sys-
tem with uncertain actuator faults and external disturbances.
Hence, it is an interesting and meaningful topic to investi-
gate the problem of attitude tracking control with guaran-
teed transient and steady state performance for spacecraft
subject to both actuator failures and external disturbances,
which motivates the main results in this paper. The space-
craft attitude control problem under uncertain actuator fail-
ures and unknown disturbances is solved by proposed
backstepping-based adaptive control scheme in literature
[35]. On this basis, the problem of actuator failure compen-
sation design for spacecraft attitude control system with
guaranteed transient performance is further studied in this
paper. The major contributions and excellence of our pro-
posed methodology are as follows:

(i) Unlike the works which focus on the design of
adaptive FTC for spacecraft systems with the weak-
ness of a bad transient performance under the con-
dition of unanticipated actuator failures, this paper
further concerns the transient performance problem
for the actuator failure compensation design. A per-
formance index is adopted to assess the degree of
the transient performance enhancement and char-
acterize the weight of the designed H∞ compensa-
tor in the modified MRAC system

(ii) Compared with the current MRAC based transient
performance improvement schemes, this paper first
couple the modified MRAC and direct adaptive
FTC control techniques to increase the fault toler-
ance capability of the MRAC scheme

(iii) In contrast to the existing literatures regarding the
uncertainties of both actuator failure and external
disturbance as lumped disturbances, this paper
solve the uncertain actuator failures and distur-
bances separately according to their different
mechanisms

(iv) Detailed analysis of the performance of both tran-
sient and system steady state, and the valid proof
according to the asymptotic output tracking as well

The remaining section is composed as follows. Section 2
formulates the control problems, describes some preliminar-
ies on the feedback linearization theory, and presents two
lemmas, which are important for the compensator design
and performance analysis. Section 3 describes the modified
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MRAC and the adaptive failure compensation design, as well
as the closed-loop system performance analysis. Section 4
gives the simulation background and numerical simulation
results.

2. Spacecraft Model and Problem Description

This chapter first introduces the rigid spacecraft system
model and some basic concepts, then describes the actuator
fault compensation of the spacecraft system.

2.1. Rigid Spacecraft Model. Themathematical model of a rigid
spacecraft system is formulated by the following equations:

_q0

_q

" #
= 1
2

−qT

q0I + q×

" #
ω,

J _ω = −ω× Jω +Du tð Þ + d tð Þ,
ð1Þ

where q0 and q = ½q1, q2, q3�T ∈ R3 denote the scalar and vector
parts of the unit-quaternion, respectively. The quaternion also
satisfies the constraint equation qTq + q20 = 1, ω ∈ R3 denotes
the inertial angular velocity of the spacecraft expressed in the
body frame, and the inertia matrix J ∈ Rð3×3Þ is assumed to be
known in this study. The notations ζ×, ∀ζ = ½ζ1, ζ2, ζ3�, can be
expressed as

ζ× =
0 −ζ3 ζ2

ζ3 0 −ζ1
−ζ2 ζ1 0

2664
3775: ð2Þ

uðtÞ ∈ R4 is the control input produced by reaction wheels.
As the orientation matrix of the reaction wheel, D ∈ Rð3×4Þ is
available for a given spacecraft. In this research, we consider

D =

−1 0 0 1ffiffiffi
3

p

0 −1 0 1ffiffiffi
3

p

0 0 −1 1ffiffiffi
3

p

2666666664

3777777775
: ð3Þ

dðtÞ = ½d1, d2, d3�T ∈ R3 represents disturbance vector,
which comes in many forms: gravity gradients, solar pressure,
atmospheric drag, pressure forces, and so on. In practice, these
forces are bounded. For the major topic of our interest, each
component of dðtÞ is modeled as

di tð Þ = ci + 〠
ni

j=1
aij sin ωijt + 〠

ni

j=1
bij cos ωijt = θ∗Tdi ϖdi tð Þ, ð4Þ

where ci, aij, and bij are unknown amplitudes, and ωij are

known frequencies.

θ∗di = ci0, ai1,⋯, ai ni , bi1,⋯, bi ni
Â ÃT ∈ R2ni+1, ϖdi tð Þ

= 1, sin ωi1
t,⋯, sin ωini

t, cos ωi1
t,⋯, cos ωini

t
h iT

∈ R2ni+1:

ð5Þ

Define x = ½qT , ωT �T and y = q as the state and output vec-
tor, the spacecraft attitude control system (1) is rewritten as

_x = f xð Þ + g xð Þud tð Þ + g xð Þd tð Þ,
y = h xð Þ,

ð6Þ

where

f xð Þ = 1/2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − qk kð Þ2

q
ω − 1/2ω×q

−J−1ω× Jω

24 35,
g xð Þ = g1, g2, g3½ � =

0
J−1

" #
,

ð7Þ

and

ud =Du: ð8Þ

2.2. Control Problem Statement. This research mainly focuses
on the issue of the spacecraft attitude control involves uncertain
actuator failures. The classical actuator failures is expressed as

�uj tð Þ = �uj0 + 〠
qj

i=1
�uji f ji tð Þ, t ≥ t j, ð9Þ

where j ∈ f1, 2, 3, 4g, t j > 0, �uj0, and �uji represent unknown
failure parameters. f jiðtÞ, i = 1, 2,⋯, qj are known. The Equa-
tion (9) can also be rewritten into the below-parameterized
expression

�uj tð Þ = θTj ϖj tð Þ, ð10Þ

where θj = ½�uj0, �uj1,⋯, �uj qj
�T ∈ Rqj+1, ϖjðtÞ =

½1, f j1ðtÞ,⋯, f jqjðtÞ�
T ∈ Rqj+1. As specifically pointed out, the

failure model (9) can describe stuck-in-place, complete failure,
and oscillatory failure which usually occur in the spacecraft
system.

In the system, if there is any uncertain actuator fault,
then the input uðtÞ applying to the system is

u tð Þ = I − σ tð Þð Þv tð Þ + σ tð Þ�u tð Þ, ð11Þ

where vðtÞ denotes the control input signal. �uðtÞ =
½�u1, �u2, �u3, �u4�T andσðtÞ = diag fσ1, σ2, σ3, σ4g are defined
fault pattern matrix, i.e, when the j-th actuator fails σjðtÞ
= 1, if there is no failure σjðtÞ = 0. Substituting Equation
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(11) into the second equation of (1), the system model is
expressed as

J _ω = −ω× Jω +D I − σ tð Þð Þv tð Þ + σ tð Þ�u tð Þ½ � + d tð Þ: ð12Þ

For the output yðtÞ = q to track a given command ymðtÞ,
at least three functional inputs at any time are needed, so
that the independent control inputs are enough to make sure
that the output can track the arbitrary given output signals.
Therefore, no more than one actuator failure can be allowed
in the system; the compensable failure cases and the corre-
sponding failure patterns are listed as

(i) no failure case, σð1Þ = diag f0, 0, 0, 0g
(ii) u1 failure case, σð2Þ = diag f1, 0, 0, 0g
(iii) u4 failure case, σð3Þ = diag f0, 0, 0, 1g
(iv) u3 failure case, σð4Þ = diag f0, 0, 1, 0g
(v) u2 failure case, σð5Þ = diag f0, 1, 0, 0g

2.2.1. Control Objective. For system (1), which has one
uncertain failure (9) at most, an adaptive controller vðtÞ is
designed to guarantee system stability and output tracking
with guaranteed transient performance. To show the design
process of failure compensation control accompanied by sat-
isfactory transient performance, we design the adaptive
scheme for the three failure patterns as following:

σ 1ð Þ = diag 0, 0, 0, 0f g,
σ 2ð Þ = diag 1, 0, 0, 0f g,
σ 3ð Þ = diag 0, 0, 0, 1f g:

ð13Þ

Remark 1. The studied spacecraft of this paper are actuated
by four reaction wheels. We can learn from the orientation
matrix of reaction wheel given in (3) that three of them are
mounted where their spin axes are parallel to the body
frame, respectively, and the other one is mounted where its
spin axis points to some fixed direction. According to the
configuration of reaction wheels, the control design for the
u1 failure case can be expended to address the u2 and u3 fail-
ure cases, so in this paper, only the three failure cases (13)
are taken into account to demonstrate the detail design
process.

