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Path planning and obstacle avoidance are pivotal for intelligent unmanned aerial vehicle (UAV) systems in various domains, such
as postdisaster rescue, target detection, and wildlife conservation. Currently, reinforcement learning (RL) has become increasingly
popular in UAV decision-making. However, the RL approaches confront the challenges of partial observation and large state space
when searching for random targets through continuous actions. This paper proposes a representation enhancement-based
proximal policy optimization (RE-PPO) framework to address these issues. The representation enhancement (RE) module
consists of observation memory improvement (OMI) and dynamic relative position-attitude reshaping (DRPAR). OMI reduces
collision under partially observable conditions by separately extracting perception features and state features through an
embedding network and feeding the extracted features to a gated recurrent unit (GRU) to enhance observation memory.
DRPAR compresses the state space when modeling continuous actions by transforming movement trajectories of different
episodes from an absolute coordinate system into different local coordinate systems to utilize similarity. In addition, three step-
wise reward functions are formulated to avoid sparsity and facilitate model convergence. We evaluate the proposed method in
three 3D scenarios to demonstrate its effectiveness. Compared to other methods, our method achieves a faster convergence
during training and demonstrates a higher success rate and a lower rate of timeout and collision during inference. Our method
can significantly enhance the autonomy and intelligence of UAV systems under partially observable conditions and provide a
reasonable solution for UAV decision-making under uncertainties.

we focus on the machine learning approach, especially deep
reinforcement learning (DRL), to enable UAVs to perform
PPOA in complex and dynamic environments with random

Unmanned aerial vehicles (UAVs) have gained widespread
popularity in various fields, such as aerial photography,
plant protection, and military surveillance, due to high agil-
ity, low cost, and versatility [1-3]. In some emerging areas
such as digital twin and intelligent manufacturing, UAVs
can play an important role in degradation assessment [4],
fault diagnosis [5], and health management [6]. Therefore,
the ability for path planning and obstacle avoidance (PPOA)
is paramount for intelligent UAVs [7]. Researchers have
devoted significant effort to developing decision-making
methods in recent years, including traditional mathematical
approaches and machine learning approaches. In this paper,

targets and continuous actions.

Traditional mathematical approaches, such as the Dijk-
stra algorithm [8], the A-star algorithm [9], and the particle
swarm optimization (PSO) [10], require precise modeling of
environments [11] and substantial prior knowledge [12] to
solve path-planning problems. For instance, Fadzli et al.
[8] improved the Dijkstra algorithm by introducing a junc-
tion degree of difficulty function to generate the shortest
path indoors. Cai et al. [9] used the A-star algorithm to con-
trol UAVs to track known targets. H. Chen and P. Chen [10]
combined the divide-and-conquer strategy with the A-star
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algorithm into PSO to generate paths by dividing an entire
path into segments. In the above methods, starting points
and endpoints are predefined, and initial information, such
as floor plans, terrains, and danger zones, is known. Thus,
these methods are not suitable for the problem addressed
in this paper, which is searching for random targets from
random starting points under partially observable
conditions.

In contrast to mathematical approaches, machine learn-
ing approaches, particularly reinforcement learning (RL),
have advantages in creating intelligent UAVs. RL addresses
the PPOA problem by maximizing rewards during an
agent’s interaction with environments. For instance, Hung
and Givigi [13] proposed a Q-learning approach to coordi-
nate a group of UAVs to fly together in a 2D scene, where
the UAVs have discrete actions, constant altitude, and veloc-
ity. Yijing et al. [14] designed an adaptive and random
exploration (ARE) framework consisting of an action mod-
ule, a learning module, and a trap-escape module to adjust
UAVS’ paths, but the action space remained discrete. Simi-
larly, Yan and Xiang [15] utilized the Euclidean distance to
a target as the initial value of the g-function and integrated
the e-greedy algorithm with the Boltzmann strategy to select
a discrete action in 2D space. Therefore, there is an urgent
need to overcome the constraint of discrete actions in tabu-
lar scenarios and equip UAVs with continuous actions to
perform complex tasks in 3D space.

To address the above challenges, an increasing number
of researchers have turned to deep learning-based methods
[16], especially deep reinforcement learning (DRL), to over-
come the limitations of table-based RL methods [17]. DRL
has achieved significant breakthroughs in various domains,
including video games [18], power systems [19], financial
trading [20], and automated assembly systems [21]. By using
neural networks to approximate value functions, DRL can
effectively handle complex path-planning tasks. For
instance, Raja et al. [22] utilized deep Q-learning to optimize
the flight parameters of roll, pitch, and yaw for a group of
UAVs while minimizing the individual distance traveled by
each UAV. Li et al. [23] employed the double deep q-
network (double-DQN) to address the coverage path-
planning problem by balancing exploitation and exploration
through the e-greedy policy. Roghair et al. [24] extended the
dueling double-DQN (D3QN) to enhance exploration for
obstacle avoidance in 3D environments. Despite the effec-
tiveness of these methods in dealing with complex tasks such
as swarm coordinated flight, area traversal coverage, and 3D
obstacle avoidance, they still fall short in modeling continu-
ous actions. To this end, Xu et al. [25] proposed a continu-
ous model for the action space with a multiple experience
pool and gradient truncation to improve convergence. Qi
et al. [26] applied frequency decomposition (FD) during
the proximal policy optimization (PPO) [27], which decom-
posed rewards into multidimensional frequencies and calcu-
lated the returns as the guidance of path-planning. Zhang
et al. [28] combined the two-stream actor-critic network
structure with the twin-delayed deep deterministic (TD3)
policy to extract environmental features and achieve contin-
uous controls. However, these methods require complete
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observations of environments, and their perceptions are lim-
ited under partially observable conditions. An intuitive and
straightforward way to improve perceptual ability is the
state-stacking approach [29], in which a sequence of states
is concatenated to improve representation. However, this
technique tends to expand the state space and increase train-
ing difficulty. Singla et al. [30] proposed a direct approach to
environmental perception by equipping UAVs with monoc-
ular cameras to extract depth maps from RGB images. Sim-
ilarly, Mansouri et al. [31] corrected the heading of UAVs
toward the center of a mine tunnel by using a 2D LiDAR
sensor. Notably, the above approaches require additional
equipment to sense environments.

