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The large-scale space structure during on-orbit assembly is a time-varying system. The dynamic modeling problem of such
incrementally increasing space structure is investigated, and a modular dynamic modeling approach is proposed in this paper.
The dynamic model of each substructure is first established, and then, a database is designed to store substructure models,
which is used for subsequent dynamic modeling in the assembly process. The fixed connection relationship between adjacent
substructures is described by constraint conditions, which lead to the coefficient matrices of adjacent substructures being
decoupled. The substructures are assembled in a given sequence, and then, the dynamic modeling, to describe the large-scale
space structure on-orbit assembly, is gradually completed via using the proposed modeling approach. The numerical
simulation is finally presented. The results demonstrate that the extra calculation resulting from the coefficient matrices
coupling of adjacent substructures is avoided. Moreover, the proposed dynamic model can accurately describe the dynamic
characteristics of the large-scale space structure during on-orbit assembly.

1. Introduction

With the increasing demand of space missions, spacecraft is
developing towards the trend of large-scale and lightweight,
such as large space telescopes [1], communication antennas
[2], and solar power satellite [3]. However, the large-scale
space structure (LSS) cannot be constructed in one deploy-
ment, due to the constraints of a payload fairing of a rocket.
To solve this problem, the LSS is designed as multiple mod-
ular substructures, which are sent into space by multiple
launches, and then, they are assembled on orbit by robots
[1, 4]. The number of modular substructures significantly
increases along with on-orbit assembly. The configuration
also gradually grows, and dynamic parameters of the LSS
then jumpingly change, and the dynamic characteristics of
the whole system become very complicated during on-orbit
assembly, which brings a new challenge to the dynamic
modeling and structural active control.

Hence, it is very important to develop a dynamic model
of the LSS during on-orbit assembly, which could be
accurately used to describe the dynamic characteristics of

the incrementally increasing space structure. Recently, many
scholars have carried out extensive research on the on-orbit
assembly of LSSs. The coupled vibration problem between
robots and LSS is studied during the handing process [5].
The coupling dynamic model between a two-legged mobile
robot and a LSS is developed during in-space structure
assembly [6]. The dynamic model of the robot base and
the flexible structure is established, and the assembly exper-
iments of flexible structures are presented [7]. The above
work mainly focuses on the coupled modeling between the
space robot and assembly structures. The disturbance rejec-
tion in the space environment is also a very important
research area [8, 9]. The influence of disturbances on
dynamic modeling and analysis, such as contact-impact or
orbit transfer, is to get more attention, rather than the
changes of the LSS itself. The LSS is constructed via on-
orbit assembly in a given sequence. The number of substruc-
tures gradually increases, and the flexible characteristics of
the LSS become more obvious as the assembly proceeds.
For instance, the solar power satellite contains multiple flex-
ible appendages, the structure size is huge, and a higher
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dimensional model is usually needed to ensure accuracy
[10]. However, the structure dynamic modeling in the
assembly stage is significantly different from that of the
on-orbit operation stage, and its dynamic modeling and
analysis are also very important [11]. Besides, the existing
modeling methods mainly focus on the LSS after assembly.
Most of dynamic models are derived for the invariant space
structures, namely, the geometry and parameters do not
change [12]. The gradually increasing condition in the
assembly process has been not considered. Thus, it is diffi-
cult to describe the dynamic characteristics of LSSs and
achieve a good vibration suppression effect during assembly
using the previous models. There are also some interesting
and worthwhile works about on-orbit assembly. A dynamic
modeling method for active control of on-orbit assembly
with “node freedom degree loading” is proposed [13]. The
problem of sequential assembly and shape control of the
reflector antenna are studied, which is based on the life
and death element technology in the finite element method
[14]. An on-orbit assembly strategy for an orb-shaped solar
array is developed, and the dynamic model for the structural
vibration under the influence of the gradient is also pre-
sented [15]. Despite many valuable contributions in previ-
ous literature, it should be emphasized that the criteria for
variation of the LSS dynamic modeling in the assembly pro-
cess have not been clearly investigated. These assembly
modeling methods for the incremental structures have low
applicability, and some methods can not even guarantee
the accuracy of the dynamic modeling. Besides, it usually
required repeated superposition calculation of the coefficient
matrices in the assembly process, which is tedious and
complex. To sum up, the dynamic modeling problem for
on-orbit assembly of the LSS is investigated. The main
contributions are summarized as follows: (1) A modular
dynamic modeling approach (MDMA) of LSSs during on-
orbit assembly is proposed. The dynamic models of each
substructure are first established, and the fixed connection
relationship between adjacent substructures is then described
by constraint conditions, during the assembly process. Then,
the proposed dynamic model can accurately describe the
dynamic characteristics of the incrementally increasing space
structure. (2) The coefficient matrices of the adjacent substruc-
ture are decoupled, and the reconfiguration of the existing
coefficient matrices is not required along with the assembly
using the proposed dynamic model, which is formulated as a
set of differential-algebraic equations. Compared with [16,
17], the extra calculation due to the coupling of state
coefficient matrices of the LSS at each assembly stage is
avoided. Moreover, the dynamic parameters of the substruc-
ture only need to be calculated separately, which is convenient
for the design of the distributed control system with good
expansibility.