2.3. Feedback Linearization. For a kind of nonlinear systems
with the input and output of mdimension

_x = f xð Þ + g xð Þu, y = h xð Þ: ð14Þ

Definition 2. The system (14) has a vector relative degree f
ρ1, ρ2,⋯, ρmg, 1 ≤ ρi ≤ n, at a point x0 for ∀x in a neighbor-
hood of if the below two conditions hold

(i) Lgj
Lkf hiðxÞ = 0, for all 1 ≤ j ≤m, 1 ≤ i ≤m, 0 < k < ρi

− 1 and Lgj
Lρi−1f hiðxÞ ≠ 0, for some j ∈ f1, 2,⋯,mg,

and

(ii) the m ×m matrix GðxÞ is defined as

G xð Þ =

Lg1L
ρ1−1
f h1 xð Þ ⋯ LgmL

ρ1−1
f h1 xð Þ

Lg1L
ρ2−1
f h2 xð Þ ⋯ LgmL

ρ2−1
f h2 xð Þ

⋯ ⋯

Lg1L
ρm−1
f hm xð Þ ⋯ LgmL

ρm−1
f hm xð Þ

26666664

37777775: ð15Þ

Then the system (14) has the relative degree ρ =∑m
i=1ρi,

with ρi being the subrelative degree of the i-th output yi =
hiðxÞ. If the equilibrium point of system (1) is x0 =
½0, 0, 0, 0, 0, 0�T , we can obtain that ρ1 = ρ2 = ρ3 = 2 and the
relative degree ρ = n = 6. By the twice differentiation to the
system output yi, the control input ud in the differential
equation is expressed in the form of a nonzero factor.

To be specific, the Equation (6) is denoted as

€y1

€y2

€y3

2664
3775 =

F1 xð Þ
F2 xð Þ
F3 xð Þ

2664
3775 +

G1 xð Þ
G2 xð Þ
G3 xð Þ

2664
3775 ud + d tð Þ½ �, ð16Þ

where

F1 xð Þ = −
1
4 q1 ω2

1 + ω2
2 + ω2

3
À Á

+ J1 − J2
2J3

q2ω1ω2

+ J1 − J3
2J2

q3ω1ω3 +
J2 − J3
2J1

q0ω2ω3,

F2 xð Þ = −
1
4 q2 ω2

1 + ω2
2 + ω2

3
À Á

+ J2 − J1
2J3

q1ω1ω2

+ J3 − J1
2J2

q0ω1ω3 +
J2 − J3
2J1

q3ω2ω3,

F3 xð Þ = −
1
4 q3 ω2

1 + ω2
2 + ω2

3
À Á

+ J1 − J2
2J3

q0ω1ω2

+ J3 − J1
2J2

q1ω1ω3 +
J3 − J2
2J1

q2ω2ω3,

G1 xð Þ = q0
2J1

,− q3
2J2

, q2
2J3

� �
,G2 xð Þ = q3

2J1
, q0
2J2

,− q1
2J3

� �
,G3 xð Þ

= −
q2
2J1

, q1
2J2

, q0
2J3

� �
:

ð17Þ

The system (14) can be feedback linearized through dif-
ferential homeomorphic mapping. Supposing there exists a
differential homeomorphic mapping with the form TðxÞ =
ξ = ½h1ðxÞ, Lf h1ðxÞ, h2ðxÞ, Lf h2ðxÞ, h3ðxÞ, Lf h3ðxÞ�T .
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Under the afore-mentioned coordinate transform, the
system (6) can be transformed into three linear subsystems
with the following normal form:

_ξ11 = ξ12,
_ξ12 = F1 xð Þ +G1 xð Þ ud + d tð Þ½ �,

_ξ21 = ξ22,
_ξ22 = F2 xð Þ +G2 xð Þ ud + d tð Þ½ �,

_ξ31 = ξ32,
_ξ32 = F3 xð Þ +G3 xð Þ ud + d tð Þ½ �,

y = ξ11, ξ21, ξ31½ �T ,

ð18Þ

with (11), the system (18) can be described as

_ξ11 = ξ12,
_ξ12 = F1 xð Þ +G1σ xð Þv + �G1σ xð Þ�u tð Þ + G1 xð Þd tð Þ,

_ξ21 = ξ22,
_ξ22 = F2 xð Þ +G2σ xð Þv + �G2σ xð Þ�u tð Þ + G2 xð Þd tð Þ,

_ξ31 = ξ32,
_ξ32 = F3 xð Þ +G3σ xð Þv + �G3σ xð Þ�u tð Þ + G3 xð Þd tð Þ,

y = ξ11, ξ21, ξ31½ �T ,

ð19Þ

where GiσðxÞ = GiðxÞDðI − σðtÞÞ�GiσðxÞ =GiðxÞDσðtÞ, and i
= 1, 2, 3.

2.3.1. Nonlinear Feedback Control Law. The feedback linear-
ization design can be applied to generate an ideal controller,
on the condition that the system parameters and fault
parameters of a nonlinear system (6) are accessible. From
Equation (16), we can get the following equation:

€yi = Fi xð Þ +Gi xð Þ ud + d tð Þ½ �, i = 1, 2, 3: ð20Þ

Considering the uncertainty of external disturbance dðtÞ,
we set the control signal as

Gi xð Þud =Wdi ≜ −Fi xð Þ + uLi − Gi xð Þd̂ tð Þ, ð21Þ

whereWdi denotes the desired control signal generated from
a chosen control that is designed for the closed-loop system,
uLi is the control law to be proposed, and d̂ðtÞ is the estima-
tor of dðtÞ. Then, the linearized system can be obtained

€yi = uLi +Gi xð Þ d tð Þ − d̂ tð Þ
h i

, i = 1, 2, 3: ð22Þ

Lemma 3. (State-feedback H∞ optimal control). Consider a

linear time-invariant system

_x = Ax + B1uw + B2u,
z = C1x,
y = C2x,

ð23Þ

where x ∈ Rnx is the state, u ∈ Rnu is the control input, uw ∈
Rnw is the disturbance, z ∈ Rnz is the regulated output to be
controlled, and y ∈ Rny is the measured output. A, B1, B2, C1
, and C2 are matrices of appropriate dimensions and satisfy-
ing the assumptions.

Assumption 4. ðA, B1Þ is stabilizable; (A, C2) is detectable; B1
is column full rank, and C2 is row full rank; nw ≤ ny ≤ nx.

If there exists an ε < 0 such that the Riccati equation

ATP + PA − ε−1PB2R
−1BT

2 P + γ−1CT
1C1 + εS = 0, ð24Þ

has a solution P ≥ 0, where R ∈ Rnu×nu and S ∈ Rnx×nx are
given positive-definite matrices.

A state feedback controller us = −ðð1/2εÞR−1BT
2 PÞx can

be designed to stabilize the system (23), and the transfer
function GwzðsÞ between disturbance w and output z satisfy
the following condition

Gwz sð Þk k∞ < γ, ð25Þ

for a prespecified constant γ > 0. It should be noted that γ
can be arbitrarily close to the H∞ optimum by choosing a
sufficiently small ε.

