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Terrain traversability analysis (TTA), the key to the navigation of planetary rovers, is significant to the safety of the rover.
Therefore, owing to its complexity, the Martian terrain is worth analysing comprehensively based on the terrain variability and
hazard level. In this work, we propose a novel method for terrain traversability analysis for the path planning of planetary
rovers by integrating Martian terrain geometry features with terrain semantic information, which includes geometry and
environmental perception (GEP). Specifically, we deploy semantic segmentation to classify common terrain types, such as
rocks, bedrocks, and sand, obtaining semantic information as one part of terrain traversability analysis at the same time.
Simultaneously, the point cloud is generated by using binocular images from the planetary rover navigation camera (Navcam)
to construct a 2.5D elevation map of the environment to analyse the geometric characteristics of the terrain. Besides, we
implement path planning based on the results of TTA-GEP. Overall, our proposed method improves the performance of the
terrain traversability analysis and reduces the risk of planetary rovers while detecting in an unstructured environment.

1. Introduction

Extraterrestrial planet exploration is an important research
direction in the field of aerospace, and patrol detection is
one of the important forms of exploration [1]. In particular,
when planetary rovers conduct exploration on the surface of
Mars, the extraterrestrial navigation of autonomous robots
faces severe challenges due to the great unknown, complex-
ity, and uncertainty of the unstructured Martian surface [2].
On the one hand, the terrain on the Martian surface is more
complicated and unstructured. On the other hand, due to
the limitations of technology and distance, we cannot obtain
all the information of the extraterrestrial environment.
Hence, hazardous and unstructured environments may pose
threats to planetary rover operations. Especially, sandy ter-
rain can cause the rover to sink into it and make it impossi-
ble to continue driving. For example, Courage was so deep in

it because of the sand that NASA had to abandon the explo-
ration mission. Furthermore, steep area can cause the rover
to roll over. Meanwhile, Curiosity’s wheels were damaged
by wear and tear due to the impact of rocks [3]. Therefore,
to guarantee the safety and extend the service life of the
planetary rover, the rover must bypass hazardous areas
during its travel, meaning that it will not have any collision
with obstacles. Thus, it is essential to enhance the ability of
the planetary rover to perceive and analyse its environment.
Since the geometric analysis of the terrain cannot deter-
mine the type of terrain, the planetary rover is unable to
avoid risky terrain types, leaving the rover in danger.
Therefore, our proposed method, integrating terrain geom-
etry features with terrain semantic information, can ensure
the rover’s own safety and reduce the dependence on
human commands by assessing the terrain around the rover
autonomously.
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In general, terrain traversability is employed to measure the
difficulty of crossing a particular area and can indicate the geo-
metric characteristics of the terrain like slope, roughness, and
height difference, which lays the foundation for proper path
planning in sophisticated environments; these geometric met-
rics are related to the optimality of the paths as well [4]. Several
studies have proposed geometric methods to estimate terrain
traversability. For instance, Tanaka et al. [5] analyse terrain tra-
versability based on fuzzy logic and use a fuzzy inference mod-
ule to convert traversability values into risk values, avoiding
uncertainty in sensor data and generating travelable directions
for mobile robots. Some researchers [6, 7] apply stereo vision
to the visual odometer and navigation system of the Mars
Exploration Rovers (MERs), using stereo vision to perceive
the geometric aspects of the environment. In another work,
Meng et al. [8] generate elevation grid maps using point cloud
data acquired by LiDAR, combining RANSAC and least
squares methods to estimate the geometric features of the ter-
rain. Some algorithms [9, 10] similarly construct a 2.5D eleva-
tion map using the data from a radar-acquired point cloud
and an odometer, which is subsequently used to derive traversa-
bility by evaluating roughness, slope, and step height. In addi-
tion, mobility is important in path planning. To satisfy the
field mobility of the lunar rover, two metrics of terrain, terrain
slope and terrain roughness, were considered by Ishigami [4].
However, in some cases, the sandy terrain and the flat terrain
are similar in height. Thus, the planetary rover can easily cross
the flat terrain while it is unable to cross the sandy terrain.
Apparently, the geometric approach ignores the semantic infor-
mation of its environment and does not incorporate semantic
information in traversability analysis. The pure geometric anal-
ysis ignores this important information. Consequently, it can-
not meet the actual mission requirements very well.

Meanwhile, some studies have acquired scene data from
sensors [11, 12] for semantic segmentation [13, 14] to obtain
semantic maps [15]. For example, Hosseinpoor et al. [16]
use aerial RGB images to segment images by different
threshold values of height. However, it is not sufficient to
analyse traversability by semantic information alone. For
instance, areas with relatively low altitude but uneven terrain
can equally pose difficulties to the traversability of rovers.

Hence, in this paper, to analyse the terrain traversability of
Mars’ unstructured terrain, we propose a novel fusion method
called TTA-GEP, in which we integrate terrain geometric fea-
tures with terrain semantic information, for planetary rover
path planning. Firstly, we build 2.5D elevation maps by stereo
vision, which are used to evaluate the geometric features of the
terrain. Secondly, a terrain classifier is used to enhance the ter-
rain traversability analysis via terrain types. Specifically, the
semantic information not only helps the planetary rover to
identify the terrain type of the scene but also improves the
ability to perceive risks to guarantee the safety of the mission.
Finally, we use TTA-GEP for path planning. As shown in
Figure 1, we use the Navcam images and camera matrix as
the input of our framework. The Navcam images are sent to
the terrain classifier for semantic segmentation which is used
to obtain the terrain types and generate the semantic map
for the terrain traversability analysis. The point cloud of the
place where the planetary rover is located is generated by Nav-

cam images and camera matrix, which is projected into a 2.5D
elevation map. Then, we analyse the terrain traversability by
integrating geometry analysis based on the 2.5D elevation
map with semantic information by terrain classifier. Finally,
we use the result of the traversability analysis to plan the path
for planetary rovers.

