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This paper studies the multiple geosynchronous spacecraft refueling problem (MGSRP) with multiple servicing spacecraft (Ssc)
and fuel depots (FDs). In the mission scenario, multiple Ssc and FDs are parked in the geosynchronous Earth orbit (GEO)
initially. Ssc start from FDs and maneuver to visit and refuel multiple GEO targets with known demands. These capacitated
Ssc are expected to rendezvous with fuel-deficient GEO targets and FDs for the purpose of delivering the fuel stored in FDs to
GEO targets. The objective is to find a set of Pareto-optimal solutions with minimum fuel cost and mission duration. The
MGSRP is a much more complex variant of multidepot vehicle routing problems mixing discrete and continuous variables. A
two-nested optimization model is built. We propose a new multiobjective hybrid particle swarm optimization to solve the
outer-loop problem, and the design variables are the refueling sequence, task assignment, time distribution, and locations of
FDs. In the inner-loop problem, branch and bound method is used to find the optimal decision variable for a given outer-loop
solution. Finally, numerical simulations are presented to illustrate the effectiveness and validity of the proposed approach.

1. Introduction

In the past few years, on-orbit servicing compromising
refueling, repairs, and upgrades has acquired significant
attention because it would enhance the operational life and
capability of space systems [1–8]. Long et al. [9] summarized
five broad categories of benefits of servicing: (1) reduce risk
of mission failure, (2) reduce mission cost, (3) increase mis-
sion performance, (4) improve mission flexibility, and (5)
enable new missions.

The best economy will be achieved if multiple spacecraft
can be serviced in a single mission [10, 11]. Mission plan-
ning problem arising from servicing multiple spacecraft
began to attract attention recently. Multispacecraft on-orbit
service missions can be divided into three main types. The
first type uses a single servicing spacecraft to service multiple
targets. Cerf [12] investigated the space debris collecting
mission aimed at removing 5 heavy low Earth orbit (LEO)
debris per year to stabilize the debris population. A branch
and bound algorithm was applied to optimize debris selec-

tion and orbit maneuvers. In our previous research, we stud-
ied multiple geosynchronous Earth orbit (GEO) spacecraft
inspection mission, in which the chaser spacecraft is parked
in an equator-high elliptical orbit initially, and two maneu-
vers are exerted at perigee for each visual inspection. The
objective is to optimize the visitation order and time regard-
ing fuel cost [13]. Alfriend et al. [14] developed a method to
optimize the order for visiting a set of GEO spacecraft with
small inclinations, and finding the path of minimum fuel cost
is similar to the travelling salesman problem (TSP). Zhang
et al. [15] studied the optimization of a near circular LEO
long-durationmultiple spacecraft refuelingmission consider-
ing the J2 perturbation and time-window constraints with
one active servicing spacecraft.

The second type uses multiple servicing spacecraft to
service multiple targets. Bo and Feng [16] proposed a new
scheme for refueling spacecraft constellation, and the new
pattern is based on formation flying. Both single-supplier
refueling and double-supplier refueling were studied. Yu
et al. [17] studied the mission planning of GEO debris
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removal with multiple servicing spacecraft (Ssc). Consider-
ing it as a hybrid optimal control problem, a mathematical
model was proposed. The third type uses a peer-to-peer
(P2P) strategy in which all the spacecraft can be used as an
active one or a passive one. Shen and Tsiotras [18] studied
the P2P refueling problem, which seeks fuel equalization
among the spacecraft in the same constellation. In the sce-
nario, all the spacecraft were capable of visiting and refueling
each other using two-impulse, multirevolution transfers. The
objective function of the P2P refueling problem reflects a
balance between achieving fuel equalization and minimizing
the fuel cost. Later on, Dutta et al. [19] researched on the
P2P refueling problem further by developing a nonlinear
programming solver capable of determining low-thrust
P2P maneuvers. In addition, several strategies and corre-
sponding algorithms have been proposed, such as asynchro-
nous P2P refueling, egalitarian P2P, and cooperative P2P
refueling [20–22].

For many mission planning problems of on-orbit servic-
ing, it is often necessary to optimize fuel cost and mission
duration simultaneously that are generally conflicting with
each other. Thus, there is not one unique optimal solution
but a set of Pareto-optimal solutions [23–25]. Madakat et al.
[26] proposed a biobjective time-dependent TSP model for
the debris removal mission and used a branch and bound
(B&B) method to deal with it. The GEO debris removal mis-
sion planning problem investigated by Yu et al. is also biobjec-
tive. Over the past 20 years, a variety of evolutionary
algorithms have been developed to solve multiobjective prob-
lems, and most of them are able to find a set of Pareto-optimal
solutions in a single run. The representative and widely used
methods [27–30] are the Pareto archive evolutionary strategy
(PAES), the nondominated sorting genetic algorithm (NSGA)
and its improved version NSGA-II, multiobjective particle
swarm optimization (MOPSO), and so on.

In this paper, we focus on multiple geosynchronous
spacecraft refueling problems (MGSRP), and the reasons
are as follows. Hundreds of high-value geosynchronous
spacecraft are parked in the GEO, with an altitude of nearly
35,786 km, and have the same angular velocity with the
Earth’s [9]. Onboard fuel is a main factor that influences
the lifetime of a GEO spacecraft because each GEO space-
craft requires approximately 52m/s for station-keeping per
year, and it may need to maneuver to cover a new location
in which fuel cost is inevitable [6]. The lifespan can be
extended if on-orbit refueling is conducted. In addition,
on-orbit refueling is perceived to be of the lowest risk
because it is generally carried out when the onboard fuel of
a spacecraft is almost exhausted. Hence, on-orbit refueling
of GEO spacecraft, as a means to extend their lifetimes
rather than replacing them with new ones, is promising.

