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The general learning process of deep learning is extremely time-consuming. Unlike the traditional learning process, a weight-
generating approach to quickly generate the weight vectors of a deep neural network model is proposed, which can be used for
parameter identification of a dynamic system. Based on the analysis of three trained deep neural network models, which are
used to identify the parameters of three different dynamic systems, the statistical relationships between the weight vectors of
each hidden layer and its inputs are revealed. Then, the statistical patterns of the weight vectors are imitated by exploiting the
statistical patterns of the inputs and these relationships. Then, a weight-generating approach is designed to quickly generate
the weight vectors of a deep neural network model. The effectiveness of the weight-generating approach is tested on the tasks
of parameter identification for the three dynamic systems. The numerical results are provided to demonstrate the validity and
high efficiency of the proposed weight-generating approach.

1. Introduction

The temporal evolution of dynamic systems is widely
described using ordinary differential equations (ODEs),
which are a set of governing differential equations. For many
dynamic systems, such as aircraft and spacecraft attitude
dynamics, ODEs can accurately represent the physical laws
of the actual system and are very accurate [1, 2]. However,
the system parameters in these ODEs are usually unknown
and need to be determined according to the input and out-
put data, i.e., the control and state data, of the dynamic
systems.

Many studies have been proposed in the field of param-
eter identification [3, 4]. Most identification methods esti-
mate the system parameters by minimizing the mean
square error between the measured state data of a dynamic
system and the numerical solution of its ODEs obtained
using the estimated parameters. The least squares identifica-
tion method is the most widely used parameter identification
method in the aerospace field [5–10]. However, since the

least squares identification method needs to use the state
derivative, which is usually obtained by calculating the
numerical differences on state data, it is very sensitive to
the difference accuracy. To solve the abovementioned prob-
lem, some parameter identification methods that use a set of
basis functions to represent state data have been proposed
[11, 12]. These methods can use the analytic derivative of
the basis function group instead of the numerical difference
to calculate the state derivative. However, the identification
accuracies of these methods are highly dependent on the
selection of the type and number of basis functions. Another
important parameter identification method is the Kalman
filter [13–16]. The traditional Kalman filter can only be
applied to linear systems, while the extended Kalman filter
can be used for nonlinear systems. The extended Kalman fil-
ter needs to use linearization to approximate a nonlinear
system, and the error introduced by linearization may lead
the filter to diverge [17, 18]. Based on the above analysis, it
can be found that most traditional identification methods
need to solve the state derivative, which can easily introduce
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errors and reduce the identification accuracy. Thus, some
novel identification approaches should be developed for
solving this problem.

With the development of deep learning (DL) in various
fields [19–21], recent studies have attempted to expand DL
applications to the field of parameter identification
[22–25]. According to the Takens theorem, a large class of
nonlinear dynamical systems can be effectively recon-
structed using a sufficiently large system state and control
sequence [26]. The system parameters are important fea-
tures for describing the system dynamics. DL technology
can learn the mapping relationship between the state and
control sequence of a dynamic system and its corresponding
parameters by automatically extracting multilayer abstract
features implied in the system state and control sequence
during training. Therefore, DL identification methods can
use only the state and control sequence to identify the
parameters of the dynamic system without the procedure
of addressing state derivatives. In the general process of
DL-based parameter identification, a deep neural network
(DNN) model is first constructed with randomly generated
initialization weight vectors. The weight vectors of the
DNN model are then iteratively trained using training data.
The commonly used methods to optimize weight vectors in
the training process include the momentum method [27]
and the adaptive moment (Adam) method [28]. There are
also some optimization methods that can satisfy the Lyapu-
nov stability to ensure the convergence of the training pro-
cess [29–31]. But the acquisition of an accurate DNN
model often takes a great deal of time.

Due to the high time consumption for training, some
studies for a fast-learning approach of a neural network
model have been explored. Random vector functional-
link networks and extreme learning machines are widely
used fast-learning approaches for neural networks with a
single hidden layer, in which the weight vectors of the hid-
den layer are randomly generated without using any prior
knowledge [32–34]. Nevertheless, DL is a set of hierarchi-
cal feature-learning methods that can automatically extract
multilayer abstract features needed for target tasks from
input data through training. The features at a higher layer
of a DNN model are formed by transforming the features
at the previous layer and then further amplifying impor-
tant aspects of the input data and suppressing irrelative
variation [35]. The transformation is implemented by
inputting the linear combination of the features at the pre-
vious layer and the weight vectors of the DNN model at
the current layer to nonlinear activation functions. The
weight vectors of each layer of a DNN model can thus
be regarded as a “filter” to the input of each layer. For
example, an edge detection operator in image processing
can be perceived as a filter that highlights the areas of
an image where the grayscale changes rapidly. For param-
eter identification of a dynamic system, some statistical
regularities and patterns in the state sequences that are
important for parameter identification may exist due to
the dynamic constraints. The weight vectors of a trained
DNN model can be used as filters to extract these impor-
tant statistical regularities and patterns from the state

sequences, i.e., the inputs to the DNN model, and trans-
form them into more abstract features layer-by-layer.
Thus, the weight vectors of each layer of a DNN model
should have some close relationships with their inputs.