In summary, our main contributions of this work are as
follows:

(1) A terrain classifier of the Martian terrain is realized
to identify the Martian terrain types and generate a
semantic map of Mars as well

(2) A method called TTA-GEP to estimate traversability
by integrating terrain semantic information with ter-
rain geometric features, including terrain types and
the geometric information acquired from elevation
data such as slope, elevation difference, and rough-
ness into the evaluation function is proposed

(3) We use TTA-GEP for rovers’ path planning, and
experiments indicate that the proposed method
improves the ability to perceive the environment
and reduces risks for the rovers

The remainder of this paper is organized as follows. In
Section 2, we describe related work. Section 3 introduces
our proposed TTA-GEP method. The simulation results
are reported in Section 4, followed by conclusions at last.

2. Related Work

2.1. Terrain Classification. For the planetary rover, the
unknown and unstructured environment makes its task
quite challenging. Besides, most of the Martian surface is
covered by loose soil; hence, planetary rovers driving on this
ground are prone to slippage, which affects operational
safety [17]. Furthermore, the planetary rover can perceive
the environment while driving. As a result, classification
based on terrain characteristics can further improve its abil-
ity to analyse its own traversability and consequently, avoid
the traversable risks arising from the terrain promptly.
Therefore, terrain classification plays an essential role in
improving the safety and operational efficiency of planetary
rovers. For example, Liu et al. [18] proposed a hybrid atten-
tion semantic segmentation (HASS) network, which aggre-
gates both local interclass and global intraclass contextual
information, comparing the terrain consistency of the same
class and considering the relationship between neighbouring
terrains simultaneously, to further improve the accuracy of
segmented classes. In another study, Rothrock et al. [19]
proposed soil property and object classification (SPOC),
which can classify planetary orbital images and planetary
surface images, respectively. The approach is successfully
applied in the traversability estimation for the rover and
Mars Science Laboratory (MSL) sliding prediction missions.
Additionally, Goh et al. [20] proposed a semisupervised
learning framework to improve the robustness of image
segmentation. Meanwhile, Swan et al. [21] created a
large-scale terrain classification dataset called Al4Mars for
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Mars. Brooks and Iagnemma [22] classified terrain through
vibrations caused by the interaction between the wheels of
the planetary rover and soil. This technique avoids the insta-
bility of classification generated by changes in light intensity
in vision-based classification methods. Further, Manduchi
et al. [23] classified terrain and detected obstacles based on
the inherent characteristics of different terrain types using a
stereo camera and a single-line radar. Finally, Halatci et al.
[24] integrated vision classification methods with sensor clas-
sification to improve classification accuracy.

2.2. Path Planning. Planetary rovers are capable of traversing
the planetary surface autonomously and rapidly, avoiding
obstacles effectively, and conducting exploration missions,
which is important tomaximize their scientific value. In recent
years, with the development of semantic segmentation, there
exist an increasing number of techniques that combine terrain
classification with path planning. For example, Egan and Gök-
togan [25] proposed a traversability estimation algorithm for
path planning and control (TEAPAC) by integrating
obstacle-aware information and terrain classification results.
In another study, Ebadi et al. [26] used the DeepLabv3+
framework to segment the skyline in Mars images to automat-
ically estimate the planetary rover’s global position. Besides,
autonomous robots need to perform inspection tasks in a
nuclear storage environment. Hence, Wang et al. [27] pro-
posed to convert the obstacles distribution into a two-
dimensional binary map that includes the location and orien-
tation of the target points, which constructs maps that may be
used for path planning on the purpose of check. Additionally,
in [28], semantic information is considered during path plan-
ning. More specifically, the semantic information is integrated
into the navigation task to construct cost maps using semantic
information. Meanwhile, Chiodini et al. [29] proposed a tech-
nique to generate the 3D semantic map of the Martian envi-
ronment for trajectory planning and target identification by
using the stereo images acquired by the planetary rover as
input. In addition, Sadat et al. [30] proposed a neural net-
work architecture, which uses voxelized radar data and a
priori mapping scheme, to provide a probabilistic semantic
occupancy layer containing the current and predicted posi-
tions of obstacles and vehicles for autonomous vehicles in

urban environments. Subsequently, the model selects vehicle
trajectories from a set of motion primitives by optimizing a
cost function that includes safety-related penalty terms com-
puted via predicted semantic segmentation, driving comfort,
and other terms related to traffic rules independent of
semantic information. The two-dimensional semantic grid
in [31] is also used for traversability estimation to reach
the target location specified by the human operator in the
rescue mission through the D∗ path planning algorithm.

3. Technical Approach

In this section, our proposed method is described by mod-
ules. In Section 3.1, the method to generate the 2.5D eleva-
tion map from the point cloud is presented. In Section 3.2,
we present the method to classify the terrain by using deep
learning. Terrain traversability analysis is introduced in Sec-
tion 3.3 while path planning is in Section 3.4.

3.1. Environment Representation. When constructing the
configuration space of a robot using grid maps, the conven-
tional approach divides the entire map into the obstacle and
obstacle-free areas. To be more specific, for one grid there
are two states, including both the obstacle and obstacle-free
[32]. Thus, if there is an obstacle in the grid, this grid is
marked as an impassable area; conversely, the grid is marked
as an obstacle-free area that is passable. However, the plan-
etary surface terrain is complex with significant unstructured
features, and the above map representation obviously cannot
sufficiently reflect the planetary surface environment to meet
the requirements of planetary rover operation in the Mars
scenario. To fully represent the terrain features of the plane-
tary surface, we adopt a 2.5D grid map for the map represen-
tation of the Martian surface.