Improving the perceptual ability in a complex environ-
ment is crucial, but it is equally important to consider gener-
alization ability and learning efficiency. However, the
existing research [22, 23, 30, 32] on PPOA relied on fixed
or prespecified targets, making it unsuitable for navigating
to random locations. Furthermore, allowing UAVs to search
for random targets confronts challenges such as large state
space and low learning efficiency.

Based on the above literature review, we can draw the
following research gaps. Firstly, most of the existing
methods search for fixed targets with discrete actions,
which limits the practicality and scalability of UAVs in
complex and dynamic environments. Secondly, most of
the existing methods assume complete observations of
environments, which is unrealistic and impractical in the
real world where UAVs often face partially observable
conditions. Thirdly, most of the existing methods do not
consider state space compression and observation memory
enhancement, which is essential for improving learning
efficiency and reducing collision rate. To solve the above
problems, we propose a representation enhancement-
based proximal policy optimization (RE-PPO) framework
for autonomous navigation in obstacle-rich environments
with random targets and continuous actions. The main
contributions are as follows.

(i) We devise a representation enhancement (RE)
module comprising two components: observation
memory improvement (OMI) and dynamic relative
position-attitude  reshaping (DRPAR). OMI
improves the perceptual ability and reduces the col-
lision rate under partially observable conditions by
separately extracting perception and state features
through an embedding network and feeding the
extracted features to a gated recurrent unit (GRU)
to enhance the observation memory. DRPAR com-
presses the state space and improves the learning
efficiency by transforming the movement trajecto-
ries from an absolute coordinate system to several
local coordinate systems, which can capture the
similarity among different episodes

(ii) We design three step-wise reward functions that
avoid sparsity and facilitate model convergence by
providing intermediate rewards based on collision,
activation, and navigation. We also apply the PPO
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FIGURE 1: Schematic diagram of PPOA.

algorithm to learn an optimal policy for continuous
actions, which enhances the practicality and scal-
ability of our framework

(iii) We conduct extensive experiments in three 3D sce-
narios to evaluate the performance of our method.
We compare our method with several baseline
methods and demonstrate that our method achieves
a faster convergence, a higher success rate, and a
lower timeout and collision rate

The remainder of this paper is organized as follows. Sec-
tion 2 describes the preliminaries of the proposed method.
Section 3 presents the details. Section 4 shows the experi-
mental results. Section 5 discusses the improvements and
limitations. Finally, Section 6 presents conclusions.

2. Preliminary Work

2.1. Problem Formulation. The PPOA problem concerned
in this study can be illustrated in Figure 1. In Figure 1,
the right part is the 2D projection of the 3D scenario on
the left. There are two kinds of obstacles in the 3D sce-
nario, cuboid pillars and surrounding walls. In the 2D
projection, the red rectangles represent the pillars whose
number and location are uncertain, the four red sides rep-
resent the walls, the green circle denotes a random target,
and the blue area indicates the perception range of the ray
sensors through which the UAV can receive partial envi-
ronment information. PPOA is aimed at making real-
time decisions through incomplete sensed information to
avoid obstacles and navigate to the target from a random
starting point with continuous actions. This problem is
challenging and practical, as it involves uncertainties and
partial observations.

To address this problem, we propose a novel represen-
tation enhancement-based proximal policy optimization
(RE-PPO) framework. Specifically, we formulate PPOA in
an obstacle-rich area as a partially observable Markov

decision process (POMDP). The observation vectors of
POMDP consist of the state of the UAV and the incom-
plete sensed information from the ray sensors. The state
of the UAV includes position, speed, and rotation, where
a pair of speed and rotation forms an action. To achieve
continuous actions, we apply PPO to model actions. We
elaborate on the theories and definitions involved in our
framework in the subsequent sections of this chapter.

2.2. POMDP. POMDP provides a principled mathematical
framework for modeling and solving decision and control
tasks under uncertainties [33]. POMDP contains the fol-
lowing components, S, A, T, R, O, 2, and y, where S repre-
sents a set of environmental states, A is a set of actions, T
refers to a set of conditional transition probabilities
between states, R is the reward function, O refers to a set
of partial observations sensed by UAVs, Q represents a
set of conditional observation probabilities, and y € [0, 1]
is the discount factor.