The refueling strategies can be divided into three main
categories: one-to-many [15], many-to-many [31], and
peer-to-peer [19]. For the one-to-many strategy, the number
of fuel-deficient targets that could be refueled is quite small
due to the limited fuel capacity of Ssc. Similarly, the many-
to-many strategy will fail as well if the fuel demands of tar-
gets exceed the capacity of all the Ssc. The P2P strategy can-
not be used for GEO spacecraft as not all of them have the

ability of imparting and receiving fuel. In order to overcome
the shortcomings of the above three strategies, multiple Ssc
and fuel depots (FDs) are employed. The fuel stored in
FDs is delivered to multiple GEO targets by Ssc. The purpose
of this paper is to optimize a multiple GEO target refueling
mission with the objective of minimizing fuel cost and mis-
sion duration at the same time. Four key problems which are
location selection, task assignment, mission sequence, and
time distribution are solved by a proposed approach using
nested multiobjective hybrid particle swarm optimization
(MOHPSO) and B&B.

The rest of this paper is organized as follows. In Section
2, we present a general description of the MGSRP with
multiple Ssc and FDs. After that, in Section 3, a two-nested
optimization model is built. Later on, we solved the transfer
problem with a given solution. Then, MOHPSO and B&B
are used to solve the MGSRP. Finally, four cases are
employed to demonstrate the validity and effectiveness of
the proposed two nested resolution method.

2. Mission Scenario

The multiple geosynchronous spacecraft refueling problem
(MGSRP) involves three kinds of spacecraft, namely, servic-
ing spacecraft (Ssc) that deliver fuel; fuel depots (FDs) that
provide fuel; and fuel-deficient GEO spacecraft that accept
fuel. N fuel-deficient GEO spacecraft with different inclina-
tions, phase angles, and right ascension of ascending node
(RAAN) angles are at the ends of lifetimes. In order to
extend their lifetimes, m Ssc and p FDs are used to refuel
these GEO targets. These capacitated Ssc have to move from
the FDs and visit the n GEO targets out of N candidates for
the purpose of delivering the fuel stored in the FDs to fuel-
deficient GEO targets. Each time the Ssc departs from an
FD, the initial fuel mass should not exceed the fuel capacity
C. It is assumed that idle Ssc is not permitted and the refuel-
ing mission is conducted in a noncooperative way, namely,
only the Ssc perform orbit transfers. The Ssc will return to
any FD whenever necessary to get replenished. Obviously,
in the process of refueling mission, Ssc may be in one of five
states: parked in GEO, in transit to a GEO target, refueling a
GEO target, in transit to an FD, or receiving fuel from an
FD. FDs may be in one of two states: parked in GEO or
refueling an Ssc. In the mission scenario, each GEO target
is refueled no more than once; however, the Ssc can be
refueled by the FDs for several times. When the whole mis-
sion is completed, the Ssc should finally return to one of p
FDs waiting for the next refueling mission. Obviously, the
fuel cost is closely related to the locations of FDs. Hence,
RAANs, orbit inclinations, and phase angles of FDs are con-
tinuous design variables.

The refueling mission of #i Ssc can be divided into sev-
eral subtasks. In the jth GEO target refueling of #i Ssc, the
target serial number and the duration of this subtask will
be denoted by xij ∈ f1, 2,⋯,Ng and Δtij, respectively. When
a refueling process is completed, the Ssc can either go back
to a FD and get refueled or transfer to refuel another GEO
target. Let sij ∈ f0, 1,⋯, pg be the decision variable. sij = k
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(1 ≤ k ≤ p) represents that #i Ssc will return to #k FD and get
refueled. sij = 0 represents that it will maneuver to refuel the
next target. Figure 1 illustrates an instance of the MGSRP
problem with 10 candidate GEO targets (represented by
solid circles). Two Ssc and two FDs are employed to refuel
8 GEO targets. It can be seen in Figure 1 that after #1 Ssc
departs from #1 FD, it visits #3, #1, and #6 targets in order
and then transfers to #2 FD and gets refueled. Next, #1 Ssc
visit #4 and #7 targets in order. Finally, it transfers to #2
FD, waiting for another mission. #2 Ssc starts from #2 FD,
visits #5, #9, and #2 targets in order, and finally comes back
to #2 FD.

The MGSRP takes two objectives into account: minimiz-
ing fuel cost and duration of the refueling mission. The
MGSRP does not have a single optimal solution because
the design objectives are conflicting. Instead, there exists a
set of solutions which are nondominated, known as
Pareto-optimal solutions. Therefore, the mission planning
problem is to find a set of Pareto-optimal solutions so as
to grasp the tradeoff between the two objectives.

The archetype of the MGSRP is the multidepot vehicle
routing problem (MDVRP), which is a variant of the basic
vehicle routing problem (VRP). The VRP is concerned with
delivering goods to a set of customers with known demands
through vehicle routes that begin and finish at the depot
with minimum cost. VRP and its variant MDVRP are clas-
sified as being NP-hard. The MGSRP is clearly NP-hard as
a much more complex variant of the MDVRP. The differ-
ences between the MGSRP and the MDVRP are summa-
rized here.

(1) Only n GEO targets among the N candidates must be
visited

(2) The fuel cost is time-dependant and related to the
transfer strategy

(3) The initial locations of FDs are not fixed, and they
are instead design variables

(4) The GEO targets are moving, while, of course, the
customers are stationary

(5) There are infinite possible trajectories to transfer
from one GEO target to another

(6) The objective is to minimize the fuel cost and mis-
sion duration simultaneously

To sum up, the MGSRP studied in this paper can be
stated as follows: m Ssc and p FDs running on the GEO belt
are employed to visit and refuel n GEO targets out of N , and
the following key problems should be resolved:

(1) Location Selection. Selecting the initial locations of
FDs

(2) Task Assignment. Identifying the GEO targets that
should be visited by each Ssc

(3) Mission Sequence. Deciding the visitation order for
each Ssc (including visiting FDs).

(4) Time Distribution. Deciding the travel time shared
for each orbit transfer

The details of rendezvous and dock, refueling operations
are out of our considerations. The goal of this paper is to
find a set of Pareto-optimal solutions with minimum fuel
cost and mission duration.

