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An increasing number of satellites are currently being launched into orbit to work in the form of clusters or constellations.
However, the initial orbit position is accompanied by random errors, which will propagate during their running. Therefore, the
orbit precision of the satellites directly affects space safety, network accuracy, and operating efficiency. Hence, accurate and fast
random error estimation is essential to improve satellite control. The traditional method will take much time and cost, and it is
associated with complex calculations or low accuracy, especially for large-scale constellations. In this paper, a random error
evaluation model based on the ellipsoid is proposed. It can be used to estimate initial positions and error propagation for any
orbit satellites. By comparing with the experiment results using the Monte Carlo method, it is proved that the proposed model
is relatively simple, highly effective, and good at accuracy.

1. Introduction

Positioning the satellite into orbit is accompanied by the
uncertainty that spreads during the satellite running and
affects its efficiency. Random and systematic errors mainly
cause the uncertainty of orbit positioning during satellite
production, design, manufacturing, and launch. Systematic
errors can be reduced, but random errors are caused by acci-
dental factors that are difficult to predict and control. In
practice, satellites with high requirements, high accuracy,
and high value are usually corrected or adjusted when they
deviate from the normal orbital position. However, since
their correction ability is limited, the cost of orbit correction
may be much higher than that of satellites for small or
micro-nanosatellites. Moreover, it is also difficult to conduct
extensive orbit correction for large-scale satellite clusters.
However, accurately and quickly estimating the random
errors of the orbital position can help calculate the position
error distribution of the satellite in orbit, evaluate the possi-
bility of collision, and analyze the deviation of coverage or

communication area of a satellite, constellation, or cluster.
Consequently, correct control strategies can be specified.

Space target monitoring and orbit theory analysis are the
main methods for determining the orbit of the satellite and
the orbit error. Space target monitoring discovers, tracks,
and measures the motion parameters of space targets in
real-time through various observation methods, determining
their orbital characteristics. The US Space Surveillance Net-
work (SSN) continuously updates orbit data using the SGP4
(simplified general perturbations)/SDP4 (simplified deep
space perturbations) orbit theoretical model by cataloging
and tracking the satellites in orbit [1]. NORAD (North
American Aerospace Defense Command) also regularly
publishes TLE (two-line elements) of most space targets by
monitoring them. These orbit determination methods
require a perfect observation system and an accurate and
efficient prediction model. However, they have the disadvan-
tages of poor reliability, high hardware cost, and long orbit
determination time. Nevertheless, TLE may become private
and make these methods unreliable.
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Some experts have proposed convenient methods for dif-
ferent types of satellites. Knogl et al. [2] used LEO (low earth
orbit) satellite communication channels to locate GEO (geo-
synchronous earth orbit) satellites accurately. Vighnesam
et al. [3] investigated the systematic method of determining
the operating orbit of IRS (Indian remote sensing) satellites
through the position difference. Yi et al. [4] and Liu et al. [5]
used onboard GPS (global positioning system) and BDS2 (Bei-
Dou satellite) to accurately determine the relative orbit of
China’s TH-2 (Tian Hui) satellite formation. Li et al. [6] ana-
lyzed the accuracy of the BDS3 orbits using SLR (satellite laser
ranging), while Gu et al. [7] analyzed the principle of GPS pre-
cise orbit determination evaluation by the samemethod. Exist-
ing investigations determine the orbital position of the satellite
by receiving satellite signals from the measuring station [8, 9].
Larki et al. [10] determined the satellite orbit based on the gra-
dient method. Based on historical orbit data, Bai [11] investi-
gated the orbit prediction error and the collision probability
of space objects. According to the literature review, most
authors investigated satellite orbital positioning using other
equipment. BDS or other equipment used in orbit determina-
tion may malfunction and are characterized by complex sys-
tems, high costs, and poor reliability.