Based on the above considerations, this paper proposes a
fast weight-generating approach to obtain the weight vectors
of a DNN model used for parameter identification. By ana-
lyzing the trained DNN models for identifying the parame-
ters of three dynamic systems, some statistical relationships
between the weight vectors and inputs are discovered in each
hidden layer. According to these relationships, a weight-
generating approach is developed to generate the weight vec-
tors by using the inputs of each hidden layer of the DNN
model. The identification performance of the DNN model
generated using the weight-generating approach is tested
on the three dynamic systems. The results show the validity
and high efficiency of this approach. More importantly, our
work provides a way of understanding the operating mecha-
nism for the DNN model, which can provide some ideas for
further studies.

The rest of the paper is organized as follows. Section 2
introduces the general process of DL-based parameter iden-
tification. Detailed descriptions of the relationship analysis
between the inputs and weight vectors of the trained DNN
models and the design of the weight-generating approach
are presented in Section 3. The effectiveness of the weight-
generating approach is verified on the three dynamic
systems in Section 4. Section 5 summarizes this work and
discusses future work.

2. DL-Based Parameter Identification

2.1. Problem Statement. The ODEs of a dynamic system can
be generally represented as

dx tð Þ
dt

= f x tð Þ, u tð Þ θjð Þ, t ∈ 0,H½ �,
x 0ð Þ = x0,

8<
: ð1Þ

where xðtÞ ∈ Rn is the state vector of the dynamic system
at time t, uðtÞ ∈ Rr is the control vector, f ð·Þ represents a
nonlinear function for describing the evolution of the
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Figure 1: The structure of a fully connected DNN model used for
parameter identification.
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system, and θ denotes the unknown constant parameters in
f ð·Þ, which need to be identified.

To use DL to identify the parameters of the dynamic
system, it is necessary to determine the input and output
of the DNN model. The Takens theorem states that for
a large class of nonlinear dynamic systems with an N
-dimensional state space, it can effectively reconstruct the
system state to use 2N + 1 historical outputs of the system
[26]. According to the Takens theorem, for finite-
dimensional dynamic systems, when the historical state-
control sequence ½xð0 : HÞ ; uð0 : HÞ� of the system is long
enough, the reconstruction of the system state can be
achieved, and the system parameters can also be effectively
identified. Thus, the input of the DNN model is set to the
state-control sequence ½xð0 : HÞ ; uð0 : HÞ�, and the output
is the parameter θ to be identified.

The objective of constructing the DNN model is to
enable the DNN model to learn the complex mapping rela-
tionship between state control sequences and system param-
eters in a specified dynamic system parameter space during
the training process and then achieve accurate identification
of any system parameters in the parameter space.

2.2. Data Generation. To make the DNN model to be suit-
able for the nonlinear system accurately, a large amount of
data needs to be used for training. For this reason, a rough
range of θ can be empirically determined in practice and is
used as a sampling dynamic system parameter space to gen-
erate data for training a DNNmodel. If the sampling space Γ
of θ is equal to or greater than the space of the actual param-
eters and the number of sample θ is sufficient, a trained
DNN model can effectively perform the identification task
[22–24]. A subset Γs of θ is then randomly selected from
the sampling space Γ. According to Equation (1), a state
sequence xið0 : HÞ can be solved by a group of given θi
and control sequence uið0 : HÞ. xið0 : HÞ, uið0 : HÞ and θi
constitute training data. Ii = ½xið0 : HÞ ; uið0 : HÞ�T is used
as the input part of the training data, and θi is used as its
training target. If the control trajectory uið0 : HÞ is predeter-
mined and unchangeable for each sample, the input part can
be simplified to Ii = ½xið0 : HÞ�T . A training set is obtained
by addressing all samples of Γs in this way.

2.3. DNN Model. The structure of the DNN model used for
parameter identification is shown in Figure 1. It is a fully
connected network, in which any neuron on any layer is
connected to all neurons in the previous layer. The DNN
model consists of one input layer, some hidden layers,
and one output layer. The DNN identification model can
be written as

θo = f dnn I ξjð Þ, ð2Þ

where θo is the output of the DNN model, I is its input,
and ξ represents the weight w and bias b within the
DNN model.

Each neuron of all hidden layers is calculated as

αlk = βl
� �T

wl
k + blk,

βl+1
k = ϕ αlk

� �
,

8><
>: ð3Þ

where βl is the input vector of the lth layer, which contains
all outputs of the l − 1th layer, wl

k, blk are the weight vector
and bias of the kth neuron of the lth layer, and ϕð·Þ is a non-
linear activation function that introduces a nonlinearity to
each neuron.