3. Optimization Model

3.1. Design Variables. There are two types of design variables
of the MGSRP. The first type consists of discrete variables X,
ΔT, and S, given by

X = X1, X2, ⋯, Xm½ �, ΔT = ΔT1, ΔT2, ⋯, ΔTm½ �, 
S = S1, S2, ⋯, Sm½ �,

ð1Þ

Xi = xi1, xi2, ⋯, xiri

h i
, ΔTi = Δti1, Δti2, ⋯, Δtiri

h i
, 

Si = si1, si2, ⋯, siri

h i
,

ð2Þ
where Xi, ΔT i, and Si are the refueling order, given mission
duration and decision variable of #i Ssc, respectively. The
second type consists of continuous variables I, Ω, and L,
given by

I = I1, I2, ⋯, Ip
Â Ã

, Ω = Ω1, Ω2, ⋯, Ωp

Â Ã
, 

L = L1, L2, ⋯, Lp
Â Ã

,
ð3Þ

where I, Ω, and L represent the orbit inclinations, RAANs,
and longitudes of p FDs, respectively.

Obviously, variable X identifies the targets that should be
refueled by each Ssc, as well as the refueling order. It can also
be represented by

Xall = x1, x2, ⋯, xN½ �, R = r1, r2, ⋯, rm½ �,
ð4Þ

Ssc 1
GEO targets5

3 FD 2
2

6

FD 1

I

I

II8

7 9
4

Ssc 2

1 10

GEO targ5
FD 2

66I

I

Figure 1: Illustration of the MGSRP.
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where Xall represents a permutation of N GEO targets, and R
gives the number of GEO targets assigned to each Ssc. In this
paper, Xall and R are optimized directly rather than X.

3.2. Objectives. The two objective functions are

min f1 = max 〠
ri

j=1
Δtij

 !
, i = 1, 2,⋯m,

min f2 =Mfuel,
ð5Þ

where ∑ri
j=1Δt

i
j represents the duration of refueling ri GEO

targets by #i Ssc. As m Ssc could execute the refueling pro-
cess simultaneously and independently, taking the maxi-
mum value of ∑ri

j=1Δt
i
j, i = 1, 2,⋯m indicates the total

mission duration. Hence, the first objective is to minimize
the total mission duration, and the second is to minimize
the fuel cost Mfuel, given by

Mfuel = 〠
m

i=1
Mfueli = 〠

m

i=1
〠
Hi

h=1
mfuelih, ð6Þ

where mfuelih is the fuel received when the Ssc departs from
the FD for the hth time,Mfueli is the total fuel cost of #i Ssc,
and Hi is the number of fuel transfers between #i Ssc and
FDs. The details of evaluating objective function f2 are given
in Section 4.

3.3. Constraints. We introduce a lower bound ΔTmin and an
upper bound ΔTmax on the given duration of each subtask:

ΔTmin ≤ Δtij ≤ ΔTmax: ð7Þ

When the selected GEO targets of a Ssc have been
refueled, the Ssc should finally return to one of the FDs; thus,

siri > 0: ð8Þ

Each Ssc should at least refuel one GEO target as idle Ssc
is not permitted. In addition, a total of n GEO targets should
be refueled. We have

1 ≤ ri ≤ n − m − 1ð Þ,

〠
m

i=1
ri = n:

8><
>: ð9Þ

The fuel received from FD is limited by the capacity of
Ssc.

mfuelih ≤ C: ð10Þ

3.4. Two-Nested Optimization Model. In this subsection, a
two-nested optimization model is proposed for the MGSRP.
The decision variable S is optimized in the inner-loop opti-
mization problem. The objective of the inner-loop optimiza-
tion is to minimize the total fuel cost. The variables Xall, R,

ΔT, I, Ω, and L are sought in the outer-loop optimization
problem; the first objective is to minimize the duration of
the refueling mission, and the second is to minimize the total
fuel cost.

The two-nested optimization model for the MGSRP is
formulated as

find Xall, R, ΔT, I,Ω, L
min f1, f2

s:t:

xi ∈ 1, 2,⋯, nf g, xi ≠ xj i, j ∈ 1, 2,⋯Nf g, i ≠ j,
1 ≤ ri ≤ n − m − 1ð Þ i ∈ 1, 2,⋯mf g,

〠
m

i=1
ri = n,

ΔTmin ≤ Δtij ≤ ΔTmax,
find S,  min  f2

s:t:

sij ∈ 0, 1,⋯, pf g,
siri > 0 i ∈ 1, 2,⋯n − 1f g,
mfuelih ≤ C:

8>>><
>>>:

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

ð11Þ

4. Transfer Problem

In order to evaluate the fuel cost with a given solution, X, ΔT
, S, I, Ω, and L, we should solve several transfer problems by
optimizing the trajectory from one GEO target to another.
In this section, the maneuver strategy of Ssc is described in
detail, and we propose a simple method to obtain the opti-
mal impulses of the Ssc, as well as the fuel weight each time
it leaves the FDs.

4.1. Time Relationship. Let tij,0, t
i
j,f be the initial and ending

time of the jth subtask of #i Ssc, respectively. It follows that

tij,f = tij,0 + ΔTi
j, ð12Þ

where ΔTi
j is the actual duration of the subtask, including

the orbit transfers between GEO targets and FDs and the
operations applied to each of them, constrained by

ΔTi
j ≤ ΔTi

j,max, ð13Þ

where

ΔTi
j,max =

Δtij j = 1ð Þ,

〠
j

h=1
Δtih − tij,0 j > 1ð Þ:

8>><
>>: ð14Þ

Clearly, the initial time of jth subtask is the ending time
of ðj − 1Þth subtask; thus,
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tij,0 =
0 j = 1ð Þ,
tij−1,f j > 1ð Þ:

(
ð15Þ

4.2. Transfer Strategy. It is assumed that each Ssc is equipped
with a high thrust engine and the maneuvers are impulsive.
The total velocity increment (Δv) consists of two compo-
nents, the plane change and in-plane transfer. Plane change
impulse should adjust both the orbit inclination and
RAAN of the Ssc at the same time. Two-impulse phasing
maneuver is applied to in-plane transfer, which is used
to adjust the Ssc’s phase to match with that of the GEO
target. The plane change impulse can be coupled with
the first phasing change impulse, so that we essentially
have a two-impulse transfer.