Uncertainty can also be analyzed from the perspective of
mathematics. Methods such as spatial estimation [12, 13],
real positioning error and error model expression [14],
description of spatial data error [15–20], data error propaga-
tion model [21–23], and data error detection and correction
[24, 25] were proposed by mathematical statistics. These
methods have high efficiency and low cost. However, few
studies have been conducted on the description of errors in
data and the applicability analysis in aerospace.

In recent years, many satellites have been launched into
orbit in constellations, clusters, or groups. It is meaningful
to study the orbital position laws of satellites subjected to
the initial random error and find the certainty hidden in
chance, such as determining the positioning accuracy for
navigation satellites, calculating the coverage for observation
satellites, analyzing the collision risk for space targets, and
conducting mission planning for constellations.

In this paper, an ellipsoid model was proposed to esti-
mate the random error and propagation analysis for the ini-
tial positions of satellites. The error model is provided by the
analytical method, and the results are numerically verified.
The remainder of this paper is organized as follows. In the
second part, the background material of satellite dynamics
is introduced. In part three, the position uncertainty of the
satellite launch into the orbital position is calculated accord-
ing to the uncertainty matrix of the six orbital elements of
the satellite. Then, the three coordinate axis directions under
the geocentric inertial coordinate system are calculated by
the propagation rate of the covariance matrix. The theoreti-
cal model of the equal probability density surface is con-
structed, and the probability calculation formula is
provided for the satellite launch into the orbit in a certain
error range. Based on these values, the transfer of the satel-
lite’s initial orbital position error is further derived. In part
four, the orbital positions of LEO, MEO (medium earth
orbit), and IGSO (inclined geosynchronous orbit) satellites

are simulated under random errors using STK (satellite tool
kit) software and the Monte Carlo method. The last part
provides conclusions and research prospects.

2. Background Material

In this part, relevant symbols and concepts will be intro-
duced. Furthermore, satellite space coordinate systems and
satellite dynamics knowledge will be explained.

2.1. Concepts and Symbols. Mark the satellite as S, the center
of the earth (geocenter) as O, and the distance from the sat-
ellite to the geocenter as r. It is considered that the satellite
follows an elliptic orbit. The center of the ellipse is marked
as ~O, and the point closest to the geocenter is called perigee,
which is marked as P0. The point farthest from the geocenter
is called apogee, which is denoted as B. Half of the major axis
of an elliptical orbit is called the satellite orbit semimajor
axis, which is marked as a. The ratio of the distance between
the two focuses of the ellipse and the major axis is called sat-
ellite orbit eccentricity, marked as e. The angle between the
orbital plane and the earth’s equatorial plane is called orbital
inclination, marked as i. The satellite orbit (except for that
with zero inclination degree) has two focal points between
the satellite orbit and the earth’s equatorial plane. The satel-
lite running arc segment from the southern hemisphere
through the equatorial plane to the northern hemisphere is
called the ascending segment. The point crossing the equato-
rial plane is called ascending node and is marked as N . The
angle between the vernal equinox, the ascending node, and
the geocenter is called the right ascension of ascending node,
marked as Ω. The field angle between the perigee and the
ascending node with respect to the geocenter is called the
perigee argument and is marked as ω. The included angle
between the orbital perigee and the satellite and the geocen-
ter is called the true anomaly, marked as f . The average
angular velocity of the satellite is marked as n, and the time
when the satellite passes the perigee is recorded as t0. In
addition, to express the motion of the satellite, the eccentric
anomaly E and the mean anomaly M are introduced, which
will be explained in Section 2.2.

2.2. Coordinate System with Respect to the Satellite. The
coordinate system is crucial for accurately expressing the
position and describing the motion of the satellite. In this
research, the geocentric inertial coordinate system and the
geocentric orbital coordinate system are used.

The geocentric inertial coordinate system selects the geo-
center (O) as the coordinate origin. The X-axis points to the
vernal equinox in the equatorial plane, the Z-axis coincides
with the earth’s rotation axis, and the Y-axis forms the
right-hand Cartesian coordinate system with the X-axis
and the Z-axis in the equatorial plane. OXYZ is the geocen-
tric inertial coordinate system, as shown in Figure 1.