Lemma 5. Let z =HðsÞw, where HðsÞ have all their roots in
Re ½s� ≥ −δ/2, for any δ ≥ 0 and w ∈ L2, we have

ztk kδ2 ≤ H sð Þk kδ∞ wtk kδ2 , ð26Þ

where kztkδ2 is defined as kztkδ2 = Δ ðÐ t0e−δðt−τÞ½zTðτÞzðτÞ�dτÞ1/2
for ∀z ∈ ½0,∞Þ⟶ Rn’ and δ ≥ 0 and t ≥ 0. IfHðsÞ is strict, then

z tð Þj j ≤ H sð Þk kδ2 wtk kδ2 , ð27Þ

and if HðsÞ is a stable n-order transfer function, then

ztk k∞ ≤ 2n H sð Þk k∞ wk k∞: ð28Þ

3. Actuator Failure Compensation Design

In this section, a direct adaptive control scheme is proposed
to be combined with a basic control law derived from the
modified MRAC design, which is not only adaptive to
unknown disturbances but also able to handle uncertain pat-
terns, values, and times of actuator failures. The simplified
block diagram is shown in Figure 1.

To achieve the control objective, we will complete four
design steps:
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(1) Derive a desired control signal from modified
MRAC technique for the closed-loop system to
achieve the desired system performance

(2) Design a composite nominal controller to handle all
possible failure patterns simultaneously, with the
known parameters of actuator failures

(3) Develop an adaptive control scheme with the estima-
tion of failure parameters updated based on system
performance errors, and

(4) Analyze transient and steady-state performance for
failure accommodation

In order to obtain an appropriate adaptive law vðtÞ, the
error of the control signal equation which is led by the actu-
ator uncertainties is examined. A desired control equation
GiðxÞudðtÞ =Wdi (with udðtÞ =DuðtÞ) is defined to be satis-
fied by the nominal control signal v∗ðtÞ to be designed in the
next section. In the light of (11), we define u∗ðtÞ as u∗ðtÞ
≜ ðI − σÞv∗ðtÞ + σ�uðtÞ and obtain

Gi xð Þud tð Þ =Wdi +Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �: ð29Þ

Substituting (21) into (29), we have

Gi xð Þud tð Þ = −Fi xð Þ + uLi −Gi xð Þd̂ tð Þ +Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �,
ð30Þ

and the linearized system €yi = uLi can be rewritten into

€yi = uLi +Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ � +Gi xð Þ d tð Þ − d̂ tð Þ
h i

:

ð31Þ

In this paper, we rewrite the linearized subsystem (31)
into the transfer function form as

yi = Gpi sð Þuri = kpi
Zpi sð Þ
Rpi sð Þ

uLi +Gi xð Þ I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �h i

,

ð32Þ

with uri = uLi +GiðxÞDðI − σÞðv − v∗Þ +Giðd − d̂Þ, and its

reference model is

ymi =Wmi sð Þri = kmi
Zmi sð Þ
Rmi sð Þ

ri, ð33Þ

where ZpiðsÞ, RpiðsÞ, ZmiðsÞ, and RmiðsÞ are monic Hurwitz
polynomials of degree mpi, npi, , and pmi, respectively, ρi =
npi −mpi = pmi − qmi = 2. The relative degree of WmiðsÞ is
the same as that of GpiðsÞ.
3.1. Modified MRAC Design. A model reference adaptive
controller is constructed as follows

uLi = θTi ωi + c0iri + uci, c0i =
kmi

kpi
, ð34Þ

where ωi = ½ωT
i1, yi�T , θi = ½θTi1, θi2�

T
, ωi1 = ðαiðsÞ/ΛiðsÞÞy, αiðs

Þ = ½snpi−2, snpi−3,⋯, s, 1�, ΛiðsÞ = ZmiλiðsÞ, and λiðsÞ are
monic Hurwitz polynomials of degree npi − qmi − 1; θi ∈
R2ni−1 is the vector of controller parameters; uci is a proper
H∞ compensator to be designed later.

Remark 6. To derive the relation between the parameter
estimation error of actuator failure and transient perfor-
mance, we just talk about the uncertainties of actuator fail-
ure and disturbance assuming the system parameters are
known. If all the system parameters are known, the nom-
inal controller of MRAC can be uLi = θ∗Ti ωi + c0iri + uci,

with known θ∗i = ½θ∗Ti1 , θ∗i2�
T
.

For a given transform function GpiðsÞ, there is a desired
reference value vector θ∗i = ½θ∗Ti1 , θ∗i2�

T
to make the following

matching conditions valid

c0ikpiZpi

Rpi − kpiZpi αTi sð Þθ∗i1/Λi sð Þ
À Á

+ θ∗i2
À Á =Wmi sð Þ: ð35Þ

Multiplying both sides with yi and using the equation

I-σ (t)Modified
MRAC

Adaptive
 Failure

Compensation
Controller

Reaction
Wheel

Spacecraft
Body

σ (t)

Desire attitude

Trajectory
ym

Error

Signals

Wd V (t)

u (t)–

+

u (t)
Reaction

Torque

Disturbances
d (t)

y

Sensor

–

Figure 1: Block diagram of control system.
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RpiðsÞyi = kpiZpiðsÞurikpiZpi, we have

coikpiZpiyi =Wmi sð Þ kpiZpiuri − kpi
θ∗Ti1 αi sð Þ
Λi sð Þ

yi + θ∗i2

 !
Zpiyi

" #
:

ð36Þ

Dividing both sides by kpiZpi we have

yi =
Wmi sð Þ
c0i

uri −
θ∗Ti1 αi sð Þ
Λi sð Þ

yi − θ∗i2yi

" #
: ð37Þ

The spacecraft system parameters are known; that is, in
the MRAC law, θi is substituted by the desired value θ∗i .
To be more specific, the control uLi is designed as

uLi =
θ∗Ti1 αi sð Þ
Λi sð Þ

yi + θ∗i2yi + c0iri + uci = −Kiξi + c0iri + uci,

ð38Þ

where Ki = ½Ki1, Ki2� are the design controller parameters
corresponding with θ∗i , ξi = ½ξi1, ξi2�T . Substituting (38) into
(30), we have

Gi xð Þud tð Þ = −Fi xð Þ − Gi xð Þd̂ tð Þ + Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �
− Kiξi + c0iri + uci:

ð39Þ

Furthermore, the linearized subsystem (18) is described
as

_ξi1 = ξi2,
_ξi2 = −Kiξi + c0iri + uci + Gi xð ÞD I − σð Þ v tð Þ − v∗ tð Þ½ �

+Gi xð Þ d tð Þ − d̂ tð Þ
h i

:

ð40Þ

We then revise the above equation in the form of state
space as follows:

_ξi = Aci − BciKið Þξi + Bci Gi xð ÞD I − σð Þ v − v∗ð Þ½
+Gi xð Þ d − d̂

� �
+ uci + c0iri

i
,

yi = Cciξi, ð41Þ

where Aci ∈ R2×2, Bci ∈ R2×1, and Cci ∈ R1×2 are the stan-
dard form of integrator chains. We also revise the reference
model (33) in the state space as follows:

_ξmi = Amiξmi + Bmiri,
ymi = Cmiξmi,

ð42Þ

where Ami, Bmi, and Cmi are the minimal realization of

WmiðsÞ, i.e.,

Ami =
0 1

−ai1 −ai2

" #
∈ R2×2,

Bmi = 0, 1½ �T ∈ R2×1,

ð43Þ

and Cmi = ½1, 0� ∈ R1×2. Denoting ei = ξi − ξmi, we can obtain

_ei = Aci − BciKið Þξi + Bci Gi xð ÞD I − σð Þ v − v∗ð Þ½
+Gi xð Þ d − d̂

� �
+ uci + c0iri

i
− Amiξmi − Bmiri:

ð44Þ

If the controller parameters Ki is set to satisfy Aci − Bci
Ki = Ami and Bcic0i = Bmi, then

_ei = Amiei +
Bmi

c0i
Gi xð ÞD I − σð Þ v − v∗ð Þ + Gi xð Þ d − d̂

� �
+ uci

h i
,

ei1 = Cmiei:

ð45Þ

With the system model (32), (33) and the controller (34),
we obtain

yi =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �

+ c0iri + uci
h i

:

ð46Þ

Remark 7. For the tracking error dynamics (45) and output
dynamic (46), one may discover that the parameter estima-
tion error items d − d̂ and the controller parameter errors v
− v∗ can be regarded as the disturbance input and plays an
important role in system tracking performance. Hence, the
attenuation of the disturbance made by GiðxÞDðI − σÞðv −
v∗Þ + GiðxÞðd − d̂Þ on the closed-loop system is designed by
proposing the compensator uci as an H∞ optimal controller.

