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With the steady increase of air traffic column, an auxiliary decision tool is required to compensate the operation redundancy
deficiency of more sectors of air traffic control. To solve the problem of nonconflict high-density departure and arrival traffic
flow, this method is expected to rapidly establish and maintain safe separation with more flexible changing strategies for
aircraft heading and speed. This paper proposes an improved reinforcement learning framework to achieve conflict detection
and resolution. The proposed framework includes the first development of an air traffic flow model based on a multiagent
Markov decision process. The goal reward function was then maximized by improved Monte-Carlo tree search combined with
an upper confidence bound tree. Three simulation scenarios were designed for illustrating the improvements of the proposed
algorithm, with the results indicating that the algorithm could establish and maintain safe separation between 20 agents in the
simplified hexagon-shaped airspace of Huadong, China. Furthermore, the proposed method was demonstrated to reduce the
number of conflicts between aircraft agents by up to 26.32% compared to previous research.

1. Introduction

The total flight hours of the air transportation industry
increased by 6.7% during 2019 [1], and hence, there were also
substantial increases in air traffic controller (ATC) workload
and the complexity of the air traffic sector [2]. To counteract
the constraints of maximum workloads of ATCs, one single
sector requires to be subdivided. Although this action can
decrease the ATC workload of that sector, it can also increase
coordination time between different sectors [3]. Furthermore,
to increase the safety redundancy of initially setting new sec-
tors, air traffic management (ATM) bureaus are required to
assign more simulator training to ATCs [4].

As the complexity of air traffic increases, two issues
could decrease ATC operation efficiency. The first one is
old equipment. The daily mission of ATCs relies on second-
ary surveillance radar systems and very high-frequency com-
munication to issue ATC clearances. These two types of

equipment and onboard traffic collision avoidance systems
(TCAS) usually have long updating cycles. The second issue
is airspace complexity. The controllers distribute multiple
aircrafts on the same flight level while guaranteeing a safe
horizontal separation. This kind of status is fragile when
emergency situations such as radar failure are encountered.
In that situation, the control mode needs to switch from
radar control to procedural control, but the procedural
control separation is greater than radar control [5]. Further-
more, the safety risk of that sector will increase tremen-
dously since loss of separation (LOS) could occur. If a LOS
event is unavoidable, the onboard TCAS will work to help
pilots execute decision-making in the vertical direction to
reestablish safe separation [6]. Considering these two limits
for the terminal airspace in high-density traffic flow
situations, an advanced auxiliary tool to help pilots make
decisions without receiving instructions from the ATC is
required to maintain safe airborne separation.
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Researchers have focused on two aspects of solving the
above problem. One category of methods could decrease the
LOS probability caused by human factors. For instance, an
ATC simulator was used to improve the familiarity of control-
lers with hot-point distribution in new sectors. But the simula-
tor is hardly ergodic regarding the influences of human
factors. The other one is aimed at increasing the safety redun-
dancy of the controller-centered control method by using
extra tools [7]. This could help the aircraft learn to maintain
safe separation in emergency situations. For identifying an
auxiliary tool to compensate for controller insufficiencies
when dealing with complex traffic conflicts, many researchers
have proposed several nonconflict methods [8–12]. In 2003,
Bayen et al. proposed a Lagrangian delay predictive model
for sector-based air traffic flow management [13]. However,
that model relied on the flight plan of an aircraft to predict
the conflicts, and it cannot cope with the flexibility terminal
scenario that induces more conflicts and uncertainty. To
improve the computing speed and accuracy of the CD&R
model to handle more complex situations, researchers
attempted to set and train the agents to recognize conflicts.
In 2010, Agogino and Turner proposed a multiagent approach
to simplify traffic patterns and complexity by classifying traffic
flow based on flight plans [14]. In 2019, Wang et al. trained
one agent to guide the aircraft to land at certain runways
under FF conditions [15]. That agent only performed activities
that considered the landing airport and not the landing
sequence. In 2019, Pham et al. applied the reinforcement
learning (RL) method to centralize agent training in CD&R
with the limitation of only using two aircrafts [16, 17]; this
pairwise conflict method between aircrafts is much simpler
than the global approach method in one ATC sector. How-
ever, this method is not able to perfectly manage the increasing
air traffic flow of more sectors with just one or two agents, and
so, a multiagent system becomes a valuable solution to com-
plex airspace, especially in the terminal airspace. To reduce
ATC workload, based on multiagent Markov desicion process
(MMDP) [18] method,Wei et al. applied this method to coop-
eratively train agents in landing aircraft [19]. But with the
fixed CD&R strategy, it is possible that the goal of one agent
might violate that of another. Information sharing between
agents becomes a necessary precondition to automate CD&R
in terminal airspaces when centralized control is impossible
or impractical [9].

In the state of art of automatic CD&R, most of the
researchers focus on the cruising phase of the aircraft [20,
21], ground taxing [22, 23], and conflicts between taking
off aircraft and landing aircraft on the intersecting runway
[24, 25] and CD&R between unmanned aerial vehicles
(UAVs) [26, 27], but the flight speed and maneuvering mode
of drones are very different from civil aircraft. There are also
CD&R algorithms such as OCRA [28, 29] that could be
applied to MMDP problems with an extremely large magni-
tude of agents, the speed of the agent can be reduced to zero
in the OCRA model, and each agent is only responsible for
the half of the minimum safety interval, which is not
applicable to CD&R in civil aviation. However, there is few
research on automatic CD&R in the terminal airspace in
which the aircraft altitude changes greatly, the heading

changes rapidly, and the speed decreases rapidly from cruis-
ing speed to 0.

To solve the problem of the self-maintenance of safe air-
craft separation at high traffic flows, this paper presents an
improved RL algorithm combined with Monte-Carlo tree
search (MCTS) [30]. Furthermore, to conform with national
airspace system rules, upper confidence bound trees (UCTs)
[31–33] are introduced and applied to complete node selec-
tion and information-sharing methods between agents.