In the geocentric orbital coordinate system, the coordi-
nate origin point is located at geocentric O, while the OU
and OV axes are in the orbit plane of the satellite. Simulta-
neously, the OU axis points to the perigee, and the OW axis
coincides with the normal vector of the satellite orbital
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plane. The axes OV, OU, and OW form the right-hand Car-
tesian coordinate system in the satellite orbital plane, as
shown in Figure 1.

For simplicity, an auxiliary circle is produced with the
center ~O and the radius a, as shown in Figure 2. Draw a ver-
tical line of the OU axis through S and intersect with OU at
point H. Then, extend HS intersection auxiliary circle to ~S,
connect point ~O and point ~S, and the included angle between
line ~O~S and line ~OU is the eccentric anomaly E. The angle
between the line ~O~S and ~OU is the true anomaly, marked
as f . By Equation (1), point C can be obtained. The included
angle between the line ~OU and ~OC is the mean anomaly,
which is different from the true anomaly and eccentric
anomaly and does not have geometric interpretation. How-
ever, it can be directly used in the Kepler equation, as shown
in the following:

M = n t − t0ð Þ +M0, ð1Þ

where t0 is the start time, t is the elapsed time, M0 is the
mean anomaly at t0, and n is the average angular velocity
of the satellite expressed as follows:

n =
ffiffiffiffiffi
μ

a3

r
, ð2Þ

where μ is the Kepler constant, whose value is 3:986
× 105km3/s2.

2.3. Equation of Satellite Motion. The satellite’s orbital coordi-
nate is usually expressed by six orbital elements, written as the
vector:

X = a, e, i,Ω, ω, f½ �T : ð3Þ

Regarding the satellite’s six orbital elements, only true
anomaly changes with time, and its change equation can
be expressed indirectly through the eccentric and mean
anomalies. According to orbital dynamics, the relationship
between the true anomaly, eccentric anomaly, and mean
anomaly is as follows [26]:

tan f
2 =

ffiffiffiffiffiffiffiffiffi
1 + e

pffiffiffiffiffiffiffiffiffi
1 − e

p tan E
2

M = E − e sin E

8><>: : ð4Þ

The three-dimensional coordinate expression of a satellite
position in the geocentric orbital coordinate system is the fol-
lowing:

U = a cos E − ae,
V = a

ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin E

W = 0,

8>><>>: , ð5Þ

where U is the component of a satellite orbital position in the
direction of theOU axis,V is the component of a satellite’s posi-
tion in the direction of theOV axis, andW is the component in
the direction of theOW axis. The geocentric inertial coordinate
system can be written as follows:

x

y

z

2664
3775 = R3R2R1

U

V

W

2664
3775, ð6Þ

where R1, R2, and R3 are rotation matrices expressed as
follows:

R1 =
cos ω −sin ω 0
sin ω cos ω 0
0 0 1

2664
3775,

R2 =
1 0 0
0 cos i −sin i

0 sin i cos i

2664
3775,

R3 =
cos Ω −sin Ω 0
sin Ω cos Ω 0
0 0 1

2664
3775:

ð7Þ
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Figure 1: Coordinate system diagram.
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Figure 2: Diagram of the satellite orbit and the auxiliary circle.
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Hence,

2.4. Expression for the Initial Orbital Position of a Satellite.
Satellite orbital positions usually adopt different methods
on various occasions and application backgrounds. If the
impact of random factors during launching is considered,
the satellite’s initial orbital position is a random variable.
The mathematical expectation of its orbital elements vector
can be written as follows:

μX =

E að Þ
E eð Þ
E ið Þ
E Ωð Þ
E ωð Þ
E fð Þ

2666666666664

3777777777775
=

~a

~e

~i

~Ω

~ω

~f

2666666666664

3777777777775
, ð9Þ

where EðaÞ, EðeÞ, EðiÞ, EðΩÞ, EðωÞ, and Eð f Þ are the expec-
tation of the semimajor axis, eccentricity, inclination, right
ascension of ascending, perigee argument, and true anomaly
of the satellite orbit, respectively. Let the values of EðaÞ, EðeÞ,
EðiÞ, EðΩÞ, EðωÞ, and Eð f Þ are ~a, ~e, ~i, ~Ω, ~ω, and ~f ,
respectively.