Equation (45) is considered as a special form of (23).
With (45) and Lemma 3, a transient performance compen-
sator uci is designed for the system (45) by the following
steps as shown next.

Step 1: initialize εi > 0 and 0 < γi < kWmiðsÞ/c0ik∞,
choose two positive-definite matrices Sci ∈R

2×2 and Rci ∈
R1×1, and solve the following Riccati equation

yi =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �

+ c0iri + uci
h i

:

ð47Þ

and obtain the state feedback gain

yi =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �

+ c0iri + uci
h i

:

ð48Þ

If there is no solution, decrease εi and repeat this step
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again until getting an appropriate positive-definite solution
Pci = PT

ci > 0 to ensure that the state feedback gain is
obtained. The H∞ compensator which is based on measure-
ment feedback

uci = Kciei, ð49Þ

is constructed by state feedback gain Kci, which guarantees
that the system (45) with GiðxÞDðI − σÞðv − v∗Þ +GiðxÞðd
− d̂Þ disturbance attenuation γi is stable.

Step 2: Return to step 1 and reduce the transient perfor-
mance index until getting a gratifying transient or the opti-
mum γi

Remark 8. The standard algorithm can be used to confirm
whether the positive-definite solution of a Riccati equation
exists. According to the above processes, the optimal com-
pensator of H∞ can be obtained by selecting sufficiently
small εi. However, it may cause the gain Kci too large. For
the whole control system, the large gain will reduce the sta-
bility margin and increase the influence of measurement
noise. In practical application, a compromise is usually
adopted in the H∞ compensator design. It turns out that
the suboptimum H∞ compensator for a given 0 < γi <
kWmiðsÞ/c0ik∞ can also achieve a satisfactory transient per-
formance through the following theoretical analysis and
simulation.

3.2. Nominal Compensation Design. As mentioned previ-
ously, the spacecraft system is turned into three-linear sub-
system (18) derived from the feedback linearization
technique. To derive the failure compensation control law
uðtÞ, we write the three subsystems together as

€y1, €y2, €y3½ �T = F xð Þ +GD xð Þ I − σð Þv + σ�u½ � + G xð Þd tð Þ, ð50Þ

where GDðxÞ =GðxÞD ∈ R3×4 is regarded as control distribu-
tion matrix.

3.2.1. Design for no Failure Case. On this condition, σðtÞ =
σð1Þ = diag f0, 0, 0, 0g, uðtÞ = vðtÞ, and GDðxÞvðtÞ =WdðtÞ.
The signal vðtÞ is designed as

v tð Þ = v∗1ð Þ tð Þ = h21 xð Þv∗0 1ð Þ tð Þ ð51Þ

for a chosen h21ðxÞ ∈ R4×4, and signal v∗0ð1ÞðtÞ to be calculated
from

GD xð Þh21 xð Þv∗0 1ð Þ tð Þ =Wd tð Þ: ð52Þ

The solution v∗0ð1ÞðtÞ may be derived as

v∗0 1ð Þ tð Þ = K21 xð ÞWd tð Þ, ð53Þ

with matrix function K21ðxÞ ∈ R4×3.

3.2.2. Design for the u1 Failure Case. In this situation, σðtÞ
= σð2Þ = diag f1, 0, 0, 0g, u1 = �u1, and ui = vi for i = 2, 3, 4,

with GDðxÞ = ½GD1,GD2,GD3,GD4� = ½GD1,GDð2Þ� ∈ R3×4 for

GDð2Þ = ½GD2,GD3,GD4� ∈ R3×3, v = ½v1, v2, v3, v4�T =
½v1, vTað2Þ�

T ∈ R4 for vað2Þ = ½v2, v3, v4�T ∈ R3, equation GDðxÞ
uðtÞ =WdðtÞ becomes

GD1�u1 tð Þ + GD 2ð Þva 2ð Þ tð Þ =Wd tð Þ: ð54Þ

In this situation, the signal v1 is set to be v1 = 0. A
nonsingular matrix function h22ðxÞ ∈ R3×3 is chosen to set

v tð Þ = v1 tð Þ, vTa 2ð Þ tð Þ
h iT

= v∗2ð Þ tð Þ = 0, v∗Ta 2ð Þ tð Þ
h iT

,

v∗a 2ð Þ tð Þ = h22 xð Þv∗0 2ð Þ tð Þ,
ð55Þ

with v∗0ð2ÞðtÞ ∈ R3 to be deduced from

GD1�u1 tð Þ +GD 2ð Þh22 xð Þv∗0 2ð Þ tð Þ =Wd tð Þ: ð56Þ

We can obtain

v∗0 2ð Þ tð Þ = K22 xð ÞWd tð Þ + K221 xð Þ�u1 tð Þ, ð57Þ

with matrix function K22ðxÞ ∈ R3×3 and vector K221ðxÞ ∈
R3×1.

3.2.3. Design for the u4 Failure Case. Similarly, σðtÞ = σð3Þ
= diag f0, 0, 0, 1g, u4 = �u4, and v4ðtÞ are chosen as v4ðtÞ =
0 and viðtÞ = uiðtÞ for i = 1, 2, 3. With GDðxÞ = ½GD1,GD2,
GD3,GD4� = ½GDð1Þ,GD4� ∈ R3×4 for GDð1Þ = ½GD1,GD2,GD3� ∈
R3×3 and vðtÞ = ½vTað3ÞðtÞ, v4ðtÞ�

T
for vað3ÞðtÞ =

½v1ðtÞ, v2ðtÞ, v3ðtÞ�T ∈ R3, and GDðxÞuðtÞ =WdðtÞ becomes

GD 1ð Þva 3ð Þ tð Þ + GD4�u4 tð Þ =Wd tð Þ: ð58Þ

The signal vðtÞ is proposed as

v tð Þ = vTa 3ð Þ tð Þ, v4 tð Þ
h iT

= v∗3ð Þ tð Þ = v∗Ta 3ð Þ tð Þ, 0
h iT

,

v∗a 3ð Þ tð Þ = h23v
∗
0 3ð Þ tð Þ,

ð59Þ

with a chosen matrix h23 ∈ R3×3 and a deduced signal v∗0ð3Þð
tÞ ∈ R3 from

GD 1ð Þh23v
∗
0 3ð Þ tð Þ + GD4�u4 tð Þ =Wd tð Þ: ð60Þ

Similarly, we have

v∗0 3ð Þ tð Þ = K23Wd tð Þ + K234�u4 tð Þ, ð61Þ

with matrix function K23 ∈ R3×3 and vector K234 ∈ R3×1.