For a given time f, the system is in a state s, € S, and
the UAV captures an observation o, € O and takes an
action a,€ A. A reward r, is returned according to s,
and a,. The taken action a, causes the state s, to transit
to a new state s,,; with a probability of T(s,,,|s,» a,), and
the UAV will receive an observation o,,; with a probabil-
ity of Q(o,,,/s;41>a,). The above process is repeated until
an episode is over. The optimization goal for this process
is to generate an action at each time that maximizes the
total expected reward R=Y°r,y, where y determines
the weighting between immediate rewards and future
rewards. When y=0, the UAV only cares about actions
yielding the largest immediate rewards, and when y=1,
the UAV focuses on maximizing the future rewards.
Figure 2 shows the whole interaction process of POMDP.

2.3. Observation Space Definition. In this paper, the obser-
vation space consists of the sensed and the state informa-
tion. We wuse the ray sensors to collect the sensed
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FIGURE 2: Interaction process between the UAV and the environment.

information as shown in Figure 1. The UAV sends 15 rays
from different directions as illustrated in the following
equation:

RAY = [ray,, ray,, ray;, -, ray,]". (1)

In (1), each ray, has a perceptual distance of 13 meters
and returns the label type and distance in the correspond-
ing direction as illustrated in the following equation:

ray; = [, L, I, ), (2)

where [, refers to a void label without obstacles and
targets in the corresponding direction, I/, means a ray
detects an obstacle, [, means a ray detects a target, and d
represents the returned distance to the obstacles or the
target. For void labels, the returned distance is set to zero.
We use one-hot encoding to organize the sensed informa-
tion for the three types of labels. Specifically, for each
detected label, we represent the sensed information as a
four-dimensional vector (1, 0, 0, 0) for voids, (0, 1, 0, d)
for obstacles, and (0, 0, 1, d) for targets.

The position, speed, and rotation constitute the state
information as illustrated in the following equation:

Xy

Ve

S= v | (3)

where x,y,z is the UAV’s real-time position, v is the
real-time speed, and «, 3,0 is the real-time rotation repre-
senting pitch, roll, and yaw, respectively. In practice, we fix
the flight altitude z to simplify the problem complexity and
obtain the following equation:
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sy is updated between time intervals through the fol-

lowing equation:

X, +v, cos 0,

xt+1
Vi | Y, +v,sin0, 5
N n*C ’
vt+1
T
011 Py * 3

where v, and 0, are the two components of an action at
time t and #, €[0,1] and p, € [-1,1] are the two control
parameters for v, and 0,, respectively. #,=0 means the
UAV is hovering, and #, = 1 means the UAV travels with
the max speed C=2.8m/s. p, = -1 means the UAV rotates
60 degrees to the left, and p, =1 means the UAV rotates
60 degrees to the right. Combining (1) with (4), the observa-
tion o, at time t can be derived as shown in the following
equation:

0, = [ray,, ray,, rays, -+, 1ay,,, X, , v, 0] . (6)

2.4. Proximal Policy Optimization. DRL can be separated
into the value function-based and policy-based categories
based on the way to maximize cumulative rewards. The
value function-based methods cannot model continuous
actions. Therefore, we choose the policy-based methods as
our solution.

The policy-based methods are aimed at learning an
agent’s policy 7. During interaction with the environment,
the received reward can be written as the following equation:

Ry =) R(7)75(7), (7)

where 7 represents the trajectory generated in each epi-
sode. R(7) is the cumulative reward. 7, represents the policy
adopted by the neural network parameter 0. In order to
enhance the decision-making ability, the gradient ascent
algorithm is used to optimize the policy as shown in the fol-
lowing equation:

N

1 o n ny.n
VRg = NZ R(z")Vlog mg(ay s ), (8)
n=1

t

I
—_

where T, is the step number in an episode and N is the
episode number. However, this approach requires a large
number of episodes and suffers from slow learning.

The PPO algorithm uses an actor-critic architecture to
accelerate policy optimization. The critic network Vi(s,) is
used to evaluate the state s, at time ¢ as shown in the follow-
ing equation:

V¢(5t) S E Y yzrt+2 Tt yn V¢(St+n)' (9)

In the context of this study, the UAV cannot observe the
complete environmental states. Therefore, we use o, as s,.
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Then, the loss function of the critic network is described as
(10) in which the historical data are integrated with the gra-
dient descent algorithm to improve evaluation accuracy.

’ 2
Loss($) = =2y (Zy e =Vol(s)) . (10)

The actor network introduces the advantage equation A,
into the objective function to improve training efficiency. As
shown in (11), A, represents the advantage of the action rel-
ative to the expectation of the state s,.

A= Zt'>tyt _trt' - V¢(St)' (11)

Additionally, the actor network introduces the impor-
tance sampling, which improves the utilization of historical
experiences and accelerates training speed. As shown in
(12), the importance sampling r,(0) is a technique for com-
puting the importance weighting between a sampling distri-
bution and a target distribution, which calculates the
probability ratio of the experience under the current policy
and the old policy.

O

By combining (11) with (12), we obtain the objective
function of the actor network, as shown in the following
equation:

Tom(6) = =1, min (r,(0)A,, clip(r,(0), 1 - €, 1 + €)A,),
(13)

where € is the clip parameter and clip truncates the value
of r,(0) within the range of [1 — €, 1 + €] to avoid large gradi-
ent volatility and ensure training stability.