The paper is organized as follows. The preparation of the
dynamic modeling is presented in Section 2, which contains
developing each substructure dynamic model and presenting
modeling assumptions. The distributed cooperative control
approach for vibration suppression in the assembly process
is presented in Section 3. Section 4 presents simulation
results to demonstrate the accuracy of the proposed model

and to achieve vibration suppression of the LSS during on-
orbit assembly. The conclusion is introduced in Section 5.

2. Preparation of Dynamic Modeling

2.1. Dynamic Modeling Process of LSS On-Orbit Assembly.
The LSS is composed of multiple modular substructures,
and the construction is completed via on-orbit assembly.
The types of assembly substructures are different. It can be
distinguished by geometric configuration, material parame-
ters, etc. The assembly process of substructures is generally
regular and repetitive. Thus, a model database of the assem-
bled substructures is developed to store the dynamic models,
constraint conditions, and geometric material parameters of
substructures. The dynamic parameters of the assembled
substructures in the model database can be used directly
during the dynamic modeling. It avoids the remodeling of
the substructure in the assembly process. In the process of
LSS assembly, the dynamic model of the substructure is first
obtained from the database, and the connection of adjacent
substructures is defined by geometric constraint. When one
more substructure is assembled, only a submatrix needs to
be placed at the corresponding position in the coefficient
matrices of the whole structure, and the coefficient matrices
of the previous substructure do not change. The update pro-
cess of the coefficient matrices is shown in Figure 1.

To better illustrate the MDMA, the procedure to per-
form the approach is designed as shown in Figure 2, and
the detailed process consists of the following steps:

(1) Considering the task requirements, large size, and
complex configuration, the LSS is designed into N
modular substructures, and the assembly process is
divided into N stage

(2) The dynamic model of each substructure is derived,
and then, the substructure database is developed to
store the models of these substructures

(3) The constraint conditions of the assembled substruc-
ture are derived according to the assembly position,
the number of interfaces, and geometric configura-
tion, and then, these parameters are stored in the
database

(4) The dynamic parameters of the substructure, which
will be assembled immediately, are obtained from
the database, and the substructure is then gradually
assembled via a given sequence. The dynamic model
of the LSS at each assembly stage is then updated,
and the dynamic characteristic analysis and vibra-
tion control are also realized in assembly process

(5) Repeat the above steps until all substructures are
assembled, and the dynamic model of the whole
LSS after finishing assembly is therefore obtained

2.2. Constraint Equations. Some LSSs are consisted of multi-
ple modules. For example, the solar power satellite contains
truss module, solar array module, and antenna module.
These modules can be divided into N substructures and
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are assembled on orbit [18]. The plate structure and truss
structure are then used for the equivalent dynamic model-
ing. However, the dynamic models are derived for the plate
elements, and rod elements are different, and thus, the
constraint equation of solar array substructure and truss
substructure is also different.

2.2.1. Geometric Constraints. There are geometric constraints
between adjacent assembly substructures due to the fixed con-
nections. The substructure i is adjacent to substructure i + 1,
and the jth node on the substructure i corresponds to the
kth node on the substructure i + 1, as shown in Figure 3.

For the dynamic modeling of solar array module assem-
bly, four-node rectangular plate elements are used to derive
the dynamic model. Multiple solar array substructures are
assembled on orbit, and then, the construction of the solar
array of the solar power satellite is completed. The substruc-
tures of each solar array are fixedly connected after assem-
bly. Thus, the following constraints between the adjacent
substructures are

ψi,j =
ρi,j + lcθi,j − ρi+1,k

θi,j − θi+1,k
= 0, 1

where θ is the rotation angle of the substructure, lc repre-

sents the distance between two adjacent substructures, and
ρ denotes the deflection.