3.2.4. Composite Control Law. Define three indicator func-
tions χ∗

j , j = 1, 2, 3, which are corresponding to the consid-
ered three failure models σðjÞ and j = 1, 2, 3, respectively.
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That is, if σ = σðjÞ and χ∗
j = 1; otherwise, χ∗

j = 0 and j = 1, 2, 3
. Then, a synthetic control law is obtained by integrating the
three individual controllers

v∗ tð Þ = 〠
3

j=1
χ∗
j tð Þv∗jð Þ tð Þ, ð62Þ

to handle the three failure cases.
For v∗að2ÞðtÞ = h22v

∗
0ð2ÞðtÞ, with v∗0ð2ÞðtÞ in (57), signal

v∗að2ÞðtÞ can be further expressed as

v∗a 2ð Þ tð Þ = h22K22Wd tð Þ + h22K221�u1 tð Þ ∈ R3: ð63Þ

For �u1ðtÞ in (10), we express

�u1 tð Þ = θ∗T1 ϖ1 tð Þ = ϖT
1 tð Þθ∗1 , ð64Þ

where θ∗1 = ½�u10, �u11,⋯, �u1q1 �
T ∈ Rq1+1, and ϖ1ðtÞ =

½1, f11ðtÞ,⋯, f1q1ðtÞ�
T ∈ Rq1+1.

Therefore, we have

χ∗
2 tð Þv∗a 2ð Þ tð Þ = χ∗

21 tð Þ, χ∗
22 tð Þ, χ∗

23 tð Þf gh22K22Wd tð Þ
+ θ∗T1 1ð Þ tð Þϖ1 tð Þϕ2,1, θ∗T1 2ð Þ tð Þϖ1 tð Þϕ22, θ∗T1 3ð Þ tð Þϖ1 tð Þϕ23
h iT

,

ð65Þ

where χ∗
2iðtÞ = χ∗

2 ðtÞ, θ∗1ðiÞðtÞ = χ∗
2 ðtÞθ∗1 , i = 1, 2, 3, and ϕ2 =

h22K221 = ½ϕ21, ϕ22, ϕ23�T .
In the same way, to designate v∗χ1ð1ÞðtÞ and v∗χ3ð3ÞðtÞ, we

express

χ∗
1 tð Þv∗1ð Þ tð Þ = diag χ∗

11 tð Þ, χ∗
12 tð Þ, χ∗

13 tð Þ, χ∗
14 tð Þf gh21K21Wd tð Þ

ð66Þ

χ∗
3 tð Þv∗a 3ð Þ tð Þ = diag χ∗

31 tð Þ, χ∗
32 tð Þ, χ∗

33 tð Þf gh23K23Wd tð Þ
+ θ∗T4 1ð Þ tð Þϖ4 tð Þϕ31, θ∗T4 2ð Þ tð Þϖ4 tð Þϕ32, θ∗T4 3ð Þ tð Þϖ4 tð Þϕ33
h iT

,

ð67Þ

where χ∗
1iðtÞ = χ∗

1 ðtÞ, i = 1, 2, 3, 4, χ∗
3iðtÞ = χ∗

3 ðtÞ, and θ∗4ðiÞðtÞ
= χ∗

3 ðtÞθ∗4 , i = 1, 2, 3.

3.3. Adaptive Fault Tolerant Control Design. The adaptive
version of the nominal control law is as follows (62):

v tð Þ = 〠
3

j=1
χj tð Þv jð Þ tð Þ = 〠

3

j=1
vχ j jð Þ tð Þ = vχ1 1ð Þ tð Þ

+ 0, vTχ2a 2ð Þ tð Þ
h iT

+ vTχ3a 3ð Þ tð Þ, 0
h iT

:

ð68Þ

In view of (65)–(67), we derive

vχ1 1ð Þ tð Þ=Δ diag χ11 tð Þ, χ12 tð Þ, χ13 tð Þ, χ14 tð Þf gh21K21Wd tð Þ,
ð69Þ

vχ2a 2ð Þ tð Þ=Δ diag χ21 tð Þ, χ22 tð Þ, χ23 tð Þf gh22K22Wd tð Þ
+ θT1 1ð Þ tð Þϖ1 tð Þϕ21, θT1 2ð Þ tð Þϖ1 tð Þϕ22, θT1 3ð Þ tð Þϖ1 tð Þϕ23
h iT

,

ð70Þ

vχ3a 3ð Þ tð Þ=Δ diag χ31 tð Þ, χ32 tð Þ, χ33 tð Þf gh23K23Wd tð Þ
+ θT4 1ð Þ tð Þϖ4 tð Þϕ31, θT4 2ð Þ tð Þϖ4 tð Þϕ32, θT4 3ð Þ tð Þϖ4 tð Þϕ33
h iT

,

ð71Þ

where χjiðtÞ, θ1ðiÞðtÞ, and θ4ðiÞðtÞ are the estimates of χ∗
jiðtÞ,

θ∗1ðiÞðtÞ, and θ∗4ðiÞðtÞ, respectively.
From (65)–(71), we obtain

v tð Þ − v∗ tð Þ = ~vχ1 1ð Þ tð Þ + 0, ~vTχ2a 2ð Þ tð Þ
h iT

+ ~vTχ3a 3ð Þ tð Þ, 0
h iT

,

ð72Þ

where

~vχ1 1ð Þ tð Þ = ~χ11 tð Þ, ~χ12 tð Þ, ~χ13 tð Þ, ~χ14 tð Þf gh21K21Wd tð Þ,

~vχ2a 2ð Þ tð Þ = diag ~χ21 tð Þ, ~χ22 tð Þ, ~χ23 tð Þf gh22K22Wd tð Þ

+ eθT1 1ð Þ tð Þϖ1 tð Þϕ21, eθT1 2ð Þ tð Þϖ1 tð Þϕ22, eθT1 3ð Þ tð Þϖ1 tð Þϕ23
h iT

, ~vχ3a 3ð Þ tð Þ=Δ diag ~χ31 tð Þ, ~χ32 tð Þ, ~χ33 tð Þf gh23K23Wd tð Þ

+ eθT4 1ð Þ tð Þϖ4 tð Þϕ31, eθT4 2ð Þ tð Þϖ4 tð Þϕ32, eθT4 3ð Þ tð Þϖ4 tð Þϕ33
h iT

:

ð73Þ
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3.3.1. State Error Equations. Introducing e ∈ R6 =
½eT1 , eT2 , eT3 �T = ½e11, e12, e21, e22, e31, e32�T , ei1 = yi − ymi = ξi1 −
ξmi1, ei2 = _ξi1 − _ξmi1 = _ei1, and i = 1, 2, 3. With the three sub-
systems

_ei = Amiei +
Bmi

c0i
Gi xð ÞD I − σð Þ v − v∗ð Þ½

− 1/2εið ÞR−1
ci B

T
ciPciei +Gi xð Þ d − d̂

� �i
, i = 1, 2, 3,

ð74Þ

we have

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
G xð ÞD I − σð Þ v − v∗ð Þ +G xð Þ d − d̂

� �h i

−

1/2ε1c0ð ÞR−1
c1 B

T
c1Pc1e1

1/2ε2c0ð ÞR−1
c2 B

T
c2Pc2e2

1/2ε3c0ð ÞR−1
c3 B

T
c3Pc3e3

26664
37775:

ð75Þ

If σ = σð1Þ = diag f0, 0, 0, 0g, with (72) and (73), we
rewrite (75) as

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
〠
4

i=1
GDi~χ1iν1i + 〠

3

i=1
GD i+1ð Þ~χ2iν2i

"

+ 〠
3

i=1
GDi~χ3iν3i + 〠

3

i=1
GD i+1ð ÞeθT1 ið Þϖ1ϕ2i + 〠

3

i=1
GDi
eθT4 ið Þϖ4ϕ3i

#

+ 1
c0

〠
3

j=1
G1j
eθTdj tð Þϖdj

〠
3

j=1
G2j
eθTdj tð Þϖdj

〠
3

j=1
G3j
eθTdj tð Þϖdj

26666666666664

37777777777775
−

1
2ε1c0

� �
R−1
c1 B

T
c1Pc1e1

1
2ε2c0

� �
R−1
c2 B

T
c2Pc2e2

1
2ε3c0

� �
R−1
c3 B

T
c3Pc3e3

26666666664

37777777775
≜ ~E1:

ð76Þ

If σ = σð2Þ = diag f1, 0, 0, 0g, with (72) and (73), we

rewrite (75) as

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
〠
4

i=2
GDi~χ1iν1i + 〠

3

i=1
GD i+1ð Þ~χ2iν2i

"

+ 〠
3

i=2
GDi~χ3iν3i + 〠

3

i=1
GD i+1ð ÞeθT1 ið Þϖ1ϕ2i + 〠

3

i=2
GDi
eθT4 ið Þϖ4ϕ3i

#

+ 1
c0

〠
3

j=1
G1j
eθTdj tð Þϖdj

〠
3

j=1
G2j
eθTdj tð Þϖdj

〠
3

j=1
G3j
eθTdj tð Þϖdj

26666666666664

37777777777775
−

1
2ε1c0

� �
R−1
c1 B

T
c1Pc1e1

1
2ε2c0

� �
R−1
c2 B

T
c2Pc2e2

1
2ε3c0

� �
R−1
c3 B

T
c3Pc3e3

26666666664

37777777775
≜ ~E2

ð77Þ

If σ = σð3Þ = diag f0, 0, 0, 1g, with (72) and (73), we
rewrite (75) as

€e11 + α12 _e11 + α11e11

€e21 + α22 _e21 + α21e21

€e31 + α32 _e31 + α31e31

26664
37775 = 1

c0
〠
3

i=1
GDi~χ1iν1i + 〠

2

i=1
GD i+1ð Þ~χ2iν2i

"

+ 〠
3

i=1
GDi~χ3iν3i + 〠

2

i=1
GD i+1ð ÞeθT1 ið Þϖ1ϕ2i + 〠

3

i=1
GDi
eθT4 ið Þϖ4ϕ3i

#

+ 1
c0

〠
3

j=1
G1j
eθTdj tð Þϖdj

〠
3

j=1
G2j
eθTdj tð Þϖdj

〠
3

j=1
G3j
eθTdj tð Þϖdj

26666666666664

37777777777775
−

1
2ε1c0

� �
R−1
c1 B

T
c1Pc1e1

1
2ε2c0

� �
R−1
c2 B

T
c2Pc2e2

1
2ε3c0

� �
R−1
c3 B

T
c3Pc3e3

26666666664

37777777775
≜ ~E3

ð78Þ

where GD = ½GD1,GD2,GD3,GD4�, ν1 = h21K21Wd =
½ν11, ν12, ν13, ν14�T , ν2 = h22K22Wd = ½ν21, ν22, ν23�T , and ν3
= h23K23Wd = ½ν31, ν32, ν33�T , eθdj = θdj − bθdj.

From Equations (76)–(78), we can obtain the state error
equation

_e = Ame + Bm
~Ek = Ame + Bm~Ek

, ð79Þ

where Am = diag fAm1,Am2, Am3g ∈ R6×6 and Ekj is the j th

component of ~Ek, k = 1, 2, 3, Bm~Ek
=
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½BT
m1~Ek1, BT

m2~Ek2, BT
m3~Ek3�T ∈ R6, and Bm = diag fBm1, Bm2,

Bm3g ∈ R6×3.

3.3.2. Adaptive Laws. According to the state error Equation

(79), adaptive laws are chosen for the parameter bθdi and
the parameters χ1iðtÞ, χ2iðtÞ, χ3iðtÞ, θ1ðiÞðtÞ, and θ2ðiÞðtÞ of
the failure compensator as

_bθdi =
1
c0
〠
3

j=1
ΓdiϖdiePjGji, ð80Þ

_χ1i tð Þ =
−
γ1i
c0

〠
3

j=1
ePjGDiν1i i = 2, 3,

−
γ1i
c0

〠
3

j=1
ePjGDiν1i + f χ1i

i = 1, 4,

8>>>>><>>>>>:
ð81Þ

_χ2i tð Þ =
−
γ2i
c0

〠
3

j=1
ePjGD i+1ð Þν2ii = 1, 2 ,

γ2i
c0

〠
3

j=1
ePjGD i+1ð Þν2i + f χ2i

i = 3 ,

8>>>>><>>>>>:
ð82Þ

_χ3i tð Þ =
−
γ3i
c0

〠
3

j=1
ePjGDiν3ii = 2, 3,

−
γ3i
c0

〠
3

j=1
ePjGDiν3i + f χ3i i = 1,

8>>>>><>>>>>:
ð83Þ

_θ1 tð Þ tð Þ =
−
1
c0
〠
3

j=1
Γ1iePjGD i+1ð Þϖ1ϕ2ii = 1, 2,

−
1
c0
〠
3

j=1
Γ1iePjGD i+1ð Þϖ1ϕ2i + f θ1 ið Þ

i = 3,

8>>>>><>>>>>:
ð84Þ

_θ4 tð Þ tð Þ =
−
1
c0
〠
3

j=1
Γ4iePjGDiϖ1ϕ2ii = 2, 3,

−
1
c0
〠
3

j=1
Γ4iePjGDiϖ1ϕ2i + f θ4 ið Þ

i = 1,

8>>>>><>>>>>:
ð85Þ

where Γdi = ΓT
di > 0, Γ1i = ΓT

1i > 0, Γ4i = ΓT
4i > 0, γ1i > 0, γ2i > 0

, and γ3i > 0 are the adaptive gains, and f χ1i
is the projection

algorithm. Consequently, based on adaptive laws _χ11 = −ð
γ11/c0Þ∑3

j=1ePjGD1ν11 + f χ11
, we can derive that 0 ≤ χ11 ≤ 1

and ðχ11 − χ∗
11Þf χ11 ≤ 0. f χ2i , f χ3i

, f θ1ðiÞ , and f θ4ðiÞ have the

same characteristics with f χ1i .

3.3.3. Stability Performance Analysis

(i) For period t ∈ ½T0,∞Þ, σ = σð1Þ. Lyapunov function is
defined as

V0 =
1
2 e

TPe + 1
2〠

3

i=1
eθTdiΓ−1

di
eθdi + 1

2 〠
4

i=1
~χ2
1iγ

−1
1i + 〠

3

i=1
~χ2
2iγ

−1
2i

"

+ 〠
3

i=1
~χ2
3iγ

−1
3i + 〠

3

i=1
eθT1 ið ÞΓ

−1
1i
eθ1 ið Þ + 〠

3

i=1
eθT4 ið ÞΓ

−1
4i
eθ4 ið Þ

#
:

ð86Þ

By differentiating V0 in the interval ½T0,∞Þ, we can
obtain

_V0 =
1
2 e

TAT
mPe +

1
2 e

TPAme +
1
c0

〠
3

j=1
〠
4

i=1
ePjGDi~χ1iν1i

"

+ 〠
3

j=1
〠
2

i=1
ePjGD i+1ð Þ~χ2iν2i + 〠

4

i=1
γ−11i ~χ1i

_~χ1i + 〠
3

i=1
γ−12i ~χ2i

_~χ2i

+ 〠
3

i=1
γ−13i ~χ3i

_~χ3i + 〠
3

i=1
eθT1 ið ÞΓ

−1
1i
_eθ1 ið Þ + 〠

3

i=1
eθT4 ið ÞΓ

−1
4i
_eθ4 ið Þ,

ð87Þ

where eP = ½eP1, eP2, eP3� ∈ R1×3 and ePi are the ði + 1Þ-th col-
umn components of eTP ∈ R1×6, i = 1, 2, 3, and P = diag f
Pc1, Pc2, Pc3g.