In this paper, we present an innovative algorithm aimed
at formulating the collision avoidance problem between
multiple vehicles, specifically focusing on the CD&R process
of civil aircraft during take-off and landing. Our research
redefines the collision detection mode of aircraft, ensuring
the maintenance of safe separation during continuous
high-speed movement.

To address the limitations of existing strategies, our algo-
rithm introduces dynamic search depth in the iterative process
of the MCTS algorithm. This adaptability allows for efficient
establishment of safe separation between departure and arrival
traffic flows, even in the presence of radar failures. It also
serves as a supplementary decision tool, augmenting the
TCAS by providing horizontal conflict resolution strate-
gies [34].

Furthermore, our algorithm expands the state by incorpo-
rating additional operational actions, such as vector change
clearance and speed change clearance, which are more
applicable to daily air traffic control scenarios. We optimize
information sharing among multiple agents by employing a
same-priority assumption and reduce computational con-
sumption by adjusting the search depth.

The main contributions of this work are listed as follows:

(1) The algorithm proposed in this paper was an
improved RL algorithm that could achieve a multia-
gent Markov decision process to avoid LOS events
between aircrafts

(2) The algorithm proposed in this paper is the addition
of more operational actions in the state and the opti-
mization of information-sharing methods to reduce
computational consumption

(3) The proposed algorithm could be fused to ATC
automation equipment to help ATC trainees to
establish rapid safe separation of all departing/land-
ing aircraft in terminal airspace

This paper is structured as follows: Section 2 establishes
the model of air traffic flow in terminal airspace and objec-
tive functions, Section 3 constructs the solution algorithm,
Section 4 presents a case study consisting of seven airports
in the Huadong region of China, and conclusions are drawn
in Section 5. The abbreviations used in this article and their
corresponding meanings are shown in Table 1.

2. Air Traffic Flow Model with Multiagent

MDP has been well studied and applied in a wide range of
disciplines. The agent can choose any available action a
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based on the current state at each time step. The process
responds at the next time step, enters a new state with a cer-
tain transition probability, and gives the agent a correspond-
ing reward r. More precisely, a MMDP process based on
MDP consists of the following components:

2.1. State. The state matrix of aircraft agents is described as
a vector:

Si = x, y, v, ψ, ℊx, ℊy , 1

where x, y are the plane coordinates of the aircraft agent,
v is the airspeed, ψ is the true heading, and ℊx, ℊy are the
coordinates of the goal airport position. If there are n
agents in the terminal airspace, the state matrix of the
MMDP will be an n × 6 matrix.

When a radar failure emergency occurs, the initial stage
of radar failure situation is to reduce the whole probability of
less than safe separation between aircrafts. At this time, for
the traditional radar control terminal area, the controller is
generally adapted to the aircraft flight procedures (vector
or speed) and separate the aircraft at the same altitude. Since
the proposed algorithm is aimed at providing a horizontal
conflict resolution to remedy TCAS deficiency in radar fail-
ure situations, the vertical dimension is not considered in
whole model.

2.2. Action Space. The action space is the collection of all
possible actions that the agent can perform and is the way
the agent moves from one state to the next state in the state
[34]. At each time step, the aircraft agent will choose and
execute one movement at the current state which is deter-
mined by the last decision-making process for one time step
before the next decision-making process. The action space
for heading change strategy is

−nθ,⋯,−2θ,−θ, 0 ° /s, θ, 2θ,⋯, nθ , 2

where nϵN+ and θ is the standard turning angle and °/s is
the angular velocity units for turning.

The angle change range of the aircraft is ideally varied
from 0 to 360°, but the course change action of the aircraft
decided by the controller is usually multiples of a mini-
mum unit. The standard turning angle is represented by
θ in the text.

The speed change strategy is automatically executed. As
the distance of the aircraft agent from the destination
decreases, the speed of the agent will change gradually from
vmax to final approach speed vmin according to the distance
between the agent and the goal position.

2.3. State Transition. The state transition for each agent is
described by the following equation:

x = v cos ψ,

y = v sin ψ,

v =min vmax, vmin +
d o, g

max d o, g
vmax − vmin ,

ψ = aψ,

3

where v is the current velocity of the agent, ψ is the true
heading of the agent, aψ is the angle velocity of the agent,
vmax is the maximum cruising speed and vmin is the mini-
mum approach speed that the agent can attain, d o, g is
the distance between the current agent position and the goal
position, and max d o, g is the largest distance between the
agent and its goal, which is usually set as the diagonal length
of the simulation area. The transition process of the state of
one agent involves choosing one heading change strategy in
the action space, combined with the distance information
between the agent and its goal position. And the algorithm
can accomplish the state transition process with the environ-
ment state information as follows:

Using the environment state information of other agents
j j = 1, 2,⋯,N j ≠ i , the next action a∗i was obtained by

a∗i = argmax
ai

r∗i s, ai, a−i i = 1, 2,⋯, n, 4

where r∗i s, ai, a−i is the reward value of agent Ai at the state
Si = x, y, v, ψ, ℊx, ℊy and ai is a will executing random

action from {ai1, ai2, ai3, ai4, ai5,}, while action strategies of the
other agents are represented by a−i.

2.4. Termination State. Termination state is the terminal
state in the state chain composed of a series of actions of
the agent [35]. The termination state of one agent can be cat-
egorized as one of the following four results:

(1) The minimum distance value between the selected
agent with other aircraft agents is less than rmin,
which is the minimum safe distance. When the dis-
tance between agents is less than the minimum safe
distance, but greater than ε, the agent will not disap-
pear, and it will only be recorded as a LOS event
(which is the near miss state, but all agents will keep
alive and continue to move forward in the scene)

Table 1: Acronyms.