The output layer is a linear computation

θo = βoð ÞTWo + bo, ð4Þ

where βo is the input vector of the output layer, which con-
tains the full output of the last hidden layer, and Wo, bo are
the weight matrix and bias vector of the output layer,
respectively.

2.4. Training Process. A DNN model with a determined
structure needs to be trained to learn the mapping relation-
ship between the state and control sequential state I of a sys-
tem and their corresponding parameters θ. A schematic
diagram of the training process is shown in Figure 2.

The first step of the training process is to assign an ini-
tialization ξ0 to the DNN model. The input I of the training
data is then input into the DNN model to obtain the output
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Figure 2: Schematic diagram of the training process.
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θo. An objective function is given to measure the difference
between the θo and target θ. For parameter identification,
the objective function is designed as

L ξð Þ = 1
D
〠
D

i=1
θi − θoið Þ2 = 1

D
〠
D

i=1
θi − f dnn Ii ξjð Þð Þ2, ð5Þ

where D is the number of samples in the training set Γs. An
optimization method, which is commonly selected from the
gradient descent algorithm and its variants, is used to itera-
tively update ξ to minimize LðξÞ. Each optimization iteration
contains two steps, the first step is to compute the gradient
∇LðξnÞ, and then, ξn is updated by

ξn+1 = ξn − η∇L ξnð Þ, ð6Þ

where η is the learning rate of training. After some epochs, a
trained DNN model is obtained to identify any parameter in
the space Γ.

3. Weight-Generating Approach of the DNN
Model for Parameter Identification

3.1. Relationships between the Inputs and Weight Vectors of
Each Hidden Layer. In this section, some relationships
between the inputs and weight vectors of each hidden layer
are revealed by analyzing the trained DNN models for iden-
tifying the parameters of three different dynamic systems.
The detailed discussion is given below.

3.1.1. Attitude Dynamics of a Rigid Spacecraft. The attitude
dynamics of a rigid spacecraft are first used for analysis.

The adopted dynamic model is based on an axisymmetric
rigid spacecraft, and its body coordinate oxyz is consistent
with the direction of the principal axes. Suppose the
moments of inertia Jx, Jy satisfy the relation Jx = Jy = Jc,
i.e., the rigid spacecraft is axisymmetric about the spin axis
oz, and Jz > Jc. In the absence of an external torque, the
ODEs of the attitude dynamics are written as

_ωx +
Jz
Jc

− 1
� �

ωzωy = 0,

_ωz = 0,

_ωy −
Jz
Jc

− 1
� �

ωzωx = 0,

8>>>>>><
>>>>>>:

ð7Þ

where ωx, ωy , ωz and _ωx, _ωy , _ωz are the angular rate and the
angular acceleration, respectively, of the body coordinate
frame oxyz in an inertial reference frame.

A training set is generated by setting the initial value and
range. The initial angular velocity ωð0Þ is set to ωxð0Þ = 3, ωy

ð0Þ = 0, ωzð0Þ = 5, and the sampling range of Jx, Jy, Jz is
[100, 120]. The simulation time H is 200 s, and the sampling
frequency is 10Hz. After solving Equation (7) based on the
initial values and ranges, 2000 groups of data, which are
generated by different Jx, Jy , Jz values, are used as the train-

ing set. To be convenient for training, each group of Jkx,
Jky , Jkz is divided by 100 for the training target and has a
new range of [1, 1.2]. Each data point consists of a three-
dimensional angular velocity sequence Iω = ½ωk

xð0 : HÞ, ωk
y

ð0 : HÞ, ωk
zð0 : HÞ�T and the parameters Jkx, Jky , Jkz . Figure 3
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Figure 3: A group of angular velocity sequences selected randomly from the training set.

1000 2000 3000 4000
Dimensions of first hidden layer

–0.06

–0.04

–0.02

0

0.02

0.04

M
ag

ni
tu

de

500 1000 1500 2000
Dimensions of second hidden layer

–0.1

–0.05

0

0.05

0.1
M

ag
ni

tu
de

100 200 300 400 500
Dimensions of third hidden layer

–0.2

–0.1

0

0.1

0.2

M
ag

ni
tu

de

Figure 4: Visualization diagram of the weight vectors of the three neurons in model A.
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shows a group of angular velocity sequences selected randomly
from the training set. ωk

xð0 : HÞ, ωk
yð0 : HÞ are periodic curves,

and ωk
zð0 : HÞ is constant. Due to _ωz = 0, all points of ωk

zð0
: HÞ are always equal to the initial value ωzð0Þ = 5 for all

data. The input part of the training data is simplified to Iω
= ½ωk

xð0 : HÞ, ωk
yð0 : HÞ�T . In addition, a testing set with

100 groups of data that are different from the data of the
training set is generated in this way to test model accuracy.