The procedure of a subtask can be classified into the fol-
lowing two cases, as well as the method to obtain the optimal
impulses of the Ssc with a given solution.

Case 1. sij = 0.

Two impulses are exerted for Ssc to transfer to a GEO
target, given by (in the following, superscript i and subscript
j are omitted for simplicity).

Δv1 = Δvout + Δvin1, Δv2 = Δvin2, ð16Þ

where Δvout is exerted for plane change, Δvin1, Δvin2 are
the first and second impulse of phasing maneuvers, and
Δvin2 = −Δvin1. The magnitude of the two impulses can
be computed by

Δv1j j =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δvin1j j2 + Δvoutj j2 + 2 Δvin1j j Δvoutj j cos θ

q
, Δv2j j = Δvin2j j,

ð17Þ

where θ is the angel between Δvout and Δvin1. The velocity
increment is Δv = jΔv1j + jΔv2j.

Let It , Ωt , f t be the orbit inclination, RAAN, and longi-
tude of the GEO target, respectively. Let Is, Ωs, f s, us be the
orbit inclination, RAAN, longitude, and argument of lati-
tude of Ssc, respectively. Denote the angle between the two
orbit planes as γ (see Figure 2); then, we have

cos γ = sin Is sin It cos ΔΩ + cos Is cos It , ð18Þ

where ΔΩ is the difference in RAAN, and ΔΩ ∈ ½0, π�. For
circular GEO, the velocity increment required for a plane
change of γ is [14]

Δvoutj j = 2v sin γ

2 , ð19Þ

where v is the orbit velocity of the GEO spacecraft.
In this case, the actual duration of a subtask is made up

of three parts, given by

ΔT = ΔTref + ΔT trans1 + ΔT trans2, ð20Þ

where ΔTref is the refueling time of the GEO target and Δ
T trans1 and ΔT trans2 are the orbital transfer time and awaiting
time of Ssc, respectively. It can be seen from Figure 2 that the
length of arc c (0 < c < π) is

c = cos−1 −cos It + cos γ cos Is
sin γ sin Is

� �
: ð21Þ

The first impulse Δv1 is exerted when Ssc fly through the
crossing point of Ssc orbit and target orbit. The awaiting
time on Ssc’s initial orbit ΔT trans2 could be computed by
arc length c. If us > c, then ΔT trans2 = ð2π − us + c/2πÞTg, else
ΔT trans2 = ðc − us/2πÞTg, where Tg is the orbit period of
GEO. When the GEO target refueling is completed, us can
be computed by

us = c + ΔTref
Tg

− floor ΔTref
Tg

 !" #
2π: ð22Þ

The longitude difference Δf is measured from the target
to the Ssc, given by Δf = f s − f t , and Δf ∈ ½−π, π�. If Δf > 0,
then Δvin1 and Ssc’s initial velocity are in the same direction,
and θ = ðπ/2Þ + ðγ/2Þ, else they are in opposite direction, and
θ = ðπ/2Þ − ðγ/2Þ.

Let Ns be the number of phasing orbit revolutions for the
Ssc, and let Ng be the number of whole revolutions for the
GEO target. Ns and Ng should satisfy

NsTs =
Δf
2π Tg +NgTg, ð23Þ

where Ts is the orbit period of the phasing orbit. Therefore,
the orbit transfer time ΔT trans1 can be calculated by Δ
T trans1 =NsTs.

Instead of optimizing Δvin1, Δvin2 directly, the optimal
Ns and Ng are determined such that the Δv is minimized.
Since Δv is minimized, the closer Ts is to Tg, the minimiza-
tion problem is equivalent to minimizing jTs − Tgj. Accord-
ing to Equation (23), we have

Ts − Tg

�� �� = Δf + 2π Ng −Ns

À Á
2πNs

�����
�����Tg: ð24Þ

B
C

Target

It

b
c

𝛾

A

a = 𝛥𝛺

𝛥𝜈out

Ssc
Is

Figure 2: Plane change geometry.
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Given that Δf varies from −π to π, it follows that Ns and
Ng should be equal and jTs − Tgj = jΔf /2πNsjTg. Otherwise,
jTs − Tgj = jðΔf + 2παÞ/2πNsjTg, and α is an integer. It is
obvious that jΔf /2πNsjTg ≤ jΔf + 2πα/2πNsjTg. Obviously,
the greater Ns and Ng, the smaller the Δv will be. However,
they are also constrained by Equation (13), given by

Ns =Ng = floor ΔTmax − ΔTref − ΔT trans2
Tg

−
Δf
2π

 !
, ð25Þ

where floor (A) means rounding A to the nearest integers
less than or equal to A.

Once Ns and Ng are obtained, then Equation (24) could
be used to determine Ts, and then the semimajor axis of
phasing orbit as can be determined easily. The magnitude
of phasing maneuvers can be obtained based on the vis-via
equation, given in [32]

Δvin1j j = Δvin2j j = ffiffiffi
μ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ag

−
1
as

s
−

ffiffiffiffiffi
1
ag

s !
, ð26Þ

where μ is the Earth’s gravitational constant and ag is the
orbit radius of GEO.

Case 2. sij > 0.

In this case, a total of four impulses are exerted of Ssc to
transfer to a GEO target and an FD, given by

Δv1 = Δvin1 + Δvout1, Δv2 = Δvin2, Δv3
= Δvin3 + Δvout2, Δv4 = Δvin4,

ð27Þ

where Δvout1, Δvout2 are exerted for plane change, Δvin1,
Δvin2Δvin3, and Δvin4 are phasing maneuvers, and Δvin2 =
−Δvin1, Δvin4 = −Δvin3. Denote θ1, θ2 as the angel between
Δvout1 and Δvin1 and Δvout2 and Δvin3, respectively. The
velocity increment is Δv = jΔv1j + jΔv2j + jΔv3j + jΔv4j.