Acronyms

ATC Air traffic controller

ATM Air traffic management

CD&R Conflict detection and resolution

FPL Flight plan route

LOS Loss of separation

MCTS Monte-Carlo tree search

UCB Upper confidence bounds

UCT Upper confidence bounds applied to trees

MDP Markov decision process

MMDP Multiagent Markov decision process

UAVs Unmanned aerial vehicles

RL Reinforcement learning

TCAS Traffic collision avoidance systems
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(2) The agent has broken through the boundary of the
terminal airspace, once the agent has broken through
the boundary, it will be deleted and cannot continue
to cumulate reward

(3) The agent has reached the goal airport, which is the
goal state. Once the distance between the agent and
the goal airport is less than ε, the agent will be judged
as reach the goal state

(4) The distance between two agents is less than ε, and
both two agents will be deleted and cannot continue
to cumulate reward

The following steps can be used to judge whether the
agent is at the goal state or not:

First, the minimum distance between target agent ai and
other agent must be judged as less than rmin or not. All
agents are represented as A1, A2,⋯, An , and the state of
the other agents is xj, yj, vj, ψj, ℊ jx, ℊ jy , j = 1, 2,⋯, n, j ≠ i.
The distance between target agent Ai and other agents can
be defined as

dij = xi − xj
2 + yi − yj

2
  j ≠ i, i = 1, 2,⋯, n, j = 1, 2,⋯, n ,

5

where if ε ≤ dij < rmin, ε is a tiny pure number when an LOS
state has occurred.

Second, the agent must be judged as still within the ter-
minal airspace or not:

dic = xi − xc
2 + yi − yc

2 >
2
2

R, 6

where dic is the distance between the agent and the center
point of the sector, xc, yc are the coordinates of the central
point, and R is the length of the side of hexagon sector.

Third, the agent must be judged as having reached the
goal state or not. If the distance value between the position
of the agent and the goal position is less than the predeter-
mined ε, the goal state has been reached.

Fourth, the agent must be judged as the distance with
another agent is less than ε, where ε > dij; then, both agents
will be erased from the scene.

2.5. Reward Function. Reward function Q can be formed via
two steps. The first step is for a single aircraft agent. Every
agent is aimed at completing its mission, which means that
it flies from the departure airport toward the landing airport
as rapidly as possible. The minimum safe separation also
needs to be guaranteed throughout the process. The reward
value is defined as follows:

r s =

1, if s is goal state,

0, if s is LOS state or out of boundary,

1 −
d o, g

max d o, g
, otherwise

7

When an agent reaches its landing airport/goal position,
that agent will accumulate one reward point (i.e., r = 1). If
the agent flies outside the boundary, it does not get any
reward point. If the agent stays in the sector, it will consis-
tently accumulate rewards as defined.

The second step is calculating reward function Q by
summarizing all agent’s rewards:

Q s =〠
i

ri s 8

3. Problem Solution

The above optimization problem was solved using a frame-
work that combined the MCTS-UCT algorithm with
MMAP. In traditional UCT method [35–37], exploitation
is preferred, and the node with the greatest value is chosen
when the computational times of the algorithm are small.
Based on the number of times of iterations, the UCT method
will gradually switch to the exploration process by visiting
nodes that were not visited or were less visited.

3.1. Illustration of MCTS-UCT Algorithm. The MCTS pro-
cess is illustrated in Figure 1, and the detailed steps of the
MCTS-UCT algorithm consist of four parts, as described
below. Through these iterative steps, each agent can find
the best path on the tree. In MCTS, the UCB (upper confi-
dence bound) algorithm is used for node selection and
expansion. UCT (upper confidence bound applied to trees)
is a variation of the UCB algorithm specifically designed
for tree search in the MCTS algorithm. UCT is an integral
part of the MCTS algorithm.

In UCTs, the algorithm chooses the child node with the
highest UCB value using the UCB formula. The UCB value
reflected the trade-off between exploration and exploitation.
It helped to balance the exploration of unexplored nodes and
the exploitation of promising nodes. After selecting a child
node based on this UCB values, the MCTS algorithm pro-
ceeds with simulations, backpropagation, and subsequent
node selections. These steps are iteratively performed to
gradually build the search tree and ultimately to find the best
solution.

3.1.1. Node Selection. The first step is node selection; as
shown in Figure 2, each state of agent will be viewed as a
node in the tree, and the UCT values of each state are calcu-
lated by the following equation:

UCT Sj = r j + 2C
2 ln N
nj

, 9
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where r j is the mean reward value of a certain action strategy
j for current agent Aj and Ajϵ A1, A2,⋯An , N is the coun-
ter to remember how many times the leaf node has been vis-
ited based on the MCTS algorithm, and nj is the counter to
remember how many times the action strategy j has been
selected. Kocsis et al. suggested setting constant C as 1/ 2
to satisfy the condition of Hoeffding’s inequality [38] to
restrict the value of the reward to between 0, 1

During the UCT process of selecting node Sj j = 1, 2,
⋯, n , if node Sj has child nodes (Sj1, Sj2,⋯, Sjm), the one
with the highest UCT value will be marked as the current
node. Otherwise, if Sj has no child node, the algorithm will
skip to the next step:

Sj =max
i

UCT Sji i ≥ 2, i = 1, 2,⋯,m 10

Furthermore, if one node has never been visited, the
UCT value of this node will be positive infinity because of
nj = 0. If more than two nodes have the same UCT value,
the agent will maintain the current action strategy to the
next child node.

3.1.2. Node Expansion. A tree policy is used to expand the
state chain, which involves using one action strategy aj from
the action space as a path to a new child node if the number
of child node of the Sj is less than or equal to the available

number in the action strategy. The algorithm will not add
new nodes and instead select the node with maximum
UCT value for the next step. While the agent in the algo-
rithm has reached new current node Sj, the algorithm will
add a new child node for Sj by following the tree policy. This
child node is then marked as new current node Sj, the cumu-
lative reward rj = 0 is initialized, the counter of the visit is set
to nj = 1, and action strategy Aj that leads to this node for
generating the best path is stored. Every time this node is
visited, the timer nj will be updated by nj = nj + 1. nj will
also be used to calculate the average UCT reward r j when
the node has been visited more than twice:

rj =
r j
nj
, 11

where rj in this equation will be used to accumulate rewards
in the next step.