The structure of the DNN identification model is
determined to have three hidden layers with 2048, 512,
and 128 hidden neurons. A rectified linear unit (ReLU)
is proposed as the activation function, and its expression
could be written as ϕðxÞ =max ð0, xÞ [36]. The weight w
is initialized using the Microsoft Research Asia (MSRA)
method, and the bias b is set to 0 [37]. The used optimi-
zation method is the adaptive moment (Adam) estimation
method, which can adaptively adjust the learning rate by
estimating the first-order and second-order moments of
the gradient in the objective function to accelerate the
training efficiency of the network [38]. For the selections
of hyperparameters, the learning rate is 1 × 10−4, and
the size of a minibatch is 50. After 2000 optimization iter-
ations, a trained DNN identification model is obtained and
is called model A. The mean square error (MSE) of model
A for identifying the test data is 5:20 × 10−5.

Figure 4 shows a visualization diagram of the weight
vectors of the three neurons in model A. These neurons
are randomly selected from the three different hidden
layers. From Figure 4, the weight vector of each neuron
is analogous to a random distribution; hence, it is difficult
to determine the relationship between the distribution of
the weight vectors and the distribution of the inputs to
the DNN model.

To make the weight vectors more discriminative, an L2-
regularization term is added to the object function

L ξð Þ = 1
D
〠
D

i=1
θi − f dnn Ii ξjð Þð Þ2 + λ〠

B

j=1
w2

j , ð8Þ

where λ is the regularization coefficient and B is the num-
ber of model weight vectors. The L2-regularization term
can shrink model weight vectors toward 0, which makes
the weight matrix sparse in each layer and reduces the
complexity of the DNN model. The regularization coeffi-
cient is set to 0.001 during training. For the learning rate,
it is difficult to find an optimal value. If the learning rate
is too large, the training result may stay in a poor local
minimum, which leads to a poor convergence accuracy,
while it will cause slow convergence and long training
time for a small learning rate [39]. Thus, a decaying learn-
ing rate is selected to train the DNN model, i.e., the learn-
ing rate is larger in the initial stage and gradually
decreases as the training progresses, which could improve
the convergence speed. The learning rate is set to 1 ×
10−2 and is multiplied by 0.2 after every 15,000 iterations.
A trained model called model A-L2 is obtained after
60,000 optimization iterations. The weight matrix of each
layer of model A-L2 has been effectively compressed. Only
30 of the 2048 weight vectors of the first hidden layer, 53
of the 512 weight vectors of the second layer, and 16 of
the 128 weight vectors of the third layer are nonzero vec-
tors. The MSE of model A-L2 for identifying the test data
is 1:38 × 10−5 and is superior to model A, which indicates
that the weight vectors of model A-L2 extract the impor-
tant information used for identification that is implicit in
the weight vectors of model A.
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Figure 5: The mean curves of the first hidden layer of model A-L2.
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To search the relationship between the inputs and
weight vectors of the DNN model, the statistical characteris-
tics of model A-L2 are computed for analysis. The mean
curves and standard deviation curves of the inputs and
weight vectors of the first hidden layer are shown in
Figures 5 and 6, respectively. The two statistical curves of
the inputs are obtained by calculating the mean and stan-
dard deviation of each angular velocity sequence point in
the input parts of all training data. According to Equation
(3), the input to each layer is combined with a weight vector
to compute the inner product. Thus, based on the inner
product calculation, the sequence order of the statistical

curves of the weight vectors is consistent with that of the
corresponding statistical curves of the inputs. As Figures 5
and 6 show, the parts in the red boxes in the statistical curves
of the inputs have more rapid change rates than other parts,
while the statistical curves of the weight vectors highlight the
corresponding parts in its curves and suppress most other
parts. This illustrates that the statistical patterns of the
weight vectors of the first hidden layer are related to the
change rates of the statistical patterns of the inputs.

The second hidden layer receives the outputs of the
first hidden layer and further extracts features used for
parameter identification. Figures 7 and 8 show the mean
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curves and standard deviation curves of the inputs and
weight vectors, respectively, of the second hidden layer.
As shown in Figures 7 and 8, all the statistical curves
are composed of discretized points. By connecting the dis-
cretized points using red line segments, the variation
trends of different statistical curves are compared by judg-
ing the monotonicity of these line segments. The variation
trends for the two statistical curves of the inputs are
almost the same as those for the two curves of the weight
vectors. It should be noted that the mean curve and stan-
dard deviation curve of the weight vectors have nearly the

same overall magnitude. This phenomenon also appears in
the third hidden layer. The mean curves and standard
deviation curves of the inputs and weight vectors of the
third hidden layer are presented in Figures 9 and 10,
respectively. As Figures 9 and 10 show, 88.5% and 76.9%
of the variation trends of the mean curve and standard
deviation curve, respectively, of the inputs are the same
as those of the two curves of the weight vectors. The mean
curve and standard deviation curve of the weight vectors
of the third hidden layer also have nearly the same overall
magnitude. This shows that the inputs and weight vectors
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of each of the last two hidden layers have similar statistical
patterns, and the two statistical curves of the weight vec-
tors of each layer have nearly the same overall magnitude.