For the dynamic modeling of truss structure assembly,
the rod element is adopted. Thus, the geometric constraint
equation of truss substructures is given by

ψi,j = ri,j − ri+1,k = 0, 2

where r is the node position vector.
The geometric constraint equation of adjacent substruc-

tures in the whole LSS can be written as follows.

ψ1 = ψT
1,1 ψT

1,2 ⋯ ψT
1,m ⋯ ψT

i,j ⋯ ψT
n,m

T
, 3

where n denotes the number of substructures andm is the num-
ber of nodes in the connecting edges of adjacent substructures.

2.2.2. Boundary Conditions. The second part is the induction
of boundary conditions. The left end of LSS is the fixed end.
Therefore, for the left end of solar array structure, the con-
straint equations are as follows:

ψ2 =
ρ0

θ0
= 0, 4
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Figure 1: The update process of the dynamic parameters during on-orbit assembly.
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where ρ0 and θ0 denote the deflection and rotation angles on
the first substructure.

For the dynamic modeling of truss structure assembly,
the boundary conditions for the left end of the truss sub-
structure are described by

ψ2 = r0 = 0, 5

where r0 is the node position vector on the first substructure.

All the constraint equations are given by

ψ = ψT
1 ψT

2
T
= 0 6

3. Dynamic Model in Assembly Process

The actuation force on LSS during on-orbit assembly,
including assembly impact disturbance forces and control
forces, is described as

Fi = biui + diwi, 7

where i is the ith assembly substructure, bi is the control
input matrix, di is the disturbance matrix, ui denotes the
control input, and wi is the disturbance force.

The stiffness matrix, mass matrix, and damping matrix
of the substructure to be assembled are obtained via sub-
structure database. Then, the constraint conditions are used

Start assembly

Assembly completei < N

Number of the assembled
substructure i = 1

Basic model information
of assembly substructure

i = i + 1

Constraint of assembly
substructure

Te i th assembly stage

Update the dynamic
model of the LSS

Assembly interfaceAssembly location

Dynamic modelStructure type and
parameters

Dynamic model of the i th assembly stage

Te LSS is divided into N
substructures

Yes No

Figure 2: Modeling process for LSS on-orbit assembly.

Substructure i Substructure i + 1

j k

l
c

Figure 3: Schematic diagram of the substructure geometric
constraint.
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to describe the connection relationship between the adjacent
assembly substructure. According to the Lagrange equation,
the dynamic model of LSS in the first assembly stage is
developed. It is formulated as a set of differential-algebraic
equations as follows:

M1q1 + C1q1 +K1q1 +
∂ψ1
∂q1

T

λ1 = F1,

ψ1 = 0,
8

where M1, C1, and K1 are the mass matrix, damping matrix,
and stiffness matrix of the LSS after the first assembly,
respectively; q1, λ1, ψ1 and F1 are the generalized coordi-
nates, Lagrange multiplier, constraint condition, and gener-
alized forces of the LSS after the first assembly.

During the i + 1th assembly stage, the constraint condi-
tions and dynamic model of the i + 1 th substructure are first
obtained from the substructure database. The update process
of coefficient matrices of the LSS during on-orbit assembly is
shown in Figure 1. The coefficient matrices of the dynamic
equation assembled previously do not change. The connec-
tion between the assembly substructure and LSS is then
established by geometric constraint Eq. (1) or Eq. (2).
The dynamic model of LSS in the i + 1th assembly stage
is given by

Mi+1qi+1 + Ci+1qi+1 +K i+1qi+1 +
∂ψ i+1
∂qi+1

T

λi+1 = Fi+1,

ψ i+1 = 0,
9

where Mi+1, Ci+1, and Ki+1 denote the mass matrix, damp-
ing matrix, and stiffness matrix of the LSS after the i + 1th
assembly; Fi+1, qi+1, λi+1, and ψi+1 are the generalized
forces, generalized coordinates, Lagrange multiplier vector,
and constraint conditions of the LSS after the i + 1th
assembly. Mi+1, Ci+1, and Ki+1 are

Mi+1 =
Mi 0
0 Mi+1

,

Ci+1 =
Ci 0
0 Ci+1

,

Ki+1 =
Ki 0
0 Ki+1

,

10

where Mi, Ci, and Ki are the mass matrix, damping matrix,
and stiffness matrix of the LSS after the ith assembly; Mi+1,
Ci+1, and Ki+1 denote the mass matrix, damping matrix, and
stiffness matrix of the i + 1th assembly substructure.