3.1.3. Rollout. After the improved MCTS-UCT algorithm
has added a new node Sj in the state chain, the algorithm
executes one rollout to update the rj value of this node,
meaning that this agent will execute one action strategy cho-
sen from the action space. The chain being formed based on
Markov decision process allows the agent to choose a rea-
sonable action strategy on node Sj, because all information
needed for that agent to make decisions is obtained in the
state of this new node [36]. The reward of this rollout
r rollout obtained from the following equation will be back-
propagated and accumulated for rj .

3.1.4. Backpropagation.When the rollout step has been com-
pleted, the value of r rollout will be backpropagated to node Sj
and delivered from parent node Sj to leaf node S0. The chain
can be represented as S0,⋯, Sj . The improved MCTS-
UCT algorithm can then identify the path along with maxi-
mum reward value for the node and output a series action
strategy from leaf node S0 to node Sj:

For Sj rj = rj + r rollout , nj + 1,

⋯,

For S0 r0 = r0 + r rollout ,N + 1

12

This represents one iteration of the improved MCTS-
UCT algorithm. At each iteration, the algorithm also
updates the state of the current agent. When the agent
obtains the action strategy aj presented in Section 3.1.2,
the algorithm will update the state of the agent at the same
time as the state transition.

The improved MCTS-UCT algorithm will continue until
one of the chains reaches the terminal state or the length of
the chain reaches the threshold, namely, search depth D.

Figure 3 has shown the process of how an aircraft agent
goes from generation to destination. The agent is initially
generated at a position above the take-off airport. Given an

Selection

Tree policy Default policy

Expansion Rollout Backpropagation

Figure 1: Illustration of MCTS process—1.

S1 S1

S0

S1 S1S10.1

a𝜓 = –2𝜃 a𝜓 = +2𝜃

a𝜓 = –𝜃

0 0.5 0.9+∞

a𝜓 = 0°/s a𝜓 = +𝜃

Figure 2: Illustration of MCTS process—2. The figure shows the
state-action tree built in the MCTS algorithm. In this illustration,
five actions were considered, −2θ,−θ, 0 ° /s,+θ,+2θ ° /s . The
state-action value of each node at time step t + 1 is the average of
all its child node values. Based on this illustration, the agent will
select to fly straight (aψ = °/s) at the current state S0.

5International Journal of Aerospace Engineering



initial cruising speed, according to the target airport to be
flown to, calculate the distance to the destination airport
d o,g , and according to the calculation result of the MCTS
algorithm, select an action from the 5 actions provided by
action state, and fly according to the heading for a time of
Δt = 1 s. After reaching a new position, the information of
the agent at this time is fed back to the environment, and
then, the MCTS algorithm will repeat the above process
according to the new position of the agent until the agent
reaches the terminate state.

The pseudocode of the improved MCTS-UCT algorithm
is listed in Algorithm 1, where vi i ϵ N represents the node
of the tree.

3.2. Collaborative Decision-Making Process of Multiagent. To
accomplish conflict-free state, all n aircraft agents A1, A2,
⋯, An in the scenario need to share their intention when
choosing each individual action. K-level hierarchical model
[39–43] is used to make all agents collaborate in their
decision-making and share their information with each
other. Since safety is equally important for each aircraft,
every aircraft would try to remove the conflict state by devi-
ating from their current trajectory. As it is assumed in the
previous section, all aircraft agents are always at the same
flight level, and the action strategies only include changes
in heading and cruising speed. The simplified K-level model
to accomplish the collaborative decision-making process is
described below.

A single iteration of the MMDP algorithm is detailed in
Figure 4: first, n aircraft agents A1, A2,⋯,An are initial-
ized at the K – 1 level. All agents continue executing the
default collaborative action policy a−j = ai from the default
action policy i = 1, 2,⋯, n . Agent Aj with the minimum
index in level K – 1 is then implemented in the improved
MCTS-UCT algorithm. When calculating a∗j , the other
agents will continue to follow the default action strategy set
as a−j, a−j = ai from the default action policy i = 1, 2,⋯, n, i
≠ j . When agent Aj obtains its optimal action strategy a∗j ,
Aj is upgraded to the K level and stores the action strategy
a∗j to update the default collaborative decision strategy.
The improved MCTS-UCT algorithm is then implemented
into agent Ak with the minimum index of level K – 1, as in
the previous operation. This iteration process will continue
until all agents are upgraded to obtain their optimal action
strategy a∗i i = 1, 2,⋯, n . These collaborative decision

strategies were used for the next time step Δt for all agents.
All agents will execute this collaborative decision strategy for
several Δt before the next iteration; it will terminate when all
agents have reached the goal state.

More precisely, take the MMDP (also called collaborate
decision-making CDM) process of two aircrafts in Figure 5
as an example. The MMDP algorithm first determines the
decision-making order of the agent according to the sub-
script order of the agent. In the figure, agent A1 calculates
the optimal action strategy set in the current state through

the MCTS algorithm described above as action a 1
1 , a 2

1 ,
a 3
1 , a 4

1 , a 5
1 , the MMDP algorithm uses the first step of

agent A1 to be action a 1
1 = 0 ° /s as a part of the environment

information and passes it to the next decision-making agent
A2, and then, the agent A2 combines the current environ-
ment information and uses the MCTS algorithm to calculate
the optimal action strategy set in the current state as action

a 1
2 , a 2

2 , a 3
2 , a 4

2 , a 5
2 ; then, the two agents execute the

strategy set at the same time. The first step strategies taken

by agent A_1 and A_2 are a 1
1 =0/s and a 1

2 = +2θ, seperately.
Since the decision result of the previous agent is the environ-
mental information that the subsequent agent needs to refer
to when making decisions, this can avoid the need for infor-
mation in the case of no sharing, and the two agents turn to
same side at the same time, which further causes the interval
to decrease rapidly and develop into a situation of breaking
the minimum safe separation.

Agent Aj chooses its optimal action strategy a∗j in the
algorithm using the following equation:

a∗j = argmax
aj

r∗j s, aj, a−j , j = 1, 2,⋯, n, 13

where r∗j s, aj, a−j is the reward value of agentAj at the state s,
to execute random action aj, while other action strategies of
the other agents are represented by a−j. The output of
Equation (13) is the probability of agent Aj choosing its own
optimal action strategy from the action space in state s. The
entire process described above is the MMDP process. The
pseudocode for its algorithm is provided in Algorithm 2.