Substituting Equations (80)–(85) into (87), one would
have

_V0 =
1
2〠

3

i=1
eTi AT

miPci + PciAmi −
1
εi
PciBmiR

−1
ci B

T
miPci

� �
ei, t ∈ T0, T1½ Þ:

ð88Þ

Based on of Lemma 3, we can obtain

_V0 = −
1
2〠

3

i=1
eTi γ−1i CT

miCmi + εiSi
À Á

ei ≤ 0: ð89Þ

(ii) If actuator u1 fails over the period ðT1,∞Þ, i.e., σ
= σð2Þ, we define

V1 =
1
2 e

TPe + 1
2〠

3

i=1
eθTdiΓ−1

di
eθdi + 1

2 〠
4

i=2
~χ2
1iγ

−1
1i + 〠

3

i=1
~χ2
2iγ

−1
2i

"

+ 〠
3

i=2
~χ2
3iγ

−1
3i + 〠

3

i=1
eθT1 ið ÞΓ

−1
1i
eθ1 ið Þ + 〠

3

i=2
eθT4 ið ÞΓ

−1
4i
eθ4 ið Þ

#
:

ð90Þ

By differentiating V1 in the interval ðT1,∞Þ and
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combining Equations (80)–(84), we can obtain

_V1 = −
1
2〠

3

i=1
eTi γ−1i CT

miCmi + εiSi
À Á

ei ≤ 0: ð91Þ

(iii) Assume that u1 is normal, and only u4 fails at T1
and remains failed on the interval ðT1,∞Þ; that is,
σ = σð3Þ. We define

V2 =
1
2 e

TPe + 1
2〠

3

i=1
eθTdiΓ−1

di
eθdi + 1

2 〠
3

i=1
~χ2
1iγ

−1
1i + 〠

2

i=1
~χ2
2iγ

−1
2i

"

+ 〠
3

i=1
~χ2
3iγ

−1
3i + 〠

2

i=1
eθT1 ið ÞΓ

−1
1i
eθ1 ið Þ + 〠

3

i=1
eθT4 ið ÞΓ

−1
4i
eθ4 ið Þ

#
:

ð92Þ

The time derivative of V2 is

_V2 = −
1
2〠

3

i=1
eTi γ−1i CT

miCmi + εmiSi
À Á

ei ≤ 0, t ∈ T1, T2½ Þ:

ð93Þ

With _Vk, ðk = 0, 1, 2Þ ≤ 0 for three different failure sce-
narios and the adopted projection scheme of adaptive laws,
we can conclude that all the signals in the close-loop system
are bounded, and the output error gradually decreases to
zero over time.

To sum up, the below theorem is obtained.

Theorem 9. For the spacecraft system (1) with potential
uncertain actuator faults (9) and unknown disturbances (4),
controller (68) designed based on an H∞ transient perfor-
mance compensator (49), and its parameter adaptive laws
(80)–(85) can ensure that the system is stable and perform
the given maneuvers asymptotically, if for any failure pattern
σðtÞ belongs to failure pattern set Σ = fσðjÞ, j = 1, 2, 3g. The
following condition holds the following equivalent actuation
matrix. GσðxÞ = GðxÞDðI − σðtÞÞ is a full rank in the domain
U (definition is U ⊂ R6 ⟶V ⊂ R3).

3.3.4. Transient Performance Analysis. Then, the transient
performance is analyzed by the criteria of the bound of both
L∞ and mean square tracking error at any time.

With (45) and (49), we can get the following output
tracking error dynamic equation

ei1 =
Wmi sð Þ
c0i

Gi xð ÞD I − σð Þ v − v∗ð Þ +Gi xð Þ d − d̂
� �h i

:

ð94Þ

Since the order of the stable reference model WmiðsÞ is

pmi, it can be derived from Lemma 5 that

ei1 tð Þk k∞ ≤ 2pmi Wmi sð Þk k∞ Gi xð ÞD I − σð Þ v − v∗ð Þ + Gi xð Þ d − d̂
� � :

ð95Þ

From Theorem 9, we have eθdi ∈ L∞ and ðv − v∗Þ ∈ L∞.
With Lemma 3, one can prove that WmiðsÞ is stable and

Wmi sð Þk k∞ < γi, ð96Þ

and thereby, we have

ei1 tð Þk k∞ =Δ sup
t≥0

ei1 tð Þj j ≤ γici, ð97Þ

where ci > 0. Then, according toðt2
t1

H sð Þxj j2dt ≤ H sð Þk k2∞
ðt2
t1

xj j2dt, ð98Þ

we have

1
t

ðt0+t
t0

ei1j j2dτ ≤ Wmi sð Þk k2∞
1
t

ðt0+t
t0

Gi xð ÞD I − σð Þ v − v∗ð Þj
 

+ Gi xð Þ d − d̂
� ����2dτ� ≤ γ2i ci:

ð99Þ

Theorem 10. For the improved controller (34), the perfor-
mance index of H∞ compensator is γi, and the output track-
ing error ei1 = yi − ymi and i = 1, 2, 3 of the system (32)
satisfies the following inequality condition:

1
t

ðt0+t
t0

ei1j j2dτ ≤ Wmi sð Þk k2∞
1
t

ðt0+t
t0

Gi xð ÞD I − σð Þ v − v∗ð Þj
 

+Gi xð Þ d − d̂
� ����2dτ� ≤ γ2i ci:

ð100Þ

where constant ci > 0.

According to Theorem 10, the transient characteristics
rely on the performance level of the H∞ compensator. Both
Theorem 9 and Theorem 10 show that the control objective
is reached by our proposed control scheme.

4. Simulations

MATLAB/SIMULINK software has been used to carry out
numerical simulations to verify the effectiveness and perfor-
mance of the proposed control scheme. The nominal
moments of inertia parameters J = diag f40:45, 42:09, 42:36
gðkg ⋅m2Þ, orientation matrix of the reaction wheel, and
the external disturbances dðtÞ = ½sin ð0:01tÞ + 1, 1:5 cos ð
0:01tÞ − 1, 2 sin ð0:01tÞ + 1� × 10−3N ⋅m are taken from [36].
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4.1. Simulation Conditions. The attitude values at t = 0 are
given by q0ð0Þ = 0:8834, qð0Þ = ½0:03,−0:02,−0:03�T , and ωð0
Þ = ½0, 0, 0�T . For simulation, the initial values of indicator func-
tion and failure parameter estimates are chosen as: χ1ið0Þ = 1,
i = 1, 2, 3, 4, χ2ið0Þ = 0, χ3ið0Þ = 0, i = 1, 2, 3; θ1ðiÞð0Þ = ½0, 0�T ,
andθ4ðiÞð0Þ = ½0, 0�T . Basis functions of failure model (10) and

disturbance model (4) are ϖ1ðtÞ = ϖ4ðtÞ = ½1, sin ð0:25tÞ�T ∈
R2 and ϖd1 = ϖd2 = ϖd3 = ½1, sin ð0:01tÞ, cos ð0:01tÞ�T ∈ R3.

The design parameters are chosen as γ1i = 1, γ2i = 1, γ3i
= 1, c0i = c0 = 1, γi = 1, Ri = 2, εi = 4, i = 1, 2, 3,

K =
12:2 3:9
8:5 2:7
9:1 2:3

2664
3775,

Γdi =
3:3 0 3:3
0 3:3 3:3
3:3 3:3 3:3

2664
3775,

Γ1i =
16:3 0 0
0 16:3 0
0 0 16:3

2664
3775,

Γ4i =
31:4 0 0
0 31:4 0
0 0 31:4

2664
3775,

Pc1 =
3:53 6:32
1:05 4:39

" #
,

Pc2 =
3:53 10:51
1:05 6:58

" #
,

Pc3 =
3:53 4:23
1:05 3:79

" #
:

ð101Þ

A second-order reference model WmiðsÞ = 1/ðs2 + 2s + 1Þ
and the reference input signal riðtÞ = 0, i = 1, 2, 3, are chosen
to generate the given command ymðtÞ to be tracked by sys-
tem output yðtÞ.