3.1.2. Two-Dimensional Damped Harmonic Oscillator. A
two-dimensional damped harmonic oscillator is selected
to further verify the generalization of the relationships
above. The ODEs of the system dynamics are written as
follows [40]:

_x = −ax3 + by3,
_y = −bx3 − ay3:

(
ð9Þ

To generate a training set, the initial state is set to xð
0Þ = 1, yð0Þ = 0, and the sampling ranges of a and b are
[0.1, 0.5] and [1, 5], respectively. The simulation time H
is 15 s, and the sampling frequency is 10Hz. According
to Equation (9), 2000 groups of data, which are generated
using different a, b, are used as the training set. Each pair

of ak, bk is normalized in a new range of [0.2, 0.8] and is
used as the training target. Each data point includes a two-

dimensional state sequence Id = ½xkð0 : HÞ, ykð0 : HÞ�T and
the parameters ak, bk. Figure 11 shows a state sequence
selected randomly from the training set. Likewise, an extra
testing set with 100 groups of data is generated to test
model accuracy.

The structure of the DNN identification model is deter-
mined to have two hidden layers with 64 and 128 hidden
neurons. The selections for the activation function, initiali-
zation method, and optimization method are consistent with
those used for training model A. The learning rate is 1 ×
10−3, and the size of a minibatch is 50. After 5000 optimiza-
tion iterations, a trained DNN identification model called
model B is obtained. The MSE of model B for identifying
the test data is 2:28 × 10−4.

Another DNN model trained on the objective function
with an L2-regularization term is also obtained to analyze
the relationships between the inputs and weight vectors of
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each layer. The regularization coefficient is set to 0.001 dur-
ing training, and the learning rate is set to 1 × 10−2 and is
multiplied by 0.2 after every 20,000 iterations. After 80,000
optimization iterations, a trained model called model B-L2
is obtained. In this case, 21 of the 64 weight vectors of the
first hidden layer and 21 of the 128 weight vectors of the sec-
ond layer are nonzero vectors. The MSE of model B-L2 for
identifying the test data is 2:58 × 10−4 and is quite close to
that of model B.

The statistical characteristics of model B-L2 are then
computed for analysis. Figures 12 and 13 show the mean
curves and standard deviation curves of the inputs and

weight vectors, respectively, of the first hidden layer. It can
be seen that the relationship between the statistical patterns
of the weight vectors and the change rates of the statistical
patterns of the inputs are also similar to the previous analy-
sis. The statistical curves of the weight vectors of the first
hidden layer highlight the parts of the statistical curves of
the inputs that have more rapid change rates and suppress
most other parts.

Figures 14 and 15 show the mean curves and standard
deviation curves of the inputs and weight vectors, respec-
tively, of the second hidden layer. The variation trends for
the two statistical curves of the inputs are also similar to
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Figure 13: The standard deviation curves of the first hidden layer of model B-L2.
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those for the two curves of the weight vectors. By judging the
monotonicity of the red line segments, 80.0% and 65.0% of
the variation trends of the mean curve and standard devia-
tion curve, respectively, of the inputs are the same as those
of the two curves of the weight vectors. The two statistical
curves of the weight vectors also have approximately the
same overall magnitude.

3.1.3. Damped Pendulum. The third dynamic system used
for analysis is a damped pendulum. The ODE of the system
dynamics is written as

€x = −αx − β _x: ð10Þ

By substituting _x for y, Equation (10) is rewritten as

_x = y,
_y = −αx − βy:

(
ð11Þ

The initial state is set to xð0Þ = 1, yð0Þ = 0. The sampling
ranges of α and β are [5, 10] and [0.5, 1], respectively. The
simulation time H is 25 s, and the sampling frequency is
10Hz. According to Equation (11), 2000 groups of data are
generated as a training set, and 100 groups are generated
as a testing set. αk is then normalized in a new range of
[0.5, 1]. Each data point includes a two-dimensional state
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Figure 14: The mean curves of the second hidden layer of model B-L2.
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sequence Ip = ½xkð0 : HÞ, ykð0 : HÞ�T and the parameters αk

, βk. Figure 16 shows a state sequence selected randomly
from the training set.