3. Proposed Method

In this section, we describe the details of our RE-PPO frame-
work. The overall framework of RE-PPO is shown in
Figure 3. The OMI module employs an embedding network
to process the state information and the sensed information
of 0,. Then, it enhances the observation memory through a
GRU network to improve perception and reduce collisions
under partially observable conditions. The DRPAR module
reshapes the state s;*" of different episodes through a coordi-
nate transformation, and the similarity of the reshaped states

from different episodes can be used to compress the state

. - . h
space and improve training efficiency. The outputs s, **

of RE will be passed to PPO to model continuous actions.
During training, we formulate three step-wise reward func-
tions to guide policy optimization.

3.1. Observation Memory Improvement. In PPOA tasks,
UAVs are unable to observe the complete environmental
information. Improving observation memory for environ-
mental exploration can reduce collisions and improve search

Step-wise reward

Environment Observation
PPO RE
Actor
network 22/1[/1
Action module [~ 1 S, v
Critic P
network NFEShﬂPedDRPAR

t

FiGUre 3: RE-PPO framework.

efficiency. Previous work [34] viewed the components of o,
as a whole and passed the whole to a deep neural network
to extract features. However, direct processing for observa-
tions slows down training speed.

Instead, we process the state and the sensed information
separately. As shown in (14), the state and the ray compo-
nents are plugged into the embedding networks e to extract
features. After the processing of the feedforward neural net-
work Linear, we concatenate the two neuronal representa-
tions as n,.

n, = [Linear(e(s;")), Linear(e(RAY))]. (14)

The concatenated n, is fed into a GRU network for
memory enhancement. The GRU network uses a reset gate
unit and an update gate unit to process the sequence data.
The reset gate unit combines the current observation n, with
the previous memory information while discarding the can-
didate hidden state h,_; to achieve oblivion. Equation (15)
shows the process through the reset gate unit, where Linear
is the linear transformation network, and o is the sigmoid
activation function, which constrains the results within the
range of (-1, 1).

r, =o(Linear(n,, h,_,)). (15)

Equation (16) shows the process through the update gate
unit. The update gate unit regulates the updating of candi-
date hidden states with the current input #, and the previous
hidden state h,_;.

z, = o(Linear(n,, h,_)). (16)
The candidate hidden state /; for the current time step is
obtained by integrating r,, h,_;, and n,, as shown in (17),

where ® denotes the element-wise product, and the activation
function tanh constrains the output of i, within the range of

(=1, 1). And the final hidden state h, is given in (18).
h; = tanh (Linear(n,, h,_, ©1,)), (17)

hy=z,0h_ +(1-2z,)0h, (18)
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Through the processing of GRU, the decision trajectory T
consists of {hy, ay, 7o, hy, a;, 11, hy, -++ }, where a, denotes the
action and r, is the instantaneous reward. The whole process
of OMI is shown in Figure 4.

3.2. Dynamic Relative Position and Attitude Reshaping. Sim-
ilar trajectories exist among different episodes in PPOA
tasks involving searching for random targets, as shown in
Figure 5. Previous work [35] ignores the underlying relation-
ships between episodes, resulting in a large state space. To
compress the state space and facilitate policy convergence,
we propose the DRPAR strategy to extract similar intrinsic
features.

After specifying the UAV’s state and the target during
the initialization phase of each episode, instead of recording
the real-time state, we just record the dynamic relative differ-
ences between the initial state and the real-time state, as
shown in (19) and (20), respectively.

APOS, = (Axy, Ay,) = (X, = X0, ¥, = Yp)> (19)

26,=6,-6,. (20)

In (19) and (20), APOS, represents the dynamic relative
difference between the real-time position (x,,y,) and the
starting point (x,, y,), and A0, is the dynamic relative differ-
ence between the real-time rotation 6, and the initial rota-
tion 6,. DRPAR transforms the trajectories of different
episodes in an absolute coordinate system into several local
coordinate systems. The trajectory similarity of different epi-
sodes can be extracted and utilized in the local coordinate
systems. The state space is compressed by the similarity of
the reshaped positions and attitudes; thus, the convergence
speed is improved. After DRPAR, we use APOS, and A8,
to replace the corresponding components of s;*" and com-

bine the replaced result with the sensed information to for-
reshape

mulate the reshaped state s, . The critic network of

reshape . .
PPO takes s, *° as an input to execute an evaluation, as

RP [QEA]
a5 2

Ficure 5: Different trajectories have similar intrinsic features.
Trajectory 7, and trajectory 7, share the same segment.
Trajectory 7, and trajectory 7, also have similar action sequences.

shown in the following equation:

V¢ (S;eShape) Sr Yt Vzrnz +.+y" V¢ (Sifj‘ape) .
(21)

3.3. Reward Function Design. The design of reward functions
is a crucial issue in DRL. We design three types of step-wise
rewards: an obstacle avoidance reward, a per-step reward,
and a navigation reward, to avoid the sparsity of episode-
wise rewards and to facilitate model convergence.

To encourage the UAV to avoid obstacles during nav-
igation, we design the obstacle avoidance reward based
on the distance between the UAV and the obstacles, as
illustrated in (22) where min (d;, -+, d,) denotes the clos-
est distance from the UAV to the obstacles, and L is the
specified threshold indicating the safe distance. When
min (dy,---,d,) is lower than L, a negative reward is
returned. When min (d,, ---,d,) tends to zero, a collision
occurs, and the maximum negative reward -A,L is
returned. And when min (dy,---,d,) is greater than or
equal to L, the returned reward is zero.

r =\, min (min (d,,---,d,) - L,0). (22)

avoidance
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(a) Scenario A

(b) Scenario B

FIGURE 6: Two 3D scenarios designed in Unity3D.