Let It , Ωt , and f t (Ip, Ωp, and f p) be the orbit inclination,
RAAN, and longitude of the GEO target (FD), respectively.
Let Is, Ωs, f s, and us be the orbit inclination, RAAN, longi-
tude, and argument of latitude of Ssc, respectively. Similar
to case 1, we have

Δvout1j j = 2v sin γ1
2 , Δvout2j j = 2v sin γ2

2 , ð28Þ

where γ1, γ2 are the angle between the two orbit planes of
Ssc and target, target, and FD, respectively.

In this case, the actual duration of a subtask is made up
of four parts, given by

ΔT = ΔTref + ΔTreff + ΔT trans1 + ΔT trans2 + ΔT trans3 + ΔT trans4,
ð29Þ

where ΔTref and ΔTreff are the refueling times of the GEO

target and Ssc, respectively. and ΔT trans1, ΔT trans2, ΔT trans3,
and ΔT trans4 are the orbital transfer time and awaiting time
for visiting the GEO target and the FD, respectively.

Similar to case 1, the length of arcs c1 and c2 are

c1 = cos−1 −cos It + cos γ1 cos Is
sin γ1 sin Is

� �
,

c2 = cos−1
−cos Ip + cos γ2 cos It

sin γ2 sin It

� �
:

ð30Þ

If us > c1, then ΔTtrans2 = ð2π − us + c1/2πÞTg, else Δ

Ttrans2 = ðc1 − us/2πÞTg. When the GEO target refueling is
completed, us can be computed by

us = c1 +
ΔTref
Tg

− f loor
ΔTref
Tg

 !" #
2π: ð31Þ

If us > c2, then ΔT trans4 = ð2π − us + c2/2πÞTg, else Δ

T trans4 = ðc2 − us/2πÞTg. When the Ssc is refueled by the
FD, us can be computed by

us = c2 +
ΔTreff
Tg

− f loor
ΔTreff
Tg

 !" #
2π: ð32Þ

The longitude difference Δf1, Δf2 are defined by Δf1 =
f s − f t , Δf2 = f t − f p, and Δf1, Δf2 ∈ ð−π, πÞ. If Δf k > 0,
then,θk = ðπ/2Þ + ðγk/2Þ, else θk = ðπ/2Þ − ðγk/2Þ (k = 1, 2).

The two transfer orbits that the Ssc used to visit the GEO
target and the FD are called the phasing orbits 1 and 2,
respectively. Let Ns1, Ns2 be the number of revolutions of
phasing orbits 1 and 2. Let Ng and Np be the number of
whole revolutions for the GEO target and the FD. Ns1, Ns2,
Ng, and Np should satisfy

Ns1Ts1 =
Δf1
2π Tg +NgTg,Ns2Ts2 =

Δf2
2π Tg +NpTg, ð33Þ

where Ts1, Ts2 are the periods of phasing orbits 1 and 2,
respectively. Therefore, the orbit transfer time ΔT trans1 and
ΔT trans3 can be calculated by ΔT trans1 =Ns1Ts1, ΔT trans3 =
Ns2Ts2.

Similarly, instead of optimizing the impulses of the Ssc
directly, the optimal Ns1, Ns2, Ng, and Np are determined
such that the Δv is minimized. The objective is to minimize
the Δv, which is equivalent to minimizing jTs1 − Tgj + jTs2
− Tgj, given by

Ts1 − Tg

�� �� + Ts2 − Tg

�� �� = Δf1 + 2π Ng −Ns1
À Á

2πNs1

�����
����� + Δf2 + 2π Np −Ns2

À Á
2πNs2

�����
�����

 !
Tg:

ð34Þ
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Similar to case 1, given that Δf1 and Δf2 vary from −π to
π, it follows that Ns1 =Ng and Ns2 =Np. Then, we have

Ts1 − Tg

�� �� + Ts2 − Tg

�� �� = Δf1j j
Ns1

+ Δf2j j
Ns2

� �
Tg

2π : ð35Þ

Let Ns =Ns1 +Ns2, given by

Ns =Ng +Np = floor ΔTmax − ΔTref − ΔTreff − ΔT trans2 − ΔT trans4
Tg

−
Δf1 + Δf2

2π

" #
:

ð36Þ

Inspecting Equation (35) shows that the minimization
problem is merely a function of integers Ns1 and Ns2; there-
fore, it can be formulated as

min f = Δf1j j
Ns1

+ Δf2j j
Ns2

,

s:t:Ns1 +Ns2 =Ns:

ð37Þ

If we relax the integer constraint of Ns1 and Ns2, the
solution to Equation (37) can be obtained by setting the par-
tial derivative of F = f + λðNs1′ +Ns2′ −NsÞ with respect to
Ns1′ , Ns2′ , and λ to zero.

∂F
∂Ns1′

= ∂F
∂Ns2′

= ∂F
∂λ

= 0: ð38Þ

Then, we have

Ns1′ = Ns

1 +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δf2/Δf1j j

p ,Ns2′ =Ns −Ns1′ : ð39Þ

Besides, ∂2F/∂N ′2s1 > 0 and ∂2F/∂N ′2s2 > 0 are also guar-
anteed such that this solution corresponds to a minimum
rather than a maximum. The possible optimal integer Ns1
could be floorðNs1′ Þ or floorðNs1′ Þ + 1, and Ns2 is given by
Ns2 =Ns −Ns1. Therefore, the optimal Ns1 and Ns2 could
be found easily by solving the minimization problem
expressed by Equation (37). Once Ns1, Ns2, Ng, and Np are
obtained, then Equation (33) could be used to determine
Ts1 and Ts2.