The main advantages of the proposed algorithm are the
following: first, the search depth in the proposed algorithm
can be adjusted for different volumes of air traffic. The
search depth is an important factor in identifying the opti-
mal solution. When the number of agents in terminal

Departure airport Goal airport

max d (o, g)

d (o, g)

Figure 3: Illustration of process of agent flying directly to the goal airport. The red node indicates which final path agent had chosen, and
the red node will be the fundamental point of next iteration step.
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airspace has increased to a high-density level, a proper
search depth could decrease the number of LOS events and
allow rapid calculations.

Second, the speed adjustment strategy of aircraft has been
taken into consideration in action spaces. In this paper, we
combined the speed adjustment strategy with the action strat-
egy to optimize computation speed when designing the mov-
ing strategy of the algorithm. When the aircraft enters the
scope of the terminal airspace, the speed of the aircraft agent
was set to decrease depending on the distance to the goal posi-
tion in the proposed algorithm. The speed of the agent will
decrease and maintain the minimum speed of 150 kt while
approaching the goal airport. Our data analysis indicates that
this innovative strategy can improve the efficiency and reduce
the computational time of the algorithm by 6.66% under the
same conditions as a simulation experiment.

Third, the approach taken in this paper has enlarged the
action space of the moving strategy by changing headings. In
the process of establishing safe separation, the moving strat-
egy of the agent was restricted to a single flight level, mean-
ing that the agent needs to accomplish CD&R by adjusting
either the speed or heading. In the proposed method, the air-
craft agent is allowed to change the heading using different
moving strategies. With these 2n + 1 choices of heading
change in the single decision-making process of the algorithm,
agents can cope with more complicated situations and per-
form different strategies in a sophisticated manner [44]. For
example, when the minimum distance between them and
other aircraft is large, the agent would tend to choose a strat-
egy of small heading changes. If all agents are approaching
the same goal airport and the minimum distance between
the agents is small, a strategy with large heading changes could

Input: D, C, vmax, vmin
Output: Reward of all nodes, action policy of all nodes
Initialize: root node Sleaf node, timer of root node N = 0
Step one: Node Selection
Let current node = Sj:
If Sj = Sleaf node and N = 0:

jump to Step Two and N + 1
If Sj = Sleaf node and N ≠ 0:
add a child node and let current node = Sj
jump to Step Three
If Sj ≠ Sleaf node:

jump to Step Two
Step two: Node Expansion
Add a child node for Sj under tree policy
calculate all child nodes’ UCTs value and set current node Sj
record the action strategy ajand update the state of agent
Step Three: Rollout
Execute one random action strategy from action space
and calculate the reward r rollout
Step Four: Backpropagation

Update the information of all nodes along the chain from leaf node S0 to node Sj

Algorithm 1: Improved MCTS-UCT algorithm for a single agent.

Action a1
[1]

1 iteration of collaboration decision making process of all agent

Action a2 Action an

Figure 4: One iteration of collaborative decision-making process of multiagent. The red process in each blanket indicates specific action that
agent had chosen, and the action will be passed through to the next agent.
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be more effective. The agent could also turn to a different
direction without preferring a certain direction.

In the following simulation, the algorithm only had five
different heading change strategies with steps of 3°/s due to
the turning rates and performance limitations of the aircraft
and allows for acceptable conditions for the onboard passen-
gers. Furthermore, in accordance with ATC regulations, the
controller must use a specific amount of heading change such
as 5° as the minimum interval for heading change instructions,
so the heading change strategies can improve the consistency
between the designed simulation and the actual situation [45].

4. Simulation and Analysis

4.1. Parameter Settings. Seven airports located at the Yangtze
River Delta region were used to construct the simulation, in

which the Nanjing Lukou International Airport (ZSNJ) is in
the center, surrounded by six other airports: Shanghai
Hongqiao International Airport (ZSSS), Hangzhou Xiaoshan
International Airport (ZSHC), Huangshan Tunxi Interna-
tional Airport (ZSTX), Hefei Xinqiao International Airport
(ZSOF), Xuzhou Guanyin International Airport (ZSXZ), and
Yancheng Nanyang International Airport (ZSYN). The
detailed location information of these airports is shown in
Figure 6.

The regular hexagonal terminal area simplified from the
“Nanjing approach terminal airspace” composed of 7 busy
airports in the actual Yangtze River Delta region is shown
in Figure 7. The hexagon contracture is also the most com-
mon control sector shape.

At the center, ZSNJ is marked as number 0, which was
the landing airport. The airports are numbered from 1 to 6

Agent A1
Agent A2

Distance before CDM

After

Action a1
[1] = 0°/s

continue present heading
Action a2

[1] = +2𝜃
right turning to avoid conflicts

Figure 5: Illustration of MMDP process between two aircrafts in the scene. The distance between these two agents is changing as they chose
different action strategy.

Input: N, Δt
Output: cumulative reward of state, number of conflicts
Initialize: Information of environment, time_step = 0, agent_index = 0
Information of environment: for every agent generated, initialize the state of the agent {initial position, initial action, initial speed,
goal airport, reward counter}and add them to the environment information Dictionary
while existing agent in the map:

Step 1: generate aircraft from airport 0~6 and initialize the state of all agents:
for i in range (number of airports):

if number of existing agents ≤ N and agent_index ≤ N:
generate an aircraft agent
agent_index += 1
initialize the state s of agent

Step 2: Run Improved MCTS-UCTs algorithm for each agent in order:
if time_step % Δt = = 5:

for i in range (number of existing agent):
update the information of environment
run Improved MCTS-UCTs algorithm for agent i with minimum index
if separation between agent i with other aircraft < rmin

number of conflicts += 1
time_step += 1

update the state of agent i
End while
Output cumulative reward of state, number of conflicts

Algorithm 2: MMDP collaborative decision-making algorithm.
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surrounding ZSNJ in an anticlockwise direction and are
spread evenly, forming a bigger regular hexagon shape. There
is a small hexagon surrounding the ZSNJ airport, with a side
length of 50km. If lines between any airports from numbers
1 to 6 are drawn with number 0, these lines will vertically split
the side of the smaller hexagon. The smaller hexagon is called
the inner sector and the larger hexagon the outer sector, which
excludes the scope of the inner sector. When the aircraft is in
the outer sector, the speed can be set larger.