Furthermore, the planetary rover is equipped with
Navcam including left one and right one. The binocular
images are obtained by the Navcam. Besides, the point
cloud is generated by stereo matching [33] when the ste-
reo images INCL, INCR are rectified. After that, the point
cloud is mapped to the grid map after filtering the noise
and downsampling to reduce the number of point clouds
by using RANSAC [34]. However, since the 3D point
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Figure 1: The architecture of our proposed method.
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cloud generated based on binocular vision recovery is sparse in
some regions far away from the Navcam, the data needs to be
preprocessed. Hence, we adopt the inverse distance weighting
method [35] for the interpolation operation, which is a
weighted average interpolation method to reduce the impact
of missing information on the accuracy of the map. Specifi-
cally, this method considers that any observation has an
impact on the neighbourhood, and the smaller the distance,
the greater the impact. It can be expressed by

Z =
∑N

i=1 1/ Dp
i Zi

∑N
i=1 1/ Dp

i

, 1

where Z is the estimated value of the height; Zi is the height of
the samples i = 1, 2, 3⋯ ,N ; Di is the distance of the sample
from the unsampled point; and p is the power of the distance.

3.2. Terrain Classifier. The semantic segmentation of the ter-
rain is one of the important parts of the whole framework by
semantic segmentation. Specifically, through the classifier,
each pixel gets a label with a predefined terrain class when
inputting a Navcam image. It means that the planetary rover
can classify the terrain and achieve a more comprehensive
understanding of the terrain where the rover is located, such
as sand, rocks, and soil. For planetary rovers, mountains,
rocks, and sand are obstacles; sand is geologically soft and
can cause wheels to sink, which threatens the safety of plan-
etary rovers, all of which are impassable. In this work, three
different deep neural network architectures, HRNet [36],
SegFormer [37], and DeepLabv3+ [38], were tested and
compared. HRNet maintains high-resolution information
of images while reducing the loss of details. Deeplabv3+,
including hole convolution with multiple hole rates,
increases the receptive field and improves the ability to
extract semantic features. Segformer, introducing the archi-
tecture of transformers [39, 40], has a global receptive field,
which is more robust but more difficult to train. We selected
HRNet, and the results of our experiments in Section 4.1
show that it achieves better performance. In addition, the
dataset is S5Mars [41], which has 6000-labeled images con-
taining nine labels of soil, bedrock, rock, rover, sky, ridge,
trace, sand, and hole. The detailed descriptions of these nine
classes are given in Table 1.

The label of each point Pi x, y, z of the point cloud is
generated from the pixel u, v of the Navcam images. More
so, the scale of the elevation map and the point cloud is not
the same. When projecting the point cloud, each grid will
contain several points Pi, which correspond to different
labels Li, and each grid only has one height value and one
label; thus, it is necessary to match the point cloud data
and labels in one grid. Furthermore, we divide it into the fol-
lowing three cases. First, if there is only one point in the grid,
the height of the grid is the height of this point, and the grid
label is the label of this point. Second, if there are two
points in the grid, the height of the grid is taken as the
height of the higher point, and the grid label is the label
of the corresponding point. Third, if there are more than
two points in the grid, the height of each grid is sorted,

and the middle height is taken as the height of the grid;
and the grid label is the label of the corresponding point.
Currently, the above-proposed strategy can meet our
requirements. However, how to handle the grid data more
reasonably and match the labels of each grid needs our
further research.

3.3. Terrain Traversability Analysis. Terrain traversability
analysis is an indispensable part for the path planning of
planetary rovers. To analyse terrain traversability, we can
obtain three terrain features [42] from the elevation data,
which includes slope [43], roughness, and elevation differ-
ence. However, when analysing digital elevation maps, topo-
graphic features cannot be precisely reflected if only one grid
is considered at a time. Therefore, we utilize the window
method to analyse a grid as the center and analyse the grid
in the window area of this grid as a whole to reduce the error
and improve the accuracy. First, we need to fit the window
area to the plane shown in Figure 2.

Suppose that there are N grids in each window, the coor-
dinate of each grid Gij is xk, yk , and the corresponding
height of the grid is zk; then, the fitting plane is shown in
Eq.(2) as follows:

Ax + By + Cz +D = 0, 2

that is

z = a0x + a1y + a2, 3

where z is the height of the fitting plane, and by the least
squares method, we should find a0, a1, a2 to minimize S.

S = 〠
M

k=0
a0xk + a1yk + a2 − zi

2, 4

where M means the total number of grids in each window.

Table 1: Mars terrain types.

Class Description

Soil Martian soil, flat and yellow-black in color.

Bedrock
Stones that are relatively flat and not

exposed to the ground.

Rock
Stones that are large in size and

completely exposed to the ground.

Rover The body of the planetary rover.

Sky Martian sky.

Ridge Mountains in Mars.

Trace Wheel trajectory.

Sand Sandy region.

Hole Traces left by the planetary rover during sampling.
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The partial derivatives of a0, a1, a2 are given as follows:

〠2 a0xk + a1yk + a2 − zk xk = 0

〠2 a0xk + a1yk + a2 − zk yk = 0,

〠2 a0xk + a1yk + a2 − zk = 0

5

convert to matrix form as follows:

〠xk
2 〠xkyk 〠xk

〠xkyk 〠yk
2 〠yk

〠xk 〠yk M

a0

a1

a2

=

〠xkzk

〠zkyk

〠zk

6

Using Cramer’s rule, we can find a0, a1, a2, and the normal
vector of the fitting plane is nFp = a0, a1,−1 .