Furthermore, to encourage the UAV to move more
actively, we design the per-step reward as shown in
(23). The purpose of the per-step reward contains two
aspects: to reduce the number of steps in one episode
and to prevent the UAV from getting stuck in stagnation
due to obstacle avoidance.

Tstep = _/\2 : (23)

PPOA is aimed at navigating to the target as effi-
ciently as possible by providing a significant positive
reward when the UAV reaches the target. During naviga-
tion, once the ray sensors detect the target, the UAV
moves closer until the distance d between the UAV and
the target is less than the specific value d ;, in (24). At
this point, A; is awarded as the reward; otherwise, the
reward is zero.

otherwise,

0:
rnavigation = { A3, d<d (24)

min*

In summary, the reward r received by the UAV in

each step is the combination of 7,y5gancer Tsiepr and
Tnavigations @S shown in the following equation:
"= Tavoidance rstep + rnavigation' (25 )

4. Experiments

4.1. Experimental Scene Design. We construct two virtual
scenarios in Unity3D, a powerful cross-platform 3D engine,
to verify the performance of RE-PPO. As shown in Figure 6,
the UAV and the target (the pink ball) are randomly gener-
ated in the two scenarios. And their heights are fixed with

the same value. In Scenario A, the white walls are the obsta-
cles that delimit the search range. In Scenario B, in addition
to the white walls, there are cuboid pillars placed in uncer-
tain locations as another type of obstacle. The cuboid pillars
have different shapes and sizes from the white walls, which
adds to the complexity of PPOA. The UAV needs to avoid
collisions with both types of obstacles when searching for
the target. In addition, we used ML-Agents [36], a deep
learning framework, to communicate data between our algo-
rithms and the 3D scenarios.

4.2. Model Design and Parameter Selection. The neural net-
work architecture employed in this study is illustrated in
Table 1. The architecture comprises three sections: a repre-
sentation network, an OMI network, and an actor-critic net-
work. The representation network comprises a perception
network and a state network, which are responsible for
extracting observation features. Specifically, the perception
network handles the sensed information from the ray sen-
sors, while the state network is responsible for processing
the state information of the UAV. Both networks are linear
fully connected networks, each with two layers of 128 and
64 neurons, respectively. Following the feature extraction
of the representation network, the outputs are concatenated
to form a 128-dimensional feature representation. The sec-
ond section is the OMI network based on the GRU architec-
ture. This network comprises a single layer with 128 neurons
to enhance the observation memory through selectively
remembering and forgetting information and updating the
memory representation. The third section is the actor-critic
network that receives the reshaped states from DRPAR to
model continuous actions. The actor network and the critic
network are both linear fully connected networks consisting
of two layers of 64 neurons each. They are used to fit the pol-

reshape

iCY T (St reshape) )

) and the state value function V (s,



8 International Journal of Aerospace Engineering
TaBLE 1: Network architecture. TaBLE 2: Optimization parameters of PPO.

Network Neuron number Type Parameter Value

Perception (128, 64) Linear A 0.97

State (128, 64) Linear € 0.2

OoMI 128 GRU N-step 3

Critic (64, 64) Linear Actor iteration 10

Actor (64, 64) Linear Critic iteration 10

Actor learning rate 1.0e-4

The optimization parameters of PPO are presented in Critic learning rate 1.0e-4

Table 2. The discount factor A in the generalized advantage Optimizer Adam

estimation (GAE) is set to 0.97, and the reward discount factor Reward discount factor 0.9

is set to 0.9. The two values, being close to 1.0, are chosen to

emphasize the importance of long-term rewards. The clip )

parameter € is set to 0.2 to effectively control the magnitude TasLE 3: Reward function parameters.

of policy adjustment. And the N-step is set to 3 when estimat- Parameter Value

ing advantages in GAE. During each sampling, both the actor

network and the critic network undergo iterations 10 times. 10

Both networks employ a learning rate of 1.0e-4, and the Adam M 1.0

optimizer is utilized in the optimization process. A 0.001
Table 3 shows the parameters of our reward functions. 1 10

L is set to 1.0 to indicate the safe distance from the UAV ’ ‘

to an obstacle. A, is the collision penalty factor set to 1.0 rnin 0.1

to return the maximum negative reward when a collision
happens. A, is the per-step penalty factor set to 0.001 to
return the small negative reward to activate the UAV. A,
is the navigation reward factor set to 1.0 to return the
large positive reward when the UAV successfully navigates
to the target. And d,;, is the threshold set to 0.1 to mea-
sure the proximity between the UAV and the target. If the
distance between the UAV and the target is smaller than
d > 1t is approximately considered that the UAV has
reached the target.

4.3. Result and Analysis. We conduct comprehensive exper-
iments to evaluate the performance of related methods. In
terms of training, we present a comparative analysis of the
trends of different methods concerning the per-episode
cumulative reward and the per-episode step length. In addi-
tion, we comparatively analyze the statistical results of our
reward functions concerning success rate. In terms of infer-
ence, we comparatively analyze the statistical results of dif-
ferent methods concerning success, timeout, and collision
rates. And finally, we present the PPOA process of RE-
PPO in the two 3D scenarios.