Aircraft flow at the seven airports was generated auto-
matically. Aircraft generated from airports 1 through 6 was
defined as landing flow, while aircraft generated from ZSNJ
(which had one random destination from numbers 1 to 6)
was defined as the departure flow. The meaning and value
of the simulation parameters in the improved MCTS-UCT
and MMDP algorithms and the aircraft information are
listed in Table 2. The aircraft agent’s state contains the posi-
tion, speed, and heading, while the agent’s optional heading
change and the speed change have been integrated into the
state transition process. Therefore, the agent can well simu-
late the behavior of general aircraft airborne.

The experiments were performed using Python (version
3.7) as the programming language and PyCharm Professional
(version 2019.3) as the programming software, and the com-
puter used to run the algorithm comprised a 2.7GHz Intel

Core i5 CPU, 8GB of 1867MHz DDR RAM, and an Intel Iris
Graphics 6100 1536MB graphic card.

Figure 8 illustrates the operational principles of the
entire algorithm. The red box represents the process of
updating the state for individual agents and the collaborative
decision-making among multiple agents. The blue box rep-
resents the process of updating the algorithm’s objective
function by reinforcement learning method. The algorithm
begins by generating a simulation scenario and creating the
corresponding number of aircraft agents based on predeter-
mined conditions such as the number of waves. Each agent
then receives environmental information, updates its state,
and adjusts the reward function. Finally, while maximizing
the collaborative decision-making function, the algorithm
ensures that agents complete their conflict-free flight mis-
sions from the departure airport to the destination airport.

4.2. Simulation Design. To illustrate the detailed information
of improvements and achievements of the algorithm in this
paper, the following three simulation scenarios were imple-
mented. The environment contained the different numbers
of agents at the same time, using action space as −6 ° /s,−
3 ° /s, 0 ° /s,+3 ° /s,−6 ° /s combined with a speed adjust-
ment strategy, setting search depth from 1 to 6, and 100
simulation iterations considered as one experiment.

The purpose of the first experiment is to verify the effec-
tiveness of the algorithm. The first is to increase the number
of agents in the scene as the only variable from small to large,
the search depth is 5, and a total of 100 iterations are per-
formed. Then, on the premise of ensuring the effectiveness
of the algorithm, the influence of different search depths on
the parameters of the algorithm operation is explored.

The purpose of the second experiment is to verify the
efficiency of the algorithm and compare it with the algo-
rithm results of the previous paper [19]. Since the scene size
and the aerodynamic model of the agent in the paper [19]
are different from those of the agent in this paper, in this
experiment, the basic aerodynamic model such as the flight
speed of the agent is adjusted to the cruising speed of the
civil aircraft. The results of the algorithms are compared

Figure 6: Geographical locations of the seven airports.

ZSXZ ZSYN

ZSSS

ZSHCZSTX

ZSOF ZSNJ

Figure 7: Simplified geometric area of the simulation scenario.

Table 2: Parameter values.

Parameters Value

Type of aircraft Medium

Search depth D 5

UCT parameters C 1/ 2
Number of agent N 20

Minimum action step size θ 3°/s

Minimum safe separation rmin 3 nm

Minimal time step unit Δt 1 s

Max en route speed vmax 250 kt

Min approach speed vmin 150 kt

K value of level K model 1

Size of landscape 800∗800
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under the conditions of the speed gradient strategy described
above. The number of agents in the scene is fixed at 16, and
the search depth is 3 and 5, respectively. 100 iterations are
performed, respectively.

The purpose of the third experiment is to exclude that
the agent in the algorithm always adopts the same strategy,
that is, to verify that the algorithm can learn and perform
the CD&R process independently according to the changes

Y

Start

Initialization of the state
 for environmental

information

Whether the number and waves of agents
in the scene have reached the preset value

Adding agents that have reached the specified
number for the current wave, and initializing the

state for the new agents.

Calculating the state changes
for each agent based on the MCTS

algorithm.

Generating single-step
decision information for

an individual agent.

All agents have
generated their decision

information?

Decision
information storage

for single step.

Simultaneous execution of
decision information by all agents.

Updating the state space of
environmental information.

Updating the collaborative
decision-making reward function.

Whether agents have
collided?

Flown out of bounds?
Reached their destinations?

Whether all agents have
disappeared?

Output of the collaborative
decision-making reward function.

End

N

Y

N

Y

Y

N

N

Figure 8: Overall pipeline figure for visualizing air traffic flow model.
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of the scene. The number of agents in the scene is fixed at 16,
and the search depth is dynamic. When the minimum inter-
val between agents is more than 1.5 times the minimum
safety interval, the search depth is 3, and when it is less than
1.5 times the minimum safety interval, the search depth is 5.
The experiment was performed for a total of 100 iterations.
In all the experimental scenarios depicted below, each scene
shows agents represented by different colors, facilitating
continuous tracking of their flight paths. When conflicts
occur between agents, both aircraft agents disappear.
Therefore, in the figures, this paper capture snapshots of
the experimental process to illustrate that the algorithm
not only achieves conflict-free flight goals in the scene
but also accommodates a significant number of agents
simultaneously.

Scenario 1. To examine the separation maintenance ability of
the algorithm, aircraft flow generated from airports 1 to 6
was set airport 0 as the goal airport. The total number of air-
craft increased from 5 to 20. The results are illustrated in
Figure 9.

An airport from 1 to 6 was randomly chosen to generate
another aircraft until the number of aircraft generated
reached the setting number to simulate the real situation
where departing and landing aircrafts coexist in the terminal
airspace. The aircrafts departing from airport 0 are shown in
Figure 10. And they are all marked with red circles.

Scenario 2. To examine the influence of different search
depths in the algorithm, the number of agents was fixed at
16, consisting of 2 departure and 14 arrival aircrafts. The
search depth of the proposed algorithm varied from 1 to 6.