Since the normal vector of the horizontal plane Z = 0
is nRp = 0, 0, 1 , the angle θ between the fitting plane
and the horizontal plane, which is the slope angle θslope,
is given by

θslope = θ = cos−1
nRp × nFp
nRp ∙ nFp

= cos−1
1

a02 + a12 + 1

7

Specifically, the roughness of the terrain may be char-
acterized as the root mean square of the fitting plane, and
the window method is used to evaluate the roughness of
each grid as well. The distance from each grid in the win-
dow to the fitting plane is given by

dk =
a0xk + a1yk + a2 − zk

a02 + a12 + 1
8

Thus, the roughness Rij of each gird is given by

Rij =
∑M

k d
2
k

M
9

The height difference H of the terrain is obtained from
the maximum value Hmax and the minimum value Hmin of
the elevation in the fitting plane, which is given by

H =Hmax −Hmin 10

Before analysing terrain traversability, we set thresh-
olds for slope, roughness, and elevation difference, respec-
tively. If any geometric feature of any grid exceeds the
corresponding threshold, it will be marked as impassable.

When the planetary rover moves, it is necessary to main-
tain a safe attitude. It is known that the current attitude of
the planetary rover is Pcur = cpitch, croll ; the safe attitude
does not exceed Psafe = spitch, sroll ; and the safe attitude of
each grid is judged by

cpitch + θslope > spitch,

croll + θslope > sroll
11

If either of the two equations above is satisfied, the cur-
rent grid is impassable and the maximum cost is assigned
to this grid.

Furthermore, the hazard level of different terrain types
for planetary rover operation determines the different ter-
rain costs of each grid. Particularly, soil offers the least resis-
tance to the wheels; thus, it is the most desirable and the
least risky terrain for planetary rovers. Specifically, a bed-
rock, which is not exposed to the ground, will cause wear
and tear on the wheels. In addition, rocks, ridges, and sand
are not considered as traversable regions, giving them the
highest cost. Thus, these areas should be avoided when
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Y-axisO

Fitting plane

X-axis
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nFp
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Figure 2: Fitting plane.
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running. Additionally, different terrain types mean different
terrain costs, and the cost is assigned to each type according
to our requirements; hence, the terrain semantic cost Stc of
each grid is matched with the label of each grid.

Meanwhile, planetary rovers work in complicated envi-
ronments, where a single metric of traversability cannot rep-
resent traversability well. Therefore, we integrate the terrain
geometric metrics with metric of terrain types in the traver-
sability evaluation function. Additionally, when planning the
path, this function integrates the influence of different indi-
cators in each grid, and the evaluation function is given by

CGEP = αPsθslope + βPrRij + γPhH + δPtcStc, 12

where CGEP represents the cost of each grid, Ps, Pr, Ph,
and Ptc are the weights to set the priority of terrain slope, ter-
rain roughness, height difference, and terrain semantic
information, respectively, and α, β, γ, δ ∈ 0, 1 are the nor-
malization coefficients. For example, the planetary terrain
is complex and when slope is large, there is a possibility of
side-swiping. Therefore, slope cost has the greatest effect
on the cost of the whole grid compared to other types of
cost. Then, Ps should be set to the maximum of the four
values. Consequently, the sum of this weight is 100%.

3.4. TTA-GEP for Path Planning. Typically, the classical A∗

algorithm [44] only finds an optimal path given the start and
end points but does not consider the kinematic constraints
of the vehicle. Conversely, hybrid A∗ [45] combines the kine-
matic constraints of the vehicle with the classical A∗ algorithm
to satisfy the nonholonomic constraints of the vehicle. In this
work, the planning algorithm we adopt is based on a variation
of hybrid A∗. Additionally, we use space-contiguous to extend
the child node as shown in Figure 3. Specifically, the grid in the
center denotes the parent node while the other points sur-
rounded represent the subnodes. Figure 3(a) shows the eight
subnodes to be extended in classical A∗ algorithm, which are
in eight directions of the center grid. Shown in Figure 3(b)
are the six child nodes of hybrid A∗, whose positions are
located anywhere around the center grid, meaning that they
satisfy kinematic constraints. The extension of the nodes is
based on

f n = g n + h n , 13

where g n is the accumulated cost of the path from the start
to the current node n; and h n is the estimated distance

between node n and the end, which can provide informa-
tion about the distance between the node to be extended
and the end; thus, improving the search efficiency and
avoiding blind search. Furthermore, we do not consider
the situation of reversing according to the requirements of
our mission, and we use the heuristic distance of holo-
nomic with obstacles by

h n =max x n − x g , y n − y g

+ 2 − 1 min x n − x g , y n − y g

14

Moreover, the complex terrain of the Martian surface
requires the consideration of terrain traversability in addi-
tion to the optimality of the paths in terms of the dis-
tance and extension of the nodes while satisfying the
nonholonomic constraints. Therefore, g n is redesigned
in conjunction with our proposed TTA-GEP. It is given
by

g n = g np + CGEP nc + S np, nc, φ , 15

where g p is the cost of the parent node np; CGEP np, nc
is the terrain fusion analysis cost from the parent node np
to the child node nc, obtained from Eq.(12); and S np, nc,
φ is the steering cost from the parent node np to the child
node nc, and φ is the angle between the node np and nc.
Since the motion of the planetary rover is constrained by

(a) (b)

Figure 3: Child nodes. (a) Classical A∗ algorithm. (b) Hybrid A∗.

Table 2: IoU(%) of SegFormer, DeepLabv3+, and HRNet on
S5Mars.