In the numerical simulation, for comparison, three cases
are conducted: (1) attitude tracking control using our pro-
posed modified MRAC based adaptive failure compensation
controller (68) (denoted as “MMRAC based FTC”); (2) atti-
tude tracking control using the standard MRAC-based adap-
tive failure compensation controller (denoted as “SMRAC
based FTC”) without transient performance compensator;
and (3) attitude tracking control using the direct adaptive
failure compensation controller (denoted as “DAC-based
FTC”) in [35]. The attitude tracking responses are analyzed
to study the performances of the controllers.

4.2. Simulation Results. To demonstrate the superior perfor-
mance of the proposed control scheme, two actuator failure
conditions are simulated: Case 1—intermittent fault occur-
ring in actuator u1—and Case 2—Alternate faults occurring
in actuators u1 and u4.

Case 1. Intermittent fault occurring in actuator u1. In this
case, the following failure conditions are considered as
follows:

(i) When 0 ≤ t < 100s, all the reaction wheels function
healthily, uiðtÞ = viðtÞ, i = 1, 2, 3, 4

(ii) When 100s ≤ t < 200s, actuator u1 failed, u1ðtÞ = 2
Nm and uiðtÞ = viðtÞ, i = 2, 3, 4

(iii) When t ≥ 200s, actuator u1 returns to normal, uiðt
Þ = viðtÞ, i = 1, 2, 3, 4

(iv) When t ≥ 300s, actuator u1 is out of control, u1ðtÞ
= 0:75 sin ð0:25tÞNm, uiðtÞ = viðtÞ, i = 2, 3, 4

Figure 2(a) shows the simulated results obtained by
including the faulty actuators for three controllers,
namely the designed MMRAC based fault tolerant con-
troller marked with solid line, the SMRAC-based fault-
tolerant controller marked with dashed line, and the
DAC-based fault-tolerant controller marked with dotted
line. All the three fault-tolerant controllers can compen-
sate for both the constraint and time varying faults,
although the system performance degrades to some
degree, the overshoot a setting time increase significantly
once the failure is introduced. However, the system ulti-
mately regulates the attitude to zero asymptotically; that
is, the attitude stabilization maneuver is still performed
successfully due to the fault-tolerant performance of the
three controllers to uncertain actuator failures. It can be
found from Figure 2(c) at the moments when actuator
u1 failed at t = 100s and t = 300s (shown in Figure 2(b),
which is corresponding with the simulation conditions),
the overshoot of the system implemented by our designed
MMRAC-based fault-tolerant controller are smaller than
the SMRAC- and DAC-based fault-tolerant controller
even before the actuators have failed, and this is because
the effect caused by parameter estimation errors of both
failure and disturbances on the transient performance
has been reduced by the H∞ compensator. These simula-
tions demonstrate the theoretical result that the desired
performance of the system can be achieved by the pro-
posed fault tolerant control even if the faults are
unknown in advance.

Case 2. Alternate Faults Occurring in Actuator u1 and u4. In
this case, the following failure conditions are considered as
follows:

(i) When 0 ≤ t < 100s, all the reaction wheels function
healthily, uiðtÞ = viðtÞ, i = 1, 2, 3, 4

13International Journal of Aerospace Engineering



0
0.8

1.0

1.2

50

q 0

100

DAC SMRAC MMRAC

150 200 250 300 350 400

0
–0.05

0

0.05

50

q 1

100

DAC SMRAC MMRAC

150 200 250 300 350 400

0
–0.05

0

0.05

50

q 3

100

DAC SMRAC MMRAC

150 200
Time (s)

250 300 350 400

0
–0.02

0

0.02

50

q 2

100

DAC SMRAC MMRAC

150 200 250 300 350 400

(a) Response of system output

0
–2

0

2

50

u 1 (N
m

)

100

DAC SMRAC MMRAC

150 200 250 300 350 400

0
–1

0

1

50

u 2 (N
m

)

100
DAC SMRAC MMRAC

150 200 250 300 350 400

0
–0.5

0

0.5

50

u 4 (N
m

)

100
DAC SMRAC MMRAC

150 200
Time (s)

250 300 350 400

0
–0.5

0

0.5

50

u 3 (N
m

)

100

DAC SMRAC MMRAC

150 200 250 300 350 400

(b) Control input signals for different fault scenarios

Figure 2: Continued.
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(ii) When 100s ≤ t < 200s, actuator u1 failed, u1ðtÞ =
3:5Nm and uiðtÞ = viðtÞ, i = 2, 3, 4

(iii) When t ≥ 200s, actuator u1 returns to normal, uiðt
Þ = viðtÞ, i = 2, 3, 4

(iv) When t ≥ 300s, actuator u4 is out of control, u4ðtÞ
= 1:75 sin ð0:25tÞNm,uiðtÞ = viðtÞ, i = 1, 2, 3

This example represents the severe case in which both
two actuators experience failure at the moments of t = 100s
and t = 300s, respectively. Actually, the failure conditions in
Case 2 can be regarded as a mixed pattern of intermittent
failure and permanent failure. As shown in Figure 3(b),

when u1 is stuck at the instant t = 100s and becomes normal
at t = 200s, that is an intermittent failure occurred in actua-
tor u1, which is activated and inactivated by itself. The sys-
tem produces an erroneous result when such fault is active
during the period of 100s ≤ t < 200s and produces a correct
result when it is inactive for t ≥ 200s. At t = 300s, actuator
u4 undergoes time-varying failure and never come back as
normal. Figure 3(a) shows the results using the three differ-
ent control laws based on the same simulation conditions.
Clearly, compared with attitude tracking response for Case
1, the attitude control performance deteriorates severely
due to the multiple uncertainties of actuator failure, with
severe overshoots in the attitude orientation, although the
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Figure 2: Attitude tracking control using MMRAC-, SMRAC-, and DAC-based fault-tolerant control schemes for Case 1.
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objective of asymptotic attitude tracking can be achieved
finally, as clearly indicated from the output tracking errors
present in Figure 3(c).

In summary, for both the normal, intermittent failure and
permanent failure cases, the proposed controller significantly
improves the normal control performance of the closed-loop
attitude system compared to the SMRAC- and DAC-based
fault-tolerant control approaches. For the cases with actuator
faults, the proposed method gives better transient perfor-
mance than those controllers without including the transient

performance compensator. As the faults become more severe,
the proposed controller still guarantees system stability and
asymptotic output tracking of a given command.

Furthermore, comparing the modified control scheme
with different γi (i = 1, 2), it can be found from Figures 2(d)
and 3(d) that with smaller γ1 = 0:1, the compensator takes
more effects on transient oscillations inhibition with a smaller
following error of trajectory than that with γ2 = 3, which keeps
an agreement with the performance analysis by the criterion of
L1 bound or mean squared value.
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Figure 3: Attitude tracking control using MMRAC-, SMRAC-, and DAC-based fault-tolerant control schemes for Case 2.
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5. Conclusions

With multiple uncertain actuator faults, the control system
of rigid spacecraft attitude is optimized by designing an
improved adaptive FTC method in this study. And the major
conclusions are as follows. (1) A model reference adaptive
control algorithm combing with feedback linearization tech-
nology is adopted to propose a basic control law for achiev-
ing the desired closed-loop system performance. Then, as an
additional item of robust adaptive control, an H∞ compen-
sator is introduced to optimize the transient performance.
(2) Based on the modified basic control design, multiple tar-
geted adaptive failure compensators are designed to handle
the corresponding failure patterns. Multiple controllers are
fused into a comprehensive controller by using a weighted
algorithm, thus multiple uncertain actuator faults are solved.
(3) Under different fault conditions with and without addi-
tional transient performance improvers, contrastive simula-
tion analysis of output tracking control is adopted to proof
the significance of the designed theoretical method. (4) The
fault compensation control for spacecraft whose parameters
are known, is researched in this paper. The way to overcom-
ing the fault compensation difficulty on the spacecraft with
unknown system parameters can be found by the further
extended method which is described in this research.
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