To facilitate the readers to understand our proposed
transfer strategy for case 2 (sij > 0), the block diagram of
the scheme to obtain Ssc’s optimal impulses is given in
Figure 3.

4.3. Fuel Cost. Once the hth (i ∈ f1, 2,⋯,Hig) fuel transfer
between #i Ssc and FDs is finished, the Ssc will visit and
refuel pih GEO targets and then return to an FD. At the hth
time of #i Ssc departing from the FD, the velocity increment
required for the Ssc to visit the jth GEO target and return to
an FD are denoted by Δvih,j (j ∈ f1, 2,⋯, pihg) and Δvih,pih+1

,

respectively. For a given solution, Δvih,j and Δvih,pih+1
could

be calculated by the method given in Subsection 4.2.

The hth time of #i Ssc departing from the FD, let mi
h,j be

the remaining weight of the Ssc after refueling the jth GEO
target, given by

mi
h,j =mi

h,j−1 × e−Δv
i
h, j/Ispg0 − δmi

h,j, ð40Þ

where mi
h,0 is the initial weight of #i Ssc the hth time depart-

ing from the FD, δmi
h,j is the fuel demand of the GEO target,

Isp is the specific impulse, g0 is the Earth gravity constant.
Let mi

h,f be the weight of the Ssc returning to a FD, given by

mi
h,f =mi

h,pih
× e

−Δvi
h,pi

h
+1
/Ispg0

: ð41Þ

For simplicity, and without loss of generality, it is
assumed that the fuel is exhausted when the Ssc goes back
to an FD. Denote the weight of the Ssc permanent structure
as mdry; then, m

i
h,f =mdry.Then, the fuel weight required to

be stored in #i Ssc each time it departs from an FD is given

In-plane phasing Plane change

Compute plane change
maneuvers using Eq. (28)

Solve the minimization
problem Eq. (37)

Determine Ts1, Ts2 using
Eq. (33)

Compute phasing maneuvers
using vis-via equation

Compute 𝛥𝜈1, 𝛥𝜈2, 𝛥𝜈3, 𝛥𝜈4, using Eq. (27)

𝛥𝜈in1, 𝛥𝜈in2, 𝛥𝜈in3, 𝛥𝜈in4 𝛥𝜈out1, 𝛥𝜈out2

Ts1, Ts2

Ns1, Ns2

Figure 3: Schematic of the method to obtain the optimal impulses
of Ssc.

1: Mf ueli = 0;
2: s = findðSi > 0Þ, Hi = numelðsÞ, s = ½0, s�;
3: for h =1 to Hi

4: Q = sði + 1Þ − sðiÞ, m =mdry × exp ½Δvih,pih+1/ðIspg0Þ�;
5: for j = Q to 1
6: m = ðm + δmi

h, jÞ × exp ½Δvih,j/ðIspg0Þ�;
7: end for
8: mf uelih =m −mdry ;

9: if mf uelih ≤ C
10: Mfueli =Mfueli +mf uelih;
11: else
12: Mfueli = 105, break; {Si is infeasible}
13: end if
14: end for

Algorithm 1: Fuel cost of #i Ssc.
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by mfuelih =mi
h,0 −mdry, and the total fuel cost Mfuel could

be obtained by Equation (6). The pseudocode for calculating
the total fuel weight of #i Ssc received from the FD is given
in Algorithm 1, in which find (Si > 0) returns linear indices
corresponding to the entries of Si that are greater than 0,
and numelðsÞ returns the number of elements. If mfuelih
exceeds the capacity of the Ssc C, then the corresponding
solution is infeasible, and Mfueli will set to be a relatively
high penalty cost.

5. Resolution Approach

The presence of two objectives in the outer-loop optimiza-
tion gives rise to a set of Pareto-optimal solutions. One of
these solutions cannot be said to be better than the other
in terms of the two objectives. For this reason, we are
required to find as many Pareto-optimal solutions as possi-
ble. A multiobjective hybrid particle swarm optimization
(MOHPSO) is adopted to solve the outer-loop optimization.

Loop counter l = 0 Initialization

Fuel cost evaluation

End

Outter-loop optimization

Y

N (i) Update particles using crossover, mutation

Update the particles in Rep

Update the memory of each particle

Increment the loop counter l = l + 1

(ii)

(iii)

(iv)

l = maximum
iterative number ?

Inner - loop optimization

Figure 4: Overview of the MOHPSO.

1) Initialization.
a. Initialize the population POP.
b. Initialize the memory of each particle, Pbest½i� = POP½i�.
c. Evaluate each of the particles in POP.
d. Store the non-dominated solutions in the repository Rep.

2) WHILE maximum number of cycles has not been reached, do
a. Update particles using crossover and mutation:
POP½i� = CrossoverðPOP½i�, Rep½h�Þ;
POP½i� = CrossoverðPOP½i�, Pbest½i�Þ;
POP½i� =MutationðPOP½i�Þ;
where Rep½h� is a value that is taken from the repository Rep and the selection method could be
found in [27]. In each case, if the new particle is better than the old one, then it will
be accepted.

b. Update the particles in Rep: Insert all the currently non-dominated particles into Rep and eliminate
the dominated particles from Rep. When the repository gets full, we apply a secondary criterion for
retention: those located in less populated areas of objective space are given priority over those lying
in highly populated regions.

c. Update the memory of each particle: if the current particle is better than the one contained in its
memory, it is updated using: Pbest½i� = POP½i�.

d. Increment the loop counter.
3) END WHILE.
4) RETURN Rep.

Algorithm 2: The main steps of MOHPSO.
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For the inner-loop optimization, we propose a branch and
bound (B&B) method which could quickly locate the opti-
mal Si in terms of Mfueli with fewer computation costs than
exhaustive search (ES).

5.1. Outer-Loop Optimization Algorithm. A multiobjective
particle swarm optimization (MOPSO) has been proposed
in literature [27]. A MOHPSO algorithm, which is a combi-
nation of genetic algorithm (GA) and MOPSO, is employed
to deal with the outer-loop optimization. Figure 4 shows a
pictorial overview of the MOHPSO.