Network SegFormer DeepLabv3+ HRNet

Soil 63.91 79.29 81.47

Bedrock 85.2 91.08 90.97

Rock 2.41 19.28 14.84

Rover 40.5 79.37 86.51

Sky 78.57 89.38 90.53

Ridge 73.93 88.78 89.95

Trace 6.7 75.72 75.71

Sand 66.73 71.39 74.2

Hole 0 0 0

mIoU 46.44 66.03 67.13
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the minimum radius Rmr of turning, there exists a corre-
sponding maximum angle θma of steering for its change
of heading. The formula is as follows:

tan θma =
L
Rmr

, 16

where L means the length of a rover.
Meanwhile, when extending a child node, it is necessary

to determine whether the angle between the parent node and
the node to be extended exceeds the maximum steering
angle. when exceeding the maximum angle of steering, the
node is given a high cost. Therefore, the steering cost is given
by

S np, nc, φ =
wφ, φ ≤ θma,

inf , φ > θma,
17

where w is the normalization coefficient and inf represents
the high cost.

4. Experiments

4.1. Terrain Classification. We trained our terrain classifier
on NVIDIA GeForce RTX 3090 GPU by using Pytorch.
Besides, the training set and test set are 80% and 20%,
respectively. In addition, the source images are RGB images
with a resolution of 1200 × 1200. Specifically, the image is
cropped to a resolution of 512 × 512 as the input to the net-
work. The output of the network is a color semantic mask
with the same resolution as the input. Meanwhile, we
applied data enhancement techniques such as cropping, mir-
roring, and resizing to improve the accuracy of training and
the robustness of the model against changes in the styles of
images. For the semantic segmentation, we tested on the
three networks mentioned above; and we evaluated the per-
formance of the network using the mean intersection over

union (mIoU), given by

mIoU =
1
C
〠
C

c=1

TPc
TPc + FPc + FNc

, 18

where TPc, FPc, and FNc denote the number of true posi-
tive, false positive, and false negative predictions for each
prediction class, respectively, and C is the total number
of classes.

Table 2 displays the test results of the three network
architectures on S5Mars. Compared with other classes, the
three networks perform better on soil, bedrock, sky, ridge,
and sand, which have a better predictive accuracy. The rea-
son for this is that these terrain types have distinct features,
and the textures are easy to distinguish. For the prediction of
soil, rover, sky, ridge, and sand, HRNet performs better than
the other two networks. Besides, in terms of mIoU, the over-
all performance of HRNet is significantly better than the
other two networks. Due to the complexity of the trans-
former architecture, training Segformer can be more chal-
lenging than the other two segmentation models. As
shown in Figure 4, the first line shows the source images
while the images predicted by HRNet are on the second line.
Furthermore, the IoU of rock is low, because there are more
samples of bedrock and fewer samples of rock in the dataset.
Meanwhile, the IoU of hole is 0, which is caused by the obvi-
ous lack of samples as well.

4.2. Environmental Construction. Based on the method of
environment construction mentioned above, we input the
camera matrix and binocular images acquired by the Nav-
cam to construct a 2.5D elevation map with the point
cloud generated by stereo matching. The size of each grid
map is 2000 × 2000 and the resolution of each grid is
0 02 × 0 02m2. In addition, we visualize the map by
OpenGL [46], and the top view of the 2.5D elevation
map is shown in Figure 5(a). Specifically, the methods
we adopt clearly reflect the information regarding the
Martian surface terrain and contribute to subsequent tra-
versability analysis and path planning. Figure 5(b) shows
the semantic map, which integrates the labels with the

Soil
Trace
Bedrock
Sky
Hole

Sand
Rock
Rover
Ridge

Figure 4: Some examples of semantic images predicted by our terrain classifier on S5Mars. The first line shows source images. The predicted
images are on the second line. The label of each class is shown at the bottom.
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2.5D elevation map. The green area is the region of bed-
rock; and the fusion of terrain labels and elevation maps
can help us further identify terrain types and what the
environment is like while the rover is running.

4.3. TTA-GEP and Path Planning. We validate the effective-
ness of our proposed method in the environment con-
structed in Section 4.2. In this experiment, parameters
needed are recorded in Table 3. More specifically, the cost
of traversability is displayed in 0, 1 with different colors
as shown in Figure 6, where the value of the red area is
one, which represents completely impassable. The remaining
areas are passable and the boundaries are indicated by yel-
low and green.

In Figures 6(a) and 6(b), the results of the terrain tra-
versability analysis are obviously different under the same
configuration of parameters. Particularly, the red area in
Figure 6(b) is obviously larger than that in Figure 6(a).
Combining the results of Figure 5(b) semantic and eleva-
tion map fusion, the concentrated green bedrock region
near the rover is reflected in the corresponding position
in Figure 6(b). It means that our method has the ability
to complement the performance of terrain traversability
analysis. But for some of the green areas of bedrock,

which are small and far away from the planetary rover,
they are not fully represented in Figure 6(b), because the
point cloud generated is affected by the accuracy of stereo
matching and lack of data caused by sparse of point
clouds. However, the impact of this problem may be
solved by improving the accuracy of the stereo matching
or updating the map in time after the planetary rover
travels a certain distance. Overall, the better performance
of our proposed method improves the ability to perceive
the environmental risks and reduce possible risks.

What is shown in Figure 7 is the results of classical A∗

algorithm and our proposed method for path planning with

(a)

Green region
represents bedrock.

(b)

Figure 5: The top view of the 2.5D elevation map. (a) The 2.5D elevation map without semantic labels. (b) The 2.5D elevation map fused
with the semantic labels. The green region represents the Martian surface is covered by bedrocks.

Table 3: The configuration of parameters.