We compared the results with other algorithms from
previous research [19] to validate the efficiency of our algo-
rithm. Figure 11 shows the results for search depths of D = 3
and D = 5. The search depth in the previous research paper
was set at D = 3.

Scenario 3. To validate the learning ability of the algorithm
and exclude the possibility that the agent always repeats
the same strategy, the total number of aircraft is fixed as
16. Dynamic search depth used was between 3 and 5 accord-
ing to the minimal interval between pair of agents. The
training processes are illustrated as time-lapse photography
in Figures 12 and 13.

In Figure 11, the destination airport of the agents gener-
ated at airports 0 and 2-6 is no. 1, and the destination of the
agent generated at airport 1 is another random airport. In
Figures 12 and 13, the destination airport of the agents gen-
erated at airports 1-6 is no. 0, and the destination of the
agents generated at airport 0 is another random airport.

In Figures 12 and 13, this paper dynamically showcases
the generation and flight paths of agents by extracting
frames from experimental process videos and stacking all
frames in chronological order. The top left corner of each
illustration in the figures represents the stack of all frames
up to the current time. In Figures 12 and 13, the experimen-
tal process that lasted for 75 s in a single iteration is divided
into 5 pictures, which are displayed in the form of time-lapse

photography; therefore, the flight trajectory of the agent
could be clearly displayed.

4.3. Results and Analysis. In Scenario 1, it is found that
the proposed algorithm could maintain a safe separation
between all agents for a pure arrival flow composed entirely
of approaching aircraft, or a more realistic mix flow of depar-
ture/landing aircraft. The effectiveness of the proposed algo-
rithm is established. And Scenario 2 is a further study based
on the success of the Scenario 1 experiment.

In Figure 10, it is found that when the search depth is
larger, the agent’s maneuvering range is larger and is no lon-
ger limited to the range of the outer sector. The red line in
the figure indicates the range of the outer sector. Although
this increases the fly time of the aircraft, it reduces the num-
ber of LOS events between agents, shown in Figure 13.

Table 3 and Figure 14 show the results from Scenario 1
to indicate the performance of the proposed algorithm
under different search depths.

Different search depths that correspond to different
average LOS numbers are shown in Figure 8.

As indicated in Tables 4 and 5, the rewards obtained by
the algorithm could be stable with a fixed number of aircraft,
indicating the stability of algorithm. The abnormal reward
value can be explained by the iteration process of the algo-
rithm, where LOS events occurred due to the two agents.
One was delated randomly and was able to continue flying
and accumulate rewards. This abnormal value could be eas-
ily observed, which helped considerably for tuning and mod-
ifying the algorithm, which finally illustrated the universality
of the algorithm. Tables 4 and 5 present the cumulative total
reward collected from 100 simulation experiments of agents
under two different search depth scenarios. Each table
consists of 10 rows, where the left column represents the
experiment number, the middle column shows the reward
values obtained by the agents in the 100 trials (dimensionless
values), and the rightmost column indicates the average
occurrence of LOS events in those 10 experiments. The
LOS events are represented as a fraction; for example, 0.10
indicates that, on average, one LOS event occurred in at
most one experiment out of the ten. Since the majority of
experiments achieved conflict-free flight for the agents, the
paper avoids listing each individual experiment’s results sep-
arately to maintain clarity and readability in the table.

Table 4 shows the total reward cumulated by all agents
with fixed search depth 5.

Table 5 shows the total reward cumulated by all agents of
the algorithm with dynamic search depth 3-5.

Table 6 lists the results from previous algorithm used in
reference [19] and our proposed one. Four indicators were
selected to compare the performance of two competing algo-
rithms. These 4 key indicators are as follows: (1) The average
value of the reward accumulated by the agent in the algo-
rithm shows the stability of the algorithm. (2) Average en
route times of every agent indicate the time it takes for the
agent to travel from the starting point to the destination,
measured in flight hours. This is related to the algorithm’s
execution time and is a dimensionless unit, representing
the flight time of the agent in the scene during the
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(a) n = 5 (b) n = 10

(c) n = 15 (d) n = 20

Figure 9: Landing aircraft at the goal airport with different agent numbers.

(a) n = 7 (b) n = 10

(c) n = 15 (d) n = 20

Figure 10: Flow of departure/arrival aircraft to the goal airport with different agent numbers.

(a) D = 3 (b) D = 5

Figure 11: Real-time simulation process of the algorithm with different search depths.

12 International Journal of Aerospace Engineering



experiment, which demonstrates the efficiency of the algo-
rithm. (3) The number of iterations of the algorithm is used
to measure the operating efficiency of the algorithm. (4) The
average number of LOS events, obtained by calculating the
mean of the total occurrences of LOS events in 100 experimen-
tal trials, represents the effectiveness of the algorithm in
maintaining a safe distance between agents. A lower average
number of LOS events indicates a better performance of the
algorithm in ensuring a safe separation between the agents.

To validate and illustrate how these innovations in the
new algorithm eliminate the influence of the error caused
by the shorter experimental time, Table 6 lists the key indi-
cators selected to compare the performance of the two
algorithms.

The new algorithm reached the performance of only 0.14
conflicts on average in 100 iterations. The average reward
value was 148.51; it means that the agent always chose a sim-
ilar optimal strategy to accomplish their goal. This provides
improvements to the stability of safety maintenance in the
algorithm, which is a core benefit for the air transportation
industry. In the metric of “average en route times of every
agent,” the present algorithm demonstrates the ability to
reduce the frequency of LOS events at the cost of a relatively
small increase in the aircraft’s airborne flight time (-3.75%).
Furthermore, the average number of LOS events was
reduced by 10.6%~26.32%. It was shown that the proposed
algorithm has higher effectiveness and stability.