In MOHPSO, particles are updated by genetic operators,
i.e., selection, crossover, and mutation. Xall, R, ΔT, I, Ω, and
L are concatenated to form a particle. The main steps of
MOHPSO are given in Algorithm 2.

In each fuel cost evaluation, it is required to have an
inner-loop problem solver that provides the optimal fuel
cost for each solution generated during the optimization of
the MOHPSO outer-loop problem solver and that returns
the fuel cost to the outer-loop problem solver.

5.2. Inner-Loop Optimization Algorithm. To evaluate the fuel
cost of a given outer-loop solution, the inner-loop problem
of finding the optimal decision variable Si of #i Ssc should
be solved. A straightforward approach to optimize Si would
be an exhaustive search (ES), that is, the enumeration of all
the feasible solutions and the choice of the best one. The
pseudocode of ES is presented in Algorithm 3. r, c are the
number of rows and columns of set.

The number of feasible decision variable Si amounts to
pðp + 1Þri−1, and the total number of feasible solutions of
the inner-loop problem is ∑m

i=1pðp + 1Þri−1. ES becomes rap-
idly infeasible because computation time grows exponen-
tially with the instance size. Therefore, ES is practically
restricted only to small-size problems.

By a deep insight into the inner-loop problem of the
MGSRP, we present a B&B method for finding the optimal
Si, which is much more efficient than ES. In the B&B algo-
rithm, the solution space of each node is divided into a num-
ber of subspaces. If it can be established that a subspace
cannot contain the optimal solution, the whole subspace is
discarded, else it is stored in the pool of live nodes. The
search terminates when there is no unexplored part of the

solution space left, and the optimal solution is then the one
recorded as the “current best”.

The B&B method is presented in Algorithm 4. If there is
only one target, then Set = ½1 ; 2;⋯;p�, calculate their corre-
sponding fuel costs and find the optimal Si; otherwise, Si is
optimized as follows. Initially, Set = ½Set0 ; Set1;⋯;Setp� and
Setk = k (k = 0, 1,⋯, p). If c < rj − 1, Setk is expanded, Setk
= ½Set, kr×1�. The partial solutions in Set0 are not compara-
ble and the best partial solutions Soptk in Setk could be found.
Set is updated by Set = ½Set0 ; Sopt1;⋯;Soptp�. This process is
repeated until c = rj − 1, and then Set is expanded to Set = ½
Set1;⋯;Setp�, and Setk = ½Set, kr×1� (k = 1,⋯, p). Finally, the
optimal full solution could be found in Set.

6. Numerical Simulations and Analysis

6.1. Problem Configuration. To demonstrate the effectiveness
and validity of the proposed method, four different cases are
studied in this section. In the four cases, one Ssc and one FD,
one Ssc and two FDs, two Ssc and one FD, and two Ssc and
two FDs are used to refuel eight out of ten GEO targets,
respectively. In cases 1 and 2, #1 Ssc starts from #1 FD. In
case 3, both #1 and #2 Ssc start from #1 FD. In case 4, #1
and #2 Ssc start from #1 FD and #2 FD, respectively. It is
assumed that the given duration of each subtask is an integer
and the bound on it is Δtij ∈ ½7, 21� days. The orbit parame-
ters and fuel demands of ten GEO targets are given in
Table 1. The mass parameters for the Ssc are mdry = 500 kg
and C = 1000 kg. The initial us of each Ssc is 0 deg. The
thruster parameter is Ispg0 = 3200 m/s. In the numerical
simulations, the MOHPSO used a population of 100 parti-
cles, a repository size of 100 particles, and an iteration num-
ber of 100.

6.2. Comparision of ES and B&B. The inner-loop problem of
#i Ssc is solved by ES and B&B and both of them are sure to
find the optimal Si. Figure 5 compares the computation time
of ES and B&B on a 3.2GHZ Intel Core i5-4460 personal
computer with a memory of 4GB. It can be seen that the
time consumed by B&B is much shorter than that of ES,
especially for a large number of GEO targets. Therefore, it
can be concluded that B&B is able to deal with the inner-
loop problem at a relatively low computational cost.

1: Setk = k (k = 0, 1,⋯, p);
2: while true do
3: Set = ½Set0 ; Set1;⋯;Setp�, ½r, c� = sizeðSetÞ;
4: if ri == c then
5: break;
6: else
7: Setk = ½Set, kr×1�, k = 0, 1,⋯, p;
8: end if
9: end while
10: discard the solutions in Setthat did not satisfy the constraint siri > 0;
11: calculate Mfueli by Algorithm 1, find the optimal Si in Set.

Algorithm 3: ES for finding the optimal Si.
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6.3. Pareto Solution Sets. Considering the stochastic charac-
teristic of the MOHPSO, 30 independent runs for each case
are executed, and all of the Pareto-optimal solutions
obtained in 30 runs are compared and revised by deleting
the dominated and repeating solutions. Then, the revised
Pareto-optimal solutions of 30 runs are regarded as the final
Pareto-optimal solution set. For cases 1-4, each run takes
about 7min, 24min, 3.5min, and 10min, respectively. The
Pareto-optimal solutions of four cases are shown in
Figure 6. It can be seen that the fuel cost could be greatly
reduced by extending the mission time for all cases. It is
clear that case 4 performs better than cases 1-3 in overall fuel
cost and mission duration, without taking the extra cost of
Ssc and FD themselves into account. From the results of four
cases, we may also conclude that with the increment of the
amount of FDs (Ssc), the fuel cost (mission duration)
decreases.

For cases 1 and 2 (3 and 4), Pareto-optimal solutions
with 80 (45) days of mission time are listed in Table 2.

Figures 7–10 show the angular momentum projections and
longitudes of the given 10 GEO targets, as well as the
selected Pareto-optimal solutions of four cases. Considering
the length of this paper, the details of the solutions of cases
1-3 are not provided.