Parameter Value

L (cm) 150

Rmr (m) 5

Ps, Ph, Pts , and Pr 0.5, 0.25, 0.15, and 0.1

spitch and sroll (deg) 15, 15

Threshold of height (cm),
slope (deg), and roughness (cm)

15, 10, 3

8 International Journal of Aerospace Engineering



0

0.1

0.2

0.3

0.4

1

0.8

0.9

0.7

0.6

0.5

(a)

0

0.1

0.2

0.3

0.4

1

0.8

0.9

0.7

0.6

0.5

(b)

Figure 6: Results of terrain traversability analysis. (a) The result of terrain traversability analysis only based on geometry. (b) The result of
terrain traversability analysis by our proposed TTA-GEP.
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Figure 7: Results of path planning based on TTA-GEP compared with classical A∗ algorithm. The line in white uses classical A∗ algorithm,
and that in orange employs our method.
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the setting in Figure 6(b), where S represents the starting
point and D represents the end. In Figure 7, we can see that
classical A∗ algorithm only considers the cost of distance
and has no kinematic constraints. Thus, the planned path
is shorter and takes the form of straight lines. Our proposed
method meets kinematic constraints and considers not only
the geometric features of the terrain but also the influence of
different terrain types. Table 4 shows the expected time of
execution of planning and the length of paths for both
methods at the same starting and ending points. Compared
to classical A∗, our method has a 4.32% decrease in planning
time and a 12.2% increase in the length of the path. How-
ever, the increase in the length of the path makes the opera-
tion of the planetary rover safer, which is worthwhile. Thus,
TTA-GEP is a conservatively analytical method to analyse
terrain traversability. In addition, it can improve the safety
of the path and extend the service life of rovers.

5. Conclusion

In this paper, we propose a novel method called TTA-GEP
to analyse terrain traversability by integrating terrain geom-
etry with terrain semantic information. The terrain classifier
is built on HRNet, and the model is trained by using a data-
set called S5Mars containing nine labels of soil, bedrock,
rock, rover, sky, ridge, trace, sand, and hole. When inputting
a Navcam image, the classifier gives each pixel of the image a
terrain type which has an impact on the terrain traversability
analysis. This method enables autonomous terrain classifica-
tion to identify hazardous terrains and integrate terrain
semantic information and terrain geometric features to ana-
lyse terrain traversability, compensating for the shortcom-
ings of analysing traversability relying only on geometric
analysis or terrain semantic analysis. Furthermore, we plan
paths based on TTA-GEP by using a variant of hybrid A∗.
Since the real environment is more complicated, the valida-
tion process simplifies the analysis by imposing constraints.
Overall, we achieved the expected results in the experiments.
A series of experiments indicate that TTA-GEP is an effec-
tive method for terrain traversability analysis in unstruc-
tured Martian surface, which improves the safety not only
for the path but also for rovers. In future work, our method
may be combined with spacecraft attitude controllers [47] to
further enhance the safety of spacecrafts. However, in more
complex environments, our approach may face more chal-
lenges; and thus, we need to continuously improve the valid-
ity and robustness of our approach in our future work.

Data Availability

The data supporting this are from previously reported studies
and datasets, which have been cited.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Acknowledgments

This work is supported by the Key Laboratory of Space
Flight Dynamics Technology (KJW6142210210309) and
the Key Research and Development Projects in Zhejiang
Province (2022C01204).

References

[1] J. Yang, Z. Sun, Y. Zheng et al., “Overview on development of
planetary rover technology,” Journal of Deep Space Explora-
tion, vol. 7, no. 5, pp. 419–427, 2020.

[2] R. Sonsalla, F. Cordes, L. Christensen et al., “Field testing of a
cooperative multi-robot sample return mission in Mars ana-
logue environment,” in Proceedings of the 14th symposium on
advanced space technologies in robotics and automation
(ASTRA), Leiden, Netherlands, 2017https://www.dfki.de/
web/forschung/projekte-publikationen/publikation/9091.

[3] R. E. Arvidson, P. DeGrosse, J. P. Grotzinger et al., “Relating
geologic units and mobility system kinematics contributing
to curiosity wheel damage at gale crater, Mars,” Journal of Ter-
ramechanics, vol. 73, pp. 73–93, 2017.

[4] G. Ishigami, K. Nagatani, and K. Yoshida, “Path planning and
evaluation for planetary rovers based on dynamic mobility
index,” in 2011 IEEE/RSJ international conference on intelli-
gent robots and systems, pp. 601–606, San Francisco, CA,
USA, 2011.

[5] Y. Tanaka, Y. Ji, A. Yamashita, and H. Asama, “Fuzzy based
traversability analysis for a mobile robot on rough terrain,”
in 2015 IEEE International Conference on Robotics and Auto-
mation (ICRA), pp. 3965–3970, Seattle, WA, USA, 2015.

[6] S. B. Goldberg, M. W. Maimone, and L. Matthies, “Stereo
vision and rover navigation software for planetary explora-
tion,” in Proceedings, IEEE Aerospace Conference, pp. 5–5,
Big Sky, MT, USA, 2002.

[7] L. Matthies, M. Maimone, A. Johnson et al., “Computer vision
on Mars,” International Journal of Computer Vision, vol. 75,
no. 1, pp. 67–92, 2007.

[8] X. Meng, Z. Cao, S. Liang, L. Pang, S. Wang, and C. Zhou, “A
terrain description method for traversability analysis based on
elevation grid map,” International Journal of Advanced
Robotic Systems, vol. 15, no. 1, 2018.

[9] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Krüsi,
R. Siegwart, and M. Hutter, “Navigation planning for legged
robots in challenging terrain,” in 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
pp. 1184–1189, Daejeon, Republic of Korea, 2016.