We design three end-of-episode conditions in our exper-
iments. Firstly, we set the maximum step limit for each epi-
sode to 1000 steps. If the UAV exceeds this limit, an episode
ends immediately. Secondly, the end-of-episode condition is
triggered if the UAV collides with an obstacle. Lastly, the
episode ends immediately if the UAV successfully navigates
to the target. Once one of these end-of-episode conditions is
met, two new random locations for the UAV and the target
are generated, respectively, and a new episode begins.

4.3.1. Per-Episode Cumulative Reward. The per-episode
cumulative reward during training is the core evaluation
indicator for the merits of DRL. The comparative trends of

the per-episode cumulative reward of the four methods are
shown in Figure 7. In Figure 7, the horizontal coordinate
represents the training step, the vertical coordinate repre-
sents the per-episode cumulative reward, the lines with dif-
ferent colors denote the average performances in three
experiments, and the colored regions depict the standard
deviation of the four methods. In the following content,
RE-PPO represents the proposed method combining RE
with PPO, OMI-PPO removes DRPAR from RE and com-
bines OMI with PPO, and DRPAR-PPO removes OMI from
RE and combines DRPAR with PPO.

From Figure 7, we can see that the rewards of the four
methods show an overall increasing trend within a limited
number of training steps. At the beginning stage of training
(0K-25K steps in Scenario A and 0K-40K steps in Scenario
B), the performances of the four methods have little differ-
ence, and all methods show a significant growth trend. The
reason is that all methods have a great potential to improve
their decision-making ability through limited experience in
the early stages of training. As training proceeds, the
decision-making ability of the four methods becomes
increasingly distinct due to their different capabilities in
extracting and utilizing latent knowledge. Compared with
RE-PPO, the performance of OMI-PPO and DRPAR-PPO
is weaker. The reason is that OMI-PPO or DRPAR-PPO
only considers a single enhancement module. OMI enhances
observation memory through selectively remembering and
forgetting information to improve decision-making ability.
DRPAR extracts similarity between episodes by coordinate
transformation to compress state space. Therefore, the per-
episode cumulative reward of OMI-PPO and DRPAR-PPO
is higher than that of PPO, proving the validity of OMI
and DRPAR.
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FIGURE 8: Per-episode step length trends in Scenarios A and B.

Due to the fact that Scenario B has additional obsta-
cles, the four methods require more training to reach the
same level as in Scenario A. Notably, the advantage of
OMI-PPO over DRPAR-PPO is more significant in Sce-
nario B than in Scenario A. The reason is that Scenario
B has a more complex environment, requiring the UAV
to have a stronger observation memory capability. In con-
trast, the environment in Scenario A is relatively simple;
therefore, the performance difference between OMI-PPO
and DRPAR-PPO is less pronounced. After training for a
certain number of steps (100k steps in Scenario A and
150k steps in Scenario B), the advantage of RE-PPO
becomes increasingly significant.

In most episodes, the reward of RE-PPO is higher than
that of the other three methods and eventually converges
to the highest value, approximately 0.75, in both scenarios.
The standard deviation of RE-PPO is also smaller than the

other three methods. Furthermore, at the end phase of train-
ing (185k-200k steps in Scenario A and 260k-300k steps in
Scenario B), RE-PPO shows less trend fluctuation, indicating
a more pronounced and faster convergence.

4.3.2. Per-Episode Step Length. The per-episode step length
offers another perspective for describing convergence, stabil-
ity, and efficiency during training. Figure 8 presents the
comparative trends of the four methods. The step length is
inferred by using the trained models at different stages.
From Figure 8, it is observed that all methods show an
increasing trend followed by a decreasing trend. At the ini-
tial stage of training, the UAV lacks decision-making ability
and is highly susceptible to collision with obstacles, leading
to episode termination. In Scenario A, all methods terminate
their episodes within approximately 100 steps, while in Sce-
nario B, the presence of additional obstacles causes all
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TABLE 4: Success rate statistics in Scenario A.
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TABLE 6: Inference statistics in Scenario A.

Training step ASN AS AN SN Completion rate RE-PPO  OMI-PPO DRPAR-PPO PPO
50K 31% 17% 12% 2% SR 82% 66% 65% 43%
100K 55% 28% 22% 5% TR 15% 29% 30% 47%
150K 72% 35% 28% 3% CR 3% 5% 5% 10%
200K 82% 44% 31% 6%

TABLE 5: Success rate statistics in Scenario B.

Training step ASN AS AN SN
50K 25% 13% 6% 1%
100K 39% 19% 11% 2%
150K 56% 24% 16% 2%
200K 66% 29% 19% 3%
250K 72% 33% 23% 2%
300K 79% 39% 26% 2%

methods to terminate their episodes within approximately
40 steps. With continued training, the UAV gradually
improves its ability on obstacle avoidance; thus, the step
length increases. After training for 30k steps in Scenario A
and 60k steps in Scenario B, the step length decreases, indi-
cating that the UAV has learned more experience to reach
the target. As experience is gained, the success rate grows,
requiring fewer steps in one episode to reach the target.
Throughout the overall trend, the step length of RE-PPO is
less than that of the other three methods, indicating its effec-
tiveness in PPOA.