Fi+1 =
Fi

Fi+1
,

qi+1 =
qi

qi+1
,

λi+1 =
λi

λi+1
,

ψi+1 = ψT
i  ψT

i+1
T ,

∂ψi+1
∂qi+1

T

=

∂ψi

∂qi
0

∂ψi+1
∂qi

∂ψi+1
∂qi+1

T

,

11

where Fi, qi, λi, and ψi represent the generalized forces, gener-
alized coordinates, Lagrange multiplier vector, and constraint
conditions of the LSS after the ith assembly; Fi+1, qi+1, λi+1,
and ψi+1 are the generalized forces, generalized coordinates,
Lagrange multiplier vector, and constraint conditions of
the i + 1th assembly substructure.

The LSS is gradually assembled according to the process,
as shown in Figure 2. After the assembly is completed, the
dynamic model of the whole LSS is given by

Mq + Cq +Kq + ∂ψ
∂q

T

λ = F,

ψ = 0,
12

where M, C, and K are the mass matrix, damping matrix,
and stiffness matrix of the whole LSS after assembly com-
pleted; F, λ, ψ, and q denote the generalized forces, Lagrange
multiplier vector, constraint conditions, and generalized
coordinates of the whole LSS after assembly completed.
Namely

M =

M1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ Mi ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 ⋯ Mn

,

C =

C1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ Ci ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 ⋯ Cn

,
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K =

K1 ⋯ 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋮

0 ⋯ Ki ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮

0 ⋯ 0 ⋯ Kn

13

Equation (12) is a constrained differential-algebraic equa-
tion. When solving by difference discretization, the approxi-
mation of the higher frequency modes of the system is poor
due to the influence of discretization, and hence, the system
generates spurious high-frequency response components. If
the numerical integration method does not effectively filter
out the spurious higher-frequency response components, the
accuracy of the numerical solution is reduced. The generalized
αmethod can adjust the spectral radius to tune the algorithmic
damping, which then helps to achieve spurious high-frequency
dissipation while maintaining the low-frequency response of
the system [19]. Hence, the generalized α method is used to
solve the dynamic equation of the system in this paper.

To facilitate the solution of the system equation and the
design of the control system, for the system equations of the
LSS, the state variables of the continuous controlled system
are first introduced.

x = qT λT
T

14

The system states that x of the LSS is the subject to the
following equations:

G x, x, x = f x, x, x ‐BU −DW, 15

f x, x, x = Mq + Cq + Kq + ∂ψ
∂q

T

λ

ψ

, 16

B =
b 0
0 0

,

D =
d 0
0 0

,
17

where U and W are the control input and the disturbance
force.

At time tk and tk+1, the system states of the LSS are
written as

x tk = qT tk  λT tk
T
,

x tk+1 = qT tk+1  λT tk+1
T

18

Then, Eq. (15) is transformed into the following forms:

G x tk+1 , x tk+1 , x tk+1 = f x tk+1 , x tk+1 , x tk+1
− BU tk+1 −DW tk+1 ,

19

Combing the discretization scheme of the generalized-α
method and the Newton-Raphson iteration of Eq. (19),
x tk+1 is given by

Table 1: Geometric and material parameters of the truss
substructure.

Parameters Value

Length (m) 19.5

Damping coefficient 0.002

Young’s modulus (Gpa) 70

Poisson’s ratio 0.27

Density (kg/m3) 2700

Cross-sectional area of truss rod (m2) 1e − 4
The length of truss rod 1 (m) 1.5

The length of truss rod 2 (m) 2.12

x j+1 tk+1 = ζ
j
1 tk+1 + ζ

j
2 tk+1 U tk+1 + ζ

j
3 tk+1 W tk+1 , 20

ζ
j
1 tk+1 = x j tk+1 − G j x tk+1 , x tk+1 , x tk+1 ′ −1

f j x tk+1 , x tk+1 , x tk+1 ,

ζ
j
2 tk+1 = G j x tk+1 , x tk+1 , x tk+1 ′ −1

B j tk+1 ,

ζ
j
3 tk+1 = G j x tk+1 , x tk+1 , x tk+1 ′ −1

D j tk+1 ,

21
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where the superscript j denotes the variables at the jth
Newton-Raphson iteration, the symbol x j+1 tk+1 is the
variable vector of the current j + 1th iteration at time tk+1, and
x j tk+1 is the variable vector from the previous jth iteration,
which is taken as the reference for the current computation.