The optimal solution of the 45-day MGSRP with two Ssc
and two FDs is described in detail in the following. #1 and #2
FDs are located at the positions with inclinations 5.57 deg,
1.54 deg, RAANs 105.12 deg, 242.19 deg, and longitudes
141.06 deg, 179.48 deg, respectively. As is shown in
Figure 10, the first time #1 Ssc departs from #1 PD, it
maneuvers to refuel #7 target, and then it returns to #1PD
and gets replenished. When #1Ssc departs from #1 PD for
the second time, it visits and refuels #1, #3, and #10 targets
in order. The first time #2 Ssc departs from #2 PD, it
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Figure 5: Computation time of ES and B&B.

Table 1: Selected GEO targets with properties.

GEO target
Inclination

(deg)
RAAN
(deg)

Longitude
(deg)

Fuel demand
(kg)

1 5 110 10 200

2 1 3 300 200

3 6.5 125 260 200

4 4 15 25 200

5 5 310 180 200

6 10 30 280 200

7 6.5 85 150 200

8 4 215 100 200

9 8.5 150 60 200

10 9.5 120 200 200

1: Setk = k (k = 0, 1,⋯, p), Set = ½Set0 ; Set1;⋯;Setp�;
2: while true do
3: ½r, c� = sizeðSetÞ;
4: if r j == 1 then
5: calculate Mfueli by Algorithm 1, find the optimal Sopt in Set;
6: return Sopt ; break;
7: else
8: if c < r j − 1 then
9: Setk = ½Set, kr×1�;{k denotes a column vector (k = 0, 1,⋯, p)}
10: calculate Mfueli by Algorithm 1, find the best Soptk in Setk;
11: update Set by Set = ½Set0 ; Sopt1 ; Sopt2�;
12: else
13: expand Set by Set = ½Set1;⋯;Setp�, Setk = ½Set, kr×1� (k = 1,⋯, p);
14: calculate Mfueli by Algorithm 1, find the best Sopt in Set;
15: return Sopt ; break;
16: end if
17: end if
18: end while

Algorithm 4: B&B for finding the optimal Si.
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Figure 6: Pareto-optimal solutions of four cases.

Table 2: Pareto-optimal solutions of cases 1-4.

(a)

Case
Outer-loop optimization variables

X R T (day) I (deg) Ω (deg) L (deg)

1 (1, 7, 3, 10, 9, 2, 4, 8, 6, 5) / (8, 13, 11, 8, 11, 9, 10, 10) 3.67 119.39 59.64

2 (10, 3, 1, 7, 8, 2, 4, 5, 6, 9) / (8, 10, 8, 12, 10, 11, 9, 12) (6.88, 2.01) (121.84, 240.95) (199.97, 154.15)

3 (3, 10, 9, 8, 2, 4, 1, 7, 5, 6) (4, 4) (14, 9, 13, 9, 11, 12, 11, 11) 3.71 115.59 101.73

4 (7, 1, 3, 10, 2, 4, 5, 8, 6, 9) (4, 4) (10, 12, 12, 11, 11, 10, 13, 11) (5.57, 1.54) (105.12, 242.19) (141.06, 179.48)

(b)

Case
Inner-loop optimization variable Objective values

S f1 (day) f2 (kg)

1 (0, 1, 0, 0, 1, 0, 1, 1) 80 2360.8

2 (1, 0, 0, 2, 2, 0, 0, 2) 80 2210.6

3 (0, 0, 1, 1, 0, 1, 0, 1) 45 2357.4

4 (1, 0, 0, 1, 0, 0, 2, 2) 45 2162.8
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Figure 7: Optimal solution of the 80-day MGSRP (case 1).
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maneuvers to refuel #2, #4, and #5 targets in order, and then
it returns to #2PD and gets replenished. When #2Ssc departs
from #2 PD for the second time, it visits and refuels #8 tar-
get. At last, #1 Ssc and #2 Ssc return to #1 FD and #2 FD,
respectively. Each time #1 Ssc departs from #1 FD, the
amount of fuel stored is 250.9 kg and 778.2 kg, respectively.
Each time #2 Ssc departs from #2 FD, the amount of fuel
stored is 848.9 kg and 284.8 kg, respectively. All this fuel is

delivered to GEO targets and consumed by orbital transfers.
The optimal time distribution ΔT1 of #1 Ssc is 10, 12, 12,
and 11, and the actual ending times of each subtask are
9.32, 21.71, 33.73, and 44.33 days, respectively. The optimal
time distribution ΔT2 of #2 Ssc is 11, 10, 13, and 11, and the
actual ending times of each subtask are 10.08, 20.42, 33.36,
and 44.34 days, respectively. The optimal maneuver solu-
tions of #1 and #2 Ssc are shown in Figure 11. #1 Ssc exerts
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12 impulsive maneuvers to visit 4 GEO targets and #1 FD, in
which 4 maneuvers are exerted to go back to #1 FD. #2 Ssc
exerts 9 impulsive maneuvers to visit 4 GEO targets and #2
FD, in which 4 maneuvers are exerted to go back to #2 FD.

7. Conclusions

In this paper, we investigate the MGSRP with multiple Ssc
and FDs. We propose a two nested-loops optimization
model and MOHPSO and B&B are employed to solve the
outer-loop and inner-loop problems, respectively. Simula-
tion results show that B&B is capable of finding the optimal
inner-loop variable with much less computation cost than
ES. Four different cases are studied in the numerical simula-
tions, namely the multiple GEO targets refueling task is
accomplished with one Ssc and one FD, one Ssc and two
FDs, two Ssc and one FD, and two Ssc and two FDs. It can
be seen that cases with two FDs consume less fuel than those
with one FD for the same mission duration, whereas cases
with two Ssc consume less time than those with one Ssc
for the same fuel cost. Case 4 performs better than cases 1-
3 in overall fuel cost and mission duration. However, it is
worth mentioning that if we take the extra cost of Ssc and
FD themselves into account, two Ssc and two FDs may not
be the best choice.
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