The DNN model for this identification task has two hid-
den layers with 128 and 16 hidden neurons. The selections
for the activation function, initialization method, optimiza-
tion method, and hyperparameters are consistent with those
used for training model B. After 5000 optimization itera-
tions, a trained model, model C, is obtained. The MSE of
model C for identifying the test data is 3:41 × 10−5.

A DNN model trained on the objective function with an
L2-regularization term is then obtained. The regularization
coefficient is set to 0.001 during training. The learning rate
is set to 1 × 10−2 and is multiplied by 0.2 after every
10,000 iterations. The trained model, model C-L2, is
obtained after 40,000 optimization iterations. In this case,
53 of the 128 weight vectors of the first hidden layer and 8
of the 16 weight vectors of the second layer are nonzero vec-
tors. The MSE of model C-L2 for identifying the test data is
8:96 × 10−5. Figures 17 and 18 show the mean curves and
standard deviation curves of the inputs and weight vectors,
respectively, of the first hidden layer. Figures 19 and 20 show

the mean curves and standard deviation curves of the inputs
and weight vectors, respectively, of the second hidden layer.
The relationships between the inputs and weight vectors of
each layer are consistent with the previous analysis. The sta-
tistical curves of the weight vectors of the first hidden layer
highlight the parts of the statistical curves of the inputs that
have more rapid change rates and suppress most other parts.
The statistical curves of the weight vectors of the second hid-
den layer have approximately consistent trends with the sta-
tistical curves of the inputs. As Figures 19 and 20 show,
76.9% and 75.0% of the variation trends for the mean curve
and standard deviation curve, respectively, of the inputs are
the same as those for the two curves of the weight vectors.
For the mean curve and standard deviation curve of the
weight vectors, their overall magnitudes are also quite close.

3.2. Weight-Generating Approach. According to the analysis
above, there exist close relationships between the inputs and
weight vectors of each hidden layer of a DNN model. There
should be a way to directly transform the inputs of each hid-
den layer into the weight vectors of the corresponding layer
by imitating these relationships to construct a DNN model,
which can achieve high accuracy of parameter identification
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Figure 16: A state sequence of damped pendulum selected randomly from the training set.
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without traditional training processes. Based on this idea, a
weight-generating approach of a DNN model for parameter
identification is proposed.

The weight vectors of the first hidden layer are designed
to combine the statistical patterns of the inputs with the
change rates of their statistical patterns. The design goal is
to highlight the parts with rapid change rates in the two sta-
tistical curves of the inputs to the first hidden layer and sup-
press the parts with slower change rates. The change rates of
the mean curve and standard deviation curve of the inputs

are obtained by calculating the absolute differences of the
two statistical curves. The mean curve and standard devia-
tion curve of the inputs to the first hidden layer are repre-
sented as

mean1 = mean11 1 : Lð Þ, mean12 1 : Lð Þ,⋯, mean1N 1 : Lð ÞÂ ÃT ,
std1 = std11 1 : Lð Þ, std12 1 : Lð Þ,⋯, std1N 1 : Lð ÞÂ ÃT ,

8<
:

ð12Þ
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Figure 18: The standard deviation curves of the first hidden layer of model C-L2.
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where N is the dimensions of the input to the first hidden
layer, for example, the angular rate sequence ½ωk

xð0 : HÞ,
ωk
yð0 : HÞ� contains two dimensions, and L is the number

of sequence points of each dimension. The absolute differ-
ence of each dimensional sequence of the statistical curve
is calculated.

Δmean1n ið Þ = mean1n ið Þ −mean1n i − 1ð Þ�� ��,
Δstd1n ið Þ = std1n ið Þ − std1n i − 1ð Þ�� ��,
 i = 2, 3,⋯, L,
 n = 1, 2,⋯,N ,

8>>>>><
>>>>>:

ð13Þ

where mean1nðiÞ and std1nðiÞ are the ith point of the nth
dimensional sequence in the mean curve and standard
deviation curve, respectively, of the first hidden layer. All
changing rates are then normalized as

ΔNmean1n ið Þ = Δmean1n ið Þ
∑L

i=2Δmean1n ið Þ
,

ΔNstd1n ið Þ = Δstd1x ið Þ
∑L

i Δstd1n ið Þ
,

 i = 2, 3,⋯, L,
 n = 1, 2,⋯N:

8>>>>>>>>>><
>>>>>>>>>>:

ð14Þ

Two normalized changing rate sequences are obtained

To further highlight the parts with rapid change rates,
the statistical patterns of the weight vectors of the first hid-
den layer are imitated by calculating the dot product
between the statistical patterns of the inputs and the normal-
ized changing rate sequences

PImean1 = ΔNmean1
À ÁTmean1,

PIstd1 = ΔNstd1
À ÁTstd1,

8<
: ð16Þ

where PImean1 and PIstd1 are the imitated mean vector and
standard deviation vector, respectively, of the weight vectors
of the first hidden layer.