[10] P. Fankhauser, M. Bloesch, and M. Hutter, “Probabilistic ter-
rain mapping for mobile robots with uncertain localization,”
IEEE Robotics and Automation Letters, vol. 3, no. 4,
pp. 3019–3026, 2018.

Table 4: The comparison of the numerical results between the
classical A∗ algorithm and our method in the environment
(Figure 6(b)). The time here refers to the expected running time
of the planetary rovers from the start point to the end point.

Method Time (s) Length of path (m)

A∗ algorithm 364.21 12.13

Our method 348.47 13.61

Change (%) -4.32 +12.20

10 International Journal of Aerospace Engineering

https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9091
https://www.dfki.de/web/forschung/projekte-publikationen/publikation/9091


[11] A. R. Dargazany, “Stereo-based terrain traversability analysis
using normal-based segmentation and superpixel surface anal-
ysis,” 2019, https://arxiv.org/abs/1907.06823.

[12] B. Suger, B. Steder, and W. Burgard, “Traversability analysis
for mobile robots in outdoor environments: a semi-
supervised learning approach based on 3D-lidar data,” in
2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 3941–3946, Seattle, WA, USA, 2015.

[13] T. Guan, D. Kothandaraman, R. Chandra, A. J. Sathya-
moorthy, K. Weerakoon, and D. Manocha, “GA-Nav: efficient
terrain segmentation for robot navigation in unstructured out-
door environments,” IEEE Robotics and Automation Letters,
vol. 7, no. 3, pp. 8138–8145, 2022.

[14] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer,
“Real-time semantic mapping for autonomous off-road navi-
gation,” in Field and Service Robotics, pp. 335–350, Springer,
2018.

[15] G. Vincent, A. Yepremyan, J. Chen, and E. Goh, “Mixed-
domain training improves multi-mission terrain segmenta-
tion,” in Computer Vision–ECCV 2022 Workshops: Tel Aviv,
Israel, pp. 96–111, Springer Nature Switzerland, Cham, Swit-
zerland, 2023.

[16] S. Hosseinpoor, M. Mantelli, D. Pittol et al., “Traversability
analysis by semantic terrain segmentation for mobile robots,”
in 2021 IEEE 17th international conference on automation sci-
ence and engineering (CASE), pp. 1407–1413, Lyon, France,
2021.

[17] G. Ishigami, A. Miwa, K. Nagatani, and K. Yoshida, “Terrame-
chanics-based model for steering maneuver of planetary
exploration rovers on loose soil,” Journal of Field Robotics,
vol. 24, no. 3, pp. 233–250, 2007.

[18] H. Liu, M. Yao, X. Xiao, and H. Cui, “A hybrid attention
semantic segmentation network for unstructured terrain on
Mars,” Acta Astronautica, vol. 204, pp. 492–499, 2023.

[19] B. Rothrock, R. Kennedy, C. Cunningham, J. Papon,
M. Heverly, and M. Ono, “SPOC: deep learning-based terrain
classification for Mars rover missions,” in AIAA SPACE 2016,
p. 5539, Long Beach, CA, USA, 2016.

[20] E. Goh, J. Chen, and B. Wilson, “Mars terrain segmentation
with less labels,” in 2022 IEEE Aerospace Conference (AERO),
pp. 1–10, Big Sky, MT, USA, 2022.

[21] R. M. Swan, D. Atha, H. A. Leopold et al., “AI4MARS: a dataset
for terrain-aware autonomous driving onMars,” in 2021 IEEE/
CVF conference on computer vision and pattern recognition
workshops (CVPRW), pp. 1982–1991, Nashville, TN, USA,
2021.

[22] C. A. Brooks and K. Iagnemma, “Vibration-based terrain clas-
sification for planetary exploration rovers,” IEEE Transactions
on Robotics, vol. 21, no. 6, pp. 1185–1191, 2005.

[23] R. Manduchi, A. Castano, A. Talukder, and L. Matthies,
“Obstacle detection and terrain classification for autonomous
off-road navigation,” Autonomous Robots, vol. 18, no. 1,
pp. 81–102, 2005.

[24] I. Halatci, C. A. Brooks, and K. Iagnemma, “Terrain classifica-
tion and classifier fusion for planetary exploration rovers,” in
2007 IEEE Aerospace Conference, pp. 1–11, Big Sky, MT,
USA, 2007.

[25] R. Egan and A. H. Göktogan, “Deep Learning Based Terrain
Classification for Traversability Analysis, Path Planning and
Control of a Mars Rover,” inAustralasian Conference on Robot-
ics and Automation (ACRA-2021), Melbourne, Australia, 2021,

https://www.researchgate.net/publication/356833048_Deep_
Learning_based_Terrain_Classification_for_Traversability_
Analysis_Path_Planning_and_Control_of_a_Mars_Rover.

[26] K. Ebadi, K. Coble, D. Kogan et al., “Semantic mapping in
unstructured environments: toward autonomous localization
of planetary robotic explorers,” in 2022 IEEE Aerospace Con-
ference., Big Sky, Montana, USA, March 2022, https://russ-
stuff.com/wp-content/uploads/2022/01/IEEE_AERO___
Semantic_Segmentation_TRN_on_Mars.pdf.

[27] M. Wang, X. Long, P. Chang, and T. Padlr, “Autonomous
robot navigation with rich information mapping in nuclear
storage environments,” in 2018 IEEE international symposium
on safety, security, and rescue robotics (SSRR), pp. 1–6, Phila-
delphia, PA, USA, 2018.

[28] S. Achat, J. Marzat, and J. Moras, “Path planning incorporat-
ing semantic information for autonomous robot navigation,”
in 19th International Conference on Informatics in Control,
Automation and Robotics (ICINCO), pp. 285–295, Lisbon,
Portugal, 2022.