So far, the iteration variables x j+1 tk+1 of Eq. (20) are
derived and expressed by the control input U tk+1 .

Therefore, the system output y of the ith substructure is
presented as

y tk+1 = Cyx
j+1 tk+1 , 22

where Cy is the output matrix of the ith substructure and
x tk+1 is derived from Eq. (20).

4. Numerical Simulation

4.1. Validation of Dynamic Model. The large space truss
structure (LSTS) is the basic component of solar power
satellites, which plays an important role in supporting,
extending, and fixing large facilities. Hence, the numerical
simulations of the LSTS during on-orbit assembly are pre-
sented, compared with the finite element method, which is
a traditional dynamic modeling approach (TDMA). It can
discretize the structure, and the dynamic equation of the
structure is then established. Each truss substructure has
the same geometric and material parameter configuration.
The detailed parameters are presented in Table 1.

In the modeling process of LSTS assembly, the dynamic
models established by TDMA usually consist of a set of
ordinary differential equations. The coefficient matrices of
adjacent substructures are coupled, and it is necessary to
calculate several times along with assembly. However, the pro-
posed dynamic model is formulated as a set of differential-
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Figure 4: Updating of the coefficient matrices of LSTS during on-orbit assembly.
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algebraic equations, resulting in the coefficient matrices of
adjacent assembly substructure being decoupled, as shown in
Figure 4. This approach does not require reformulation of the
existing coefficient matrices as the number of substructures
increases. Thus, it avoids the extra calculation due to the exis-
tence of common nodes in adjacent substructures, when the
configuration of LSTS changes at each assembly stage.

The length of one side of the LSTS is approximately
351m, and the length of each truss substructure is 19.5m.
Thus, the whole assembly process is divided into 18 stages.
The LSTS is rigid locked after assembly, and the connecting
among the adjacent truss substructures is not considered.
The dynamic characteristics of LSTS are gradually changing
along with the assembly. The natural frequencies of LSTS are

analyzed as an example. The process of variation of the first
natural frequency of the LSTS after each assembly is pre-
sented in Figure 5. As can be seen, the first natural frequency
decreases obviously along with assembly.

The simulation results of the LSTS during on-orbit
assembly, which is based on the proposed MDMA, are pre-
sented in this section. The length of the LSTS is 117m after
the 6th group truss substructure is assembled. The driving
forces of each substructure end node are 0.5N, and the z
-axis displacement at the end nodes of the LSTS is obtained.
The response curves of the 6 substructures are given in
Figure 6(a). The length of the LSTS is 351m after the 18th
group truss substructure is assembled. The driving forces
of each substructure end node are 0.05N, and the z-axis
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Figure 6: The displacement curves of LSTS.
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displacement at the end nodes is obtained. The response
curves of the 18 substructures are given in Figure 6(b).

For the assembly of the 6th substructures, the maximum
error is 2 471 × 10−4m at 3.23 seconds; for the assembly of
the 18th substructures, the maximum error is 1 982 × 10−4
m at 28.4th seconds, as shown in Figure 7. However, the
maximum relative errors of the assembled LSTS are
0.549% at the initial time. This is due to the vibration ampli-
tude at the initial time being very small, close to 0. Besides,
for the LSTS containing 6 substructures, the relative error
is fluctuated due to the value of the trough that is close to
0 in the simulation process. The relative error of 6 substruc-
tures and 18 substructures was kept around 0.07% and
0.005%, respectively, and gradually decreased, as shown in

Figure 8. The numerical simulation results illustrate that
the proposed MDMA has the same accuracy as the TDMA.

4.2. Distributed Vibration Control in the Assembly Process.
To further verify the validity of the proposed MDMA in this
paper and achieve the vibration control during on-orbit
assembly, the controller is designed for each assembly sub-
structure, as shown in Figure 9. The sensors and actuators
are placed in colocated configuration in the middle of the
substructure of each group truss structures.