4.3.3. Reward Function Evaluation. To prove effectiveness,
we count the success rates for our reward functions. Specif-
ically, based on RE-PPO, we utilize the trained models of
different reward functions at different stages to count the
success rates, each model being run 100 times. In Tables 4
and 5, ASN denotes the combination of 7,igances Tstep> a0

navigations AS denotes the combination of 7. and r
AN represents the combination of 7,,;4unce
and SN represents the combination of g, and r,,igation-

From Tables 4 and 5, except for SN in Scenario B, the
success rates of the three reward functions keep increasing
as training steps grow. Since ASN simultaneously considers
the rewards from obstacle avoidance, per-step, and naviga-
tion, its success rate keeps the highest level. When trained
for 200k steps in Scenario A, its success rate reaches 83%
and when trained for 300k steps in Scenario B, its success
rate reaches 80%. Moreover, ASN exhibits the most rapid
increase in success rate compared to the other reward
functions.

Since AS excludes the navigation reward, there are no
positive rewards to motivate the UAV to reach the target.
Thus, compared to ASN, the success rate of AS is lower.
When trained for 200k steps in Scenario A, the success rate
is 44%, and when trained for 300k steps in Scenario B, the
success rate is 39%.

r avoidance step;

and rnavigation;

TABLE 7: Inference statistics in Scenario B.

Completion rate RE-PPO  OMI-PPO DRPAR-PPO PPO

SR 79% 64% 60% 40%
TR 17% 31% 32% 47%
CR 4% 5% 8% 13%

Due to the exclusion of the per-step reward, the enthusi-
asm of the UAV for movement is reduced in AN, leading to
more focus on obstacle avoidance, which in turn causes the
UAV to get stuck in being stationary and fail to reach the
target within the specified steps. Thus, compared to ASN
and AS, the success rate of AN is lower. When trained for
200k steps in Scenario A, the success rate is 31%, and when
trained for 300k steps in Scenario B, the success rate is 26%.

Since SN excludes the obstacle avoidance reward, the
UAV cannot receive negative feedback when collisions
occur, causing frequent collisions and failures. Thus, SN
has the lowest success rate compared to the other reward
functions. When trained for 200k steps in Scenario A, the
success rate is only 6%, and when trained for 300k steps in
Scenario B, the success rate is only 2%. Interestingly, the suc-
cess rate of SN in Scenario B decreases when the training
steps increase from 200k to 250k. This suggests that the
UAV cannot improve its ability to reach the target without
the obstacle avoidance reward.

4.3.4. Inference Evaluation and Presentation. We use the
trained models of the four methods to evaluate the comple-
tion rate during inference. The completion rate contains
three aspects: success rate (SR), timeout rate (TR), and colli-
sion rate (CR). Specifically, each of the trained models is
inferred 100 times. In each inference, if the step number
exceeds the maximum step limit, 1000, it is considered a
timeout.

Tables 6 and 7 show that the completion rate of RE-PPO
is the highest. Due to the additional obstacles in Scenario B,
the completion rates of the different methods decrease to
some degree compared to those in Scenario A. The differ-
ence in statistical results between OMI-PPO and DRPAR-
PPO in the two scenarios reveals a potential insight that
OMI has better decision-making ability in complex scenar-
ios than DRPAR. The reason is that OMI focuses on
strengthening the observation memory, while DRPAR
focuses on compressing the state space. PPO presents the
worst performance due to the lack of additional enhance-
ment modules.

Figures 9 and 10 show the PPOA process of RE-PPO in
the two 3D scenarios. Each figure presents two episodes, and
each episode captures four frames. In Figure 9(a), the initial
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(a) PPOA process in Episode 1

(b) PPOA process in Episode 2

FIGURE 9: PPOA process of RE-PPO in Scenario A.

(b) PPOA process in Episode 2

FIGURE 10: PPOA process of RE-PPO in Scenario B.

orientation of the UAV deviates slightly from the direction
toward the target. The UAV starts to move near the corner
of the walls and adjusts its orientation through the percep-
tion of the ray sensor. When the target is sensed, the UAV

gradually gets close to the target. To demonstrate the robust-
ness of RE-PPO, in Figure 9(b), we set the UAV’s initial ori-
entation opposite to the target’s direction. In this extreme
case, the UAV turns to the left to avoid a collision with the
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corner and moves to the target intelligently. In
Figure 10(a), the target is positioned behind the pillar,
while the UAV is near another. The UAV successfully
identifies the two pillars and navigates toward the target.
To further evaluate the effectiveness of RE-PPO, we
increase the task difficulty in Figure 10(b). Specifically,
we increase the distance between the UAV and the target
and situate the UAV behind the pillar that occludes the
UAV’s perception of the target. Despite these challenges,
the UAV can still find a reasonable trajectory to reach
the target. From the overall process Of PPOA, it is
observed that, during obstacle avoidance, the UAV adjusts
its orientation to the direction indicated by more free rays
and moves forward in this direction to avoid collisions.
After detecting the target, the UAV adjusts its motion
direction to the direction pointed by the rays that have
sensed the target. These behaviors demonstrate the supe-
rior decision-making ability of RE-PPO, making it a
promising approach for UAV control in complex
environments.

4.4. Performance Evaluation in Real Scenarios. To demon-
strate the effectiveness of RE-PPO, we evaluate its perfor-
mance in a complex 3D city model, as shown in Figure 11.
Compared with the 2D scenarios in previous work [13,
15], the city model is more realistic in presenting the process
of PPOA.