[29] S. Chiodini, L. Torresin, M. Pertile, and S. Debei, “Evaluation
of 3D CNN semantic mapping for rover navigation,” in 2020
IEEE 7th international workshop on metrology for AeroSpace
(MetroAeroSpace), pp. 32–36, Pisa, Italy, 2020.

[30] A. Sadat, S. Casas, M. Ren, X. Wu, P. Dhawan, and R. Urtasun,
“Perceive, predict, and plan: safe motion planning through
interpretable semantic representations,” in Computer Vision–
ECCV, pp. 414–430, Springer, 2020.

[31] J. Delmerico, E. Mueggler, J. Nitsch, and D. Scaramuzza,
“Active autonomous aerial exploration for ground robot path
planning,” IEEE Robotics and Automation Letters, vol. 2,
no. 2, pp. 664–671, 2017.

[32] D. Ghosh, G. Nandakumar, K. Narayanan, V. Honkote, and
S. Sharma, “Kinematic constraints based bi-directional RRT
(KB-RRT) with parameterized trajectories for robot path plan-
ning in cluttered environment,” in 2019 International Confer-
ence on Robotics and Automation (ICRA), pp. 8627–8633,
Montreal, QC, Canada, 2019.

[33] C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao, and Y. Rui, “Mesh-
stereo: a global stereo model with mesh alignment regulariza-
tion for view interpolation,” in 2015 IEEE International
Conference on Computer Vision (ICCV), pp. 2057–2065, Santi-
ago, Chile, 2015.

[34] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography,” Communications of the ACM,
vol. 24, no. 6, pp. 381–395, 1981.

[35] P. M. Bartier and C. P. Keller, “Multivariate interpolation to
incorporate thematic surface data using inverse distance
weighting (IDW),” Computers & Geosciences, vol. 22, no. 7,
pp. 795–799, 1996.

[36] J. Wang, K. Sun, T. Cheng et al., “Deep high-resolution repre-
sentation learning for visual recognition,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no. 10,
pp. 3349–3364, 2021.

[37] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and
P. Luo, “SegFormer: simple and efficient design for semantic
segmentation with transformers,” Advances in Neural Infor-
mation Processing Systems, vol. 34, pp. 12077–12090, 2021.

[38] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for
semantic image segmentation,” in Computer Vision – ECCV
2018, pp. 801–818, Springer, 2018.

11International Journal of Aerospace Engineering

https://arxiv.org/abs/1907.06823
https://www.researchgate.net/publication/356833048_Deep_Learning_based_Terrain_Classification_for_Traversability_Analysis_Path_Planning_and_Control_of_a_Mars_Rover
https://www.researchgate.net/publication/356833048_Deep_Learning_based_Terrain_Classification_for_Traversability_Analysis_Path_Planning_and_Control_of_a_Mars_Rover
https://www.researchgate.net/publication/356833048_Deep_Learning_based_Terrain_Classification_for_Traversability_Analysis_Path_Planning_and_Control_of_a_Mars_Rover
https://russ-stuff.com/wp-content/uploads/2022/01/IEEE_AERO___Semantic_Segmentation_TRN_on_Mars.pdf
https://russ-stuff.com/wp-content/uploads/2022/01/IEEE_AERO___Semantic_Segmentation_TRN_on_Mars.pdf
https://russ-stuff.com/wp-content/uploads/2022/01/IEEE_AERO___Semantic_Segmentation_TRN_on_Mars.pdf


[39] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is all you
need,” Advances in Neural Information Processing Systems,
vol. 30, 2017.

[40] A. Dosovitskiy, L. Beyer, A. Kolesnikov et al., “An image is
worth 16x16 words: transformers for image recognition at
scale,” 2020, https://arxiv.org/abs/2010.11929.

[41] J. Zhang, L. Lin, Z. Fan, W. Wang, and J. Liu, “S5 Mars: self-
supervised and semi-supervised learning for Mars segmenta-
tion,” 2002, https://arxiv.org/abs/2207.01200.

[42] X. Yu, Q. Huang, P. Wang, and J. Guo, “Comprehensive global
path planning for lunar rovers,” in 2020 3rd international con-
ference on unmanned systems (ICUS), pp. 505–510, Harbin,
China, 2020.

[43] R. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal on Robotics and Automation, vol. 2,
no. 1, pp. 14–23, 1986.

[44] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for
the heuristic determination of minimum cost paths,” IEEE
Transactions on Systems Science and Cybernetics, vol. 4,
no. 2, pp. 100–107, 1968.

[45] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Practical
search techniques in path planning for autonomous driving,”
Ann Arbor, vol. 1001, article 48105, 2008.

[46] J. M. Kessenich, G. Sellers, and D. Shreiner, OpenGL® Pro-
gramming Guide: The Official Guide to Learning Opengl®, Ver-
sion 4.5 with Spir-V, Addison-Wesley, Boston, MA, USA,
2016.

[47] C. Liu, X. Yue, K. Shi, and Z. Sun, Spacecraft Attitude Control:
A Linear Matrix Inequality Approach, Elsevier, Amsterdam,
UK, 2022.

12 International Journal of Aerospace Engineering

https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2207.01200

	TTA-GEP: Terrain Traversability Analysis with Geometry and Environmental Perception for the Path Planning of Planetary Rovers
	1. Introduction
	2. Related Work
	2.1. Terrain Classification
	2.2. Path Planning

	3. Technical Approach
	3.1. Environment Representation
	3.2. Terrain Classifier
	3.3. Terrain Traversability Analysis
	3.4. TTA-GEP for Path Planning

	4. Experiments
	4.1. Terrain Classification
	4.2. Environmental Construction
	4.3. TTA-GEP and Path Planning

	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