The weight vectors of the first hidden layer are thus gen-
erated based on PImean1 and PIstd1. The sequence point
w1

kðjÞ of each weight vector w1
k is sampled from a Gaussian

distribution NðPImean1ðjÞ/P, PIstd1ðjÞÞ, in which the con-
stant P is used to adjust the scale of PImean1 to ensure a
close magnitude with PIstd1. All weight vectors of the first
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Figure 20: The standard deviation curves of the second hidden layer of model C-L2.

ΔNmean1 = ΔNmean11 2ð Þ, ΔNmean11 2 : Lð ÞÂ Ã
, ΔNmean12 2ð Þ, ΔNmean12 2 : Lð ÞÂ ÃÂ

,⋯ ΔNmean1N 2ð Þ, ΔNmean1N 2 : Lð ÞÂ ÃÃT ,
ΔNstd1 = ΔNstd11 2ð Þ, ΔNstd11 2 : Lð ÞÂ Ã

, ΔNstd12 2ð Þ, ΔNstd12 2 : Lð ÞÂ ÃÂ
,⋯ ΔNstd1N 2ð Þ, ΔNstd1N 2 : Lð ÞÂ ÃÃT

:

8<
:

ð15Þ
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hidden layer are generated in this way and are used to com-
pute the inputs to the second hidden layer according to
Equation (3).

For the other hidden layers, since their inputs and weight
vectors have similar statistical patterns, each weight vector
wl

k of the lth hidden layer is generated by sampling from N
ðmeanl/max ðmeanlÞ,stdl/max ðstdlÞÞ, where meanl and stdl
represent the mean vector and standard deviation vector,
respectively, of the inputs to the th hidden layer. max ð
meanlÞ and max ðstdlÞ are the max values in meanl and
stdl, which are used to make the magnitudes of the mean
vector and standard deviation vector of the weight vectors
consistent.

The operational method of the output layer is linear;
hence, its weight matrix Wo can be obtained using the ridge
regression method [34].

Wo = βo βoð ÞT + μE
� �−1

βoθ, ð17Þ

Input layer
Hidden layers

Output layer

𝜃°

W°=(𝛽°(𝛽°)T+𝜇E)–1 𝛽°𝜃

N (PImean1/P, PIstd1)

I

N (meanl–1/max(meanl–1),
stdl–1/max (stdl–1))

N (meanl/max(meanl),
stdl/max (stdl))

Figure 21: Schematic diagram of the weight-generating approach.
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Figure 22: The imitated mean curve and standard deviation curve of the first hidden layer of model A-F.

Table 1: Comparison of the identification accuracies for the testing
set of attitude dynamics using different DNN models.

Model A Model A-L2 Model A-R Model A-F

MSE 5:20 × 10−5 1:38 × 10−5 1:26 × 10−3 1:93 × 10−5
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where μ is the regularization coefficient which is used to mit-
igate the problem of multicollinearity and E is an identity
matrix. A schematic diagram of the weight-generating
approach of the DNN model for parameter identification is
shown in Figure 21.

4. Simulation and Analysis

4.1. Attitude Dynamics of a Rigid Spacecraft. The task of
identifying the parameters of the attitude dynamics is first
applied to verify the performance of the DNN model using
the weight-generating approach. The DNN model A-F is
set to have the same structure as model A. The hyperpara-
meters, used to construct model A-F, are set to P = 5 and μ
= 1 × 10−3. According to Equations (11)-(15), the imitated
mean curve and standard deviation curve of the weight vec-
tors of the first hidden layer are obtained and are shown in
Figure 22. As shown in Figure 22, the two statistical curves
have quite similar trends with the statistical curves of the
weight vectors in Figures 5 and 6, which highlight the parts
in the red boxes and suppress most other parts.

To verify the validity of the weight generating approach,
the identification accuracy of model A-F is compared with
model A and model A-L2, which are trained using the Adam
method. And an extra DNN model is trained based on the
extreme training machine, model A-R, whose weight vectors
of the three hidden layers are all generated by sampling from
a Gaussian distribution Nð0, 1Þ and the weight matrix of the
output layer is also obtained according to Equation (17). In
this work, all simulations are conducted on a laptop with
an Intel Core i7-6820HK CPU and 32GB memory.

Table 1 shows the comparison of the identification accu-
racies for the testing set using the different DNN models. As
shown in Table 1, model A-F obtains a high identification
accuracy. The identification accuracy of model A-F is supe-

rior to that of model A, which is trained on 2000 iterations,
and is close to that of model A-L2, which is trained on
60,000 iterations. The identification accuracy of model A-R
is the worst. The time to build model A-F is approximately
0.8 s, while the times for training model A and model A-L2
are approximately 19min and 9 hours, respectively. This
illustrates that the relationships between the inputs and the
weight vectors of each hidden layer exist and can be
exploited to rapidly build a DNN model with a high identi-
fication accuracy.