Due to the rigid connection between substructures after
assembly, each controller output applied to one substructure
may increase the vibration of the adjacent substructure. The
disturbance can be reduced by adding coordination terms to
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the assembly substructure controller. The coordination term
is designed based on the measurement information of the
adjacent substructures. Then, the distributed control system
in the assembly process is gradually formed according to the
cooperation of the substructure controller. Therefore, a dis-
tributed cooperative controller is used for vibration suppres-
sion of the LSTS during on-orbit assembly. The controller
consists of two parts: a feedback stabilization term and a
consensus coordination term [20]. The controller of the ith
assembly substructure is given by

Ui tk+1 = Kpiyi tk+1 + Kdiyi tk+1

Feedback stabilization term

+〠gi
j=1 Kpj yi tk+1 − yij tk+1 + Kdj yi tk+1 − yij tk+1

Consensus coordination term

,

23

where the subscript i denotes the ith substructure and the
subscript j is the jth substructure, which is adjacent to the
ith substructure; gi is the number of substructures adjacent
to the ith substructure; Kpi and Kdi are the feedback stabili-
zation term coefficients, Kpj and Kdj are the coordination
term coefficients; yij tk+1 and yij tk+1 are the displacement
measurement information and velocity measurement infor-
mation at time tk+1.

The dynamic model of the LSTS is given by the pro-
posed MDMA. The material parameters of the substruc-
ture are shown in Table 1. There are three types of
substructure controllers, including the one with informa-
tion coordination term on the right side; the one with
information coordination terms on both sides, and the
one with information coordination term on the left side.
The parameters of the distributed cooperative controller
in the assembly process are displayed in

Actuator/sensor

Physical constraint

Coordination

Truss structure

Sub truss i

Controller 1 Controller 2 Controller 3 Controller i

Sub truss 1 Sub truss 2 Sub truss 3

MDMA

Sub model 1 Sub model 2 Sub model 3 Sub model i

x y

z

Fixed
boundary

Figure 9: The diagram of the distributed active control strategy in the assembly process.
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Figure 10: The dynamic response and the control force during the 5th assembly stage.
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U1 = 100y1 + 5y1 + 10 y1 − y2 + y1 − y2 ,
⋯

Ui = 100yi + 5yi + 10 yi−1 − yi + yi−1 − yi + 10 yi+1 − yi + yi+1 − yi ,
⋯

Un = 100yn + 50yn + 10 yn−1 − yn + yn−1 − yn

24

The impact disturbance force is simulated by the step
excitation.

W =
2N , 0 ≤ t ≤ 2s
0N , 2s ≤ t ≤ tend

25

The total length of the LSTS is 97.5m and 195m after the
5th and the 10th group truss substructure is assembled, respec-
tively. The z-axis displacement at the end nodes of the LSTS is
obtained, as shown in Figures 10 and 11. The distributed coop-
erative controller (Eq. (23)) is used to suppress the vibration
during on-orbit assembly. The vibration amplitude is signifi-
cantly suppressed compared to the vibration response before
control, which is suppressed within 15 s and 30 s. The control
force of the end substructure is kept within 3N. The number
of controllers increases gradually with the progress of the on-
orbit assembly, and the vibration can be quickly suppressed,
which indicates that the proposed controller has good expansi-
bility. Moreover, it is also noted that the proposed dynamics
model is suitable for active vibration suppression during on-
orbit assembly of LSTS.

5. Conclusion

The dynamic modeling problem of large-scale space struc-
tures during on-orbit assembly process is investigated. The
modeling process and constraint conditions are first pre-

sented. The MDMA is then proposed, which can be used
for the dynamic modeling of a LSS in the assembly process.
Finally, the LSTS is chosen as the research object, and the
numerical examples are provided, including a distributed
cooperative controller. The results demonstrate that (1) the
coefficient matrices of the adjacent substructure are decoupled,
and the reconfiguration of the existing coefficient matrices is
not required along with the assembly using the proposed
MDMA. The extra calculation due to the coupling of state
coefficient matrices of the LSS at each assembly stage is
avoided. (2) The proposed dynamic model can accurately
describe the dynamic characteristics of the incrementally
increasing space structure. (3) The vibration of the LSS is well
suppressed during on-orbit assembly. The controller is
designed based on theMDMA, which has good control perfor-
mance and expansibility.
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