Figure 12 shows the detailed process in a local area. We
present our PPOA in two episodes. In both episodes, the ini-
tial state of the UAV and the target point are randomly gen-
erated, and the relative position between the UAV and the
target point is opposite. There are obstacles, such as the
buildings and the trees, around the UAV and the target
point. Despite these interference factors, the UAV success-
fully navigates to the target point in both episodes. The
results demonstrate the effectiveness and adaptability of
RE-PPO.

5. Discussion

Although we have provided a rational and intuitive anal-
ysis of the experimental results in the previous section,
two aspects still require further elaboration. Firstly, since
the per-episode cumulative reward is a fundamental met-
ric for evaluating the performance of DRL, we need to
conduct an in-depth discussion on the instability of the
per-episode cumulative reward for the four methods. Sec-
ondly, there are some limitations to our proposed
approach, and these limitations will be the focus of future
work.

In DRL, instability is a common phenomenon. During
training, an agent may encounter unfamiliar or known situ-
ations that require adjusting or reusing the policy. At this
time, performance may decrease or improve. Based on the
actual situations of our experiments, we analyze the reasons
resulting in trend fluctuation, trend intersection, and trend
approximation, as shown in Figure 13. In the figure, the rect-
angles indicate trend fluctuation, the circles indicate the
intersection between trends, and the triangles indicate that
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FIGURE 11: A 3D city model.

the per-episode cumulative reward of other methods
approximates that of RE-PPO.

There are two reasons for the fluctuation. Firstly, the
UAV’s initial state and the target are random in each epi-
sode. Therefore, the cumulative rewards obtained by the
UAV in each episode are different, which directly leads to
the fluctuation. Secondly, the PPO-based methods clip the
gradient when optimizing the objective function, which
causes unstable gradient backpropagation and leads to indi-
rect fluctuation.

The intersection mainly occurs between OMI and DAR-
PAR; the reasons for this can be attributed to three aspects.
Firstly, OMI introduces a GRU network to enhance the
observation memory, and the network parameters of GRU
require more experience to optimize decision-making, which
introduces some training perturbations. Secondly, DARPAR
only compresses the state space and thus cannot effectively
make decisions for new trajectories. Thirdly, the random-
ness of the UAV’s initial state and the target in each episode
leads to uncertainties in a generated trajectory. The UAV
receives higher rewards for similar trajectories generated
before, while for new trajectories, the UAV receives lower
rewards. Moreover, the frequency of the intersection is
higher in Scenario B. The reason is that Scene B is more
complex than Scene A, requiring more training steps with
a higher occurrence probability of similar or new
trajectories.

In some cases, the performance of OMI-PPO and
DARPAR-PPO can approximate that of RE-PPO. The rea-
son is that RE-PPO encounters extremely random chal-
lenges, such as the UAV’s initial position being close to
obstacles while the target is far from the UAV. Therefore,
the UAV needs more steps to explore the environment,
resulting in a decrease in the cumulative rewards and nar-
rowing the gap with the comparative methods. The approx-
imation mainly occurs in the early and middle stages of
training, when the decision-making ability of related
methods is still improving and is greatly influenced by ran-
dom factors. As training progresses, the decision-making
ability of RE-PPO gradually stabilizes and surpasses that of
the other methods.
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(a) PPOA process in Episode 1

(b) PPOA process in Episode 2

FIGURE 12: PPOA process of in the city model.
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FIGURE 13: Instability of per-episode cumulative reward.

The proposed method still has some limitations. Firstly,
OMI only separately extracts features for the perception
and the state information and directly concatenates the
extracted features. However, the direct concatenation
ignores the weight between the perception and the state
information. Therefore, an attention mechanism can be
introduced in future work to weigh the fusion for the
extracted features. Secondly, the experimental design in this
paper has certain constraints, mainly manifested in the
UAV’s fixed altitude and the ray sensor’s singularity, making
it difficult to use in reality. Therefore, future work will
increase the complexity of the experimental scenarios, free
up the UAV’s altitude, and introduce multiple heteroge-
neous sensors to adapt to more complex environments.

Thirdly, in the design of the navigation reward 7, i5ti0n> 2

positive reward is only given to the UAV when it is close
to the target, resulting in a lag in rewards and causing the
UAV to perform additional steps. Therefore, future work
will optimize the design of 7,,,yi540n DY providing a progres-
sive reward to the UAV based on the relative position
change between the UAV and the target.

6. Conclusion

In this study, we propose a RE-PPO framework to address
the challenges of partial observation and large state space
when searching for random targets through continuous
actions. The RE module consists of OMI and DRPAR. We
designed three 3D virtual scenarios to demonstrate the effec-
tiveness of RE. The experimental results show that RE-PPO



14

achieves a faster convergence, a higher success rate, and a
lower rate of timeout and collision. The experimental results
also reveal an interesting conclusion that the performance
difference between OMI and DRPAR in a simple environ-
ment is insignificant, while in a complex environment,
OMI works better than DRPAR.

Future work mainly focuses on improving the applicabil-
ity in more complex and uncertain environments. We will
explore more effective methods for observation memory
improvement and dynamic relative position-attitude reshap-
ing to enhance perception ability and state space compres-
sion effect. We will also try to use other reinforcement
learning algorithms instead of PPO to compare the advan-
tages and disadvantages of different algorithms in this task.
Moreover, we will deploy RE-PPO on real UAVs and con-
duct practical applications in various domains, such as
express logistics, environmental monitoring, and maritime
search and rescue.
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