4.2. Two-Dimensional Damped Harmonic Oscillator. The
weight-generating approach is then applied to generate a
DNN model used for identifying the parameters of a two-
dimensional damped harmonic oscillator. The structure of
the DNN model is the same as that of model B. The hyper-
parameters used for building model B-F are set to P = 1 and
μ = 1 × 10‐6. Likewise, the imitated mean vector and stan-
dard deviation vector of the weight vectors of the first hid-
den layer are obtained according to Equations (11)-(15)
and are shown in Figure 23. As Figure 23 shows, the trends
of the two imitated statistical curves are also similar to the
statistical curves of the weight vectors in Figures 12 and 13.

The identification accuracy of model B-F is also com-
pared with three DNN models, model B and model B-L2
trained using the Adam method. And an extra DNN model
is trained based on the extreme training machine, model B-
R, whose weight vectors for the two hidden layers are all
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Figure 23: The imitated mean curve and standard deviation curve of the first hidden layer of model B-F.

Table 2: Comparison of the identification accuracies for the testing
set of damped harmonic oscillator using different DNN models.

Model B Model B-L2 Model B-R Model B-F

MSE 2:28 × 10−4 2:58 × 10−4 2:05 × 10−3 2:67 × 10−4
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generated by sampling from a Gaussian distributionΝð0, 1Þ,
and the weight matrix for the output layer is obtained
according to Equation (17). Table 2 shows the comparison
of the identification accuracies for the testing set using the
different DNN models. As Table 2 shows, the identification
accuracy of model B-F is still quite high. The identification
accuracy of model B-R is the worst. The time to build model
B-F is approximately 0.02 s, while the times for training
model B and model B-L2 are approximately 4min and 1
hour, respectively.

4.3. Damped Pendulum. A DNN model, model C-F, is also
obtained using the weight generating approach. The struc-
ture of model C-F is the same as that of model C. The hyper-
parameters used for building model C-F are set to P = 1 and
μ = 1 × 10−5. The imitated mean curve and standard devia-
tion curve of the weight vectors of the first hidden layer are
shown in Figure 24. The two imitated statistical curves also
highlight the parts in the red boxes and suppress the other
parts.

The comparison of identification accuracies for the test-
ing set among model C-F, model C, model C-L2, and an
extra DNN model trained based on the extreme training
machine, model C-R, whose weight vectors for the two hid-
den layers are all generated by sampling from a Gaussian
distribution Νð0, 1Þ and weight matrix for the output layer
is obtained according to Equation (17), is shown in
Table 3. Model C and model C-L2 are trained using the
Adam method. As Table 3 shows, the identification accuracy
of model C-F is significantly better than that of the other
DNN models. The time to build model C-F is approximately
0.017 s, while the times for training model C and model C-
L2 are approximately 5min and 40min, respectively. This
further proves the validity and high efficiency of the
weight-generating approach of a DNN model for parameter

identification. Furthermore, the analysis results illustrate
that the change rates of the statistical patterns of the state
sequences are important information for the parameter
identification tasks of dynamic systems based on a DL
method.

5. Conclusion

In this paper, a weight-generating approach is designed to
directly build a DNN model, which is used for identifying
the parameters of dynamic systems. This paper analyzes
the trained DNN models that are used to identify the
parameters of three different dynamic systems and reveals
some relationships between the inputs and weight vectors
of the hidden layers in the tasks of parameter identifica-
tion. The analysis results show that the statistical patterns
of the weight vectors of the first hidden layer are related
to the change rates of the statistical patterns of the inputs,
while the weight vectors of each of the other hidden layers
have a statistical pattern similar to their inputs. These rela-
tionships are utilized to design the weight generating
approach. The performances of the DNN models gener-
ated using the weight-generating approach for identifying
the parameters of the three dynamic systems are compared
with different DNN models. The comparison results illus-
trate the validity and efficiency of the weight-generating
approach for the task of parameter identification.

Table 3: Comparison of the identification accuracies for the testing
set of damped pendulum using different DNN models.

Model C Model C-L2 Model C-R Model C-F

MSE 3:41 × 10−5 8:96 × 10−5 1:91 × 10−3 5:10 × 10−6
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Figure 24: The imitated mean curve and standard deviation curve of the first hidden layer of model C-F.
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This work also provides insight for understanding the
internal operating mechanisms of DNN models used for the
parameter identifications of dynamic systems. Nevertheless,
due to the complexity of the internal operating mechanisms
of DNNmodels, there still exist other unknown and important
information hidden in the weight vectors of DNN models. In
future work, we will further analyze the internal operating
mechanisms of DNNmodels to gainmore insight and support
theories that can be leveraged to improve the application capa-
bility of a DNN model in the field of parameter identification.
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