The minimum safe separation in the terminal airspace was
rmin = 3 nm. A larger safe separation compared with the min-
imum safe separation in areal control airspace which is 5 nm
can improve airspace capacity and operation efficiency, but it
also causes decreases in the reaction time of controllers
required when coping with LOS events. Compared with area
control, terminal control tends to implement radar vectors to
change aircraft headings more frequently. The algorithm in
this paper achieved rapid terminal airspace CD&R and can
be carried onboard every aircraft to avoid LOS events and
finally achieve and maintain rapid safe separation of all
departing/landing aircraft in terminal airspace.

One of the functions of the ATC simulator was to guide
ATC trainees in learning and establishing control skills and
concepts [46], especially in learning to deal with emergency sit-
uations. The algorithm in this paper can visualize the whole en
route process of the departure/arrival aircraft flow, including
the dynamic process of the aircraft agent avoiding LOS events
and ensuring the orderly arrival of aircraft. All this knowledge

15 s 30 s 45 s 75 s60 s

Figure 12: 75-second time-lapse photography of setting major landing airport as no. 1 with 16 agents.

15 s 30 s 45 s 75 s60 s

Figure 13: 75-second time-lapse photography of setting major landing airport as no. 0 with 16 agents.

Table 3: Results of Scenario 1 with different search depths.

Search
depth

Time of
computation

(min)

Total
flight

hours (h)

Average time
of iteration
(×100)

Average
number of
LOS event

1 0.18 10.78 3.5 12.80

2 0.54 13.68 5.2 1.60

3 2.18 18.53 7.7 0.30

4 5.78 21.48 8.9 0.70

5 7.04 19.95 8.6 0.20

6 7.73 18.75 7.7 0.60
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Figure 14: Line graph of search depth and average LOS number.
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could help trainees to establish the key concept of air traffic con-
trol with single aircraft interactions with the entire traffic flow
closely and inseparably.

5. Conclusions

This paper introduced an air traffic flow model based on a
multiagent Markov decision process. The goal reward func-
tion was then optimized via an improved MCTS-UCT algo-
rithm. High-density departure and arrival traffic flow can
avoid conflict by establishing and maintaining safe separa-
tion. The proposed algorithm can reduce the number of con-
flicts between agents by 26.32% compared with previous
methods. The experiments verified that the efficiency and
accuracy of the algorithm were optimal.

The improved MCTS-UCT algorithm presented in this
paper can be used as an auxiliary tool when a radar failure
occurs that cannot be fixed by the ATC service and can also
cover the limitation of TCAS of only helping pilots to exe-
cute decision-making in the vertical direction and finally to
increase the redundancy of high-density traffic flow in ter-
minal airspace.

The experimental scene is limited to operate in idealized
airspace, while the actual East China Delta terminal contains
several restricted areas such as military airports, training air-
space, dangerous area such as aircraft shooting ranges, and
prohibited areas in urban areas. In the future, the stability
and accuracy of the algorithm could be further increased
to cope with more complex simulation scenarios such as
considering 3D space, unmanned aerial vehicles, dangerous

Table 4: Total reward cumulated by all agents of the algorithm in this paper with fixed search depth 5.

Serial number Total reward cumulated by all agents LOS events/serial

1-10 151.23 134.40 152.20 152.92 152.05 153.99 149.87 153.50 151.42 152.82 0.10

11-20 151.74 150.29 153.26 151.77 151.96 151.10 146.64 153.44 152.60 112.22 0.10

21-30 153.85 153.17 153.35 151.60 135.38 152.21 152.35 77.23 153.63 154.11 0.20

31-40 110.89 153.23 152.25 161.71 153.66 151.10 153.75 151.76 153.41 153.13 0.10

41-50 151.86 152.65 153.08 152.17 163.99 153.18 153.48 146.10 151.45 162.38 0.10

51-60 151.87 154.16 153.53 152.01 152.94 152.22 152.31 151.64 152.20 130.34 0.10

61-70 153.49 152.68 152.78 153.57 145.97 153.14 150.54 152.30 127.47 152.93 0.20

71-80 151.81 120.90 152.08 151.54 162.50 162.06 151.77 153.71 153.88 149.08 0.10

81-90 107.91 105.18 95.15 153.02 151.54 153.51 136.07 154.06 154.07 151.58 0.30

91-100 152.54 152.80 153.17 147.56 161.82 152.35 149.79 153.37 152.53 154.35 0.10

Table 5: Total reward cumulated by all agents of the algorithm in this paper with dynamic search depth 3-5.

Serial number Total reward cumulated by all agents LOS events/serial

1-10 151.23 134.40 152.20 152.92 152.05 153.99 149.87 153.50 151.42 152.82 0.10

11-20 151.74 150.29 153.26 151.77 151.96 151.10 146.64 153.44 152.60 112.22 0.10

21-30 153.85 153.17 153.35 151.60 135.38 152.21 152.35 77.23 153.63 154.11 0.20

31-40 110.89 153.23 152.25 161.71 153.66 151.10 153.75 151.76 153.41 153.13 0.20

41-50 151.86 152.65 153.08 152.17 163.99 153.18 153.48 146.10 151.45 162.38 0.10

51-60 151.87 154.16 153.53 152.01 152.94 152.22 152.31 151.64 152.20 130.34 0.20

61-70 153.49 152.68 152.78 153.57 145.97 153.14 150.54 152.30 127.47 152.93 0.20

71-80 151.81 120.90 152.08 151.54 162.50 162.06 151.77 153.71 153.88 149.08 0.20

81-90 107.91 105.18 95.15 153.02 151.54 153.51 136.07 154.06 154.07 151.58 0.20

91-100 152.54 152.80 153.17 147.56 161.82 152.35 149.79 153.37 152.53 154.35 0.20

Table 6: Core indicators for comparing the two algorithms.

Core indicators Previous algorithm
This paper’s algorithm

Improvement
Fixed search depth = 5 Dynamic search depth = 3 ~ 5

Average value of reward — 148.51 148.99 —

Average en route times of every
agent/flight hours

13.04 15.19 13.52 -16.5%/-3.75%

Average times of iterations 720 890 765 -23.61%/-6.25%

Average number of LOS events 0.19 0.14 0.17 26.32%/10.6%
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weather conditions, irregular sector shapes, and settings in
restricted and prohibited areas.
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