The variance of six orbital elements of the vector X can
be expressed by DXX.

DXX =

σ2a σae σai σaΩ σaω σaf

σea σ2e σei σeΩ σeω σef

σia σie σ2i σiΩ σiω σif

σΩa σΩe σΩi σ2Ω σΩω σΩf

σωa σωe σωi σωΩ σ2
ω σωf

σf a σf e σf i σfΩ σfω σ2f

26666666666664

37777777777775
: ð10Þ

The elements on the main diagonal in DXX are variances
of random variables a, e, i,Ω, ω, and f , while the other ele-
ments express the covariance that describes the correlation
between any two orbital elements. At the initial time, the

six orbital elements are independently designed, i.e., the
covariance is zero. Therefore, the variance matrix of the vec-
tor DXX can be written as follows:

DXX =

σ2a 0 0 0 0 0
0 σ2e 0 0 0 0
0 0 σ2i 0 0 0
0 0 0 σ2

Ω 0 0
0 0 0 0 σ2ω 0
0 0 0 0 0 σ2f

2666666666664

3777777777775
: ð11Þ

Since they are subjected to the random error of the
orbital position of the satellite, the vector μX and the vari-
ance matrix DXX are the digital characteristics of the 6-
dimensional normal random vector. Once the satellite is
launched into orbit, the true anomaly is affected by eccen-
tricity, semimajor axis, and other perturbation factors.
Therefore, the covariance is not zero.

2.5. Random Error Expression of the Initial Orbital Position
in the Geocentric Inertial Coordinate System. Suppose that
the expected satellite’s initial orbital position is ~Að~x, ~y, ~zÞ in
the geocentric inertial coordinate system. However, the
actual position is Aðx, y, zÞ, as shown in Figure 3.

The deviation value Δ of the actual initial position can be
expressed as follows:

Δx = x − ex,
Δy = y − ~y

Δz = z − ~z,

8>><>>: , ð12Þ

where Δx, Δy, and Δz are the components of the spatial posi-
tion error Δ on the X, Y , and Z axes, respectively.

Δ2 = Δ2
x + Δ2

y + Δ2
z : ð13Þ

x

y

z

26664
37775 =

cos Ω cos ω − sin Ω sin ω cos i −cos Ω sin ω − sin Ω cos ω cos i sin Ω sin i

sin Ω cos ω + cos Ω sin ω cos i −sin Ω sin ω + cos Ω cos ω cos i sin Ω sin i

sin i sin ω cos ω sin i cos i

26664
37775

U

V

W

26664
37775

=

a cos E − eð Þ cos Ω cos ω − sin Ω sin ω cos ið Þ − a
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin E cos Ω sin ω + sin Ω cos ω cos ið Þ

a cos E − eð Þ sin Ω cos ω + cos Ω sin ω cos ið Þ − a
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin E sin Ω sin ω − cos Ω cos ω cos ið Þ

a cos E − eð Þ sin i sin ω + a
ffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
sin E cos ω sin i

266664
377775:

ð8Þ
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According to the definition of mean and variance,

E Δ2
x

À Á
= E x − ~xð Þ2Â Ã

= E x − E ~xð Þ½ �2È É
= σ2x,

E Δ2
y

� �
= E y − ~yð Þ2Â Ã

= E y − E ~yð Þ½ �2È É
= σ2y

E Δ2
z

À Á
= E z − ~zð Þ2Â Ã

= E z − E ~zð Þ½ �2È É
= σ2z :

,

8>>><>>>: ð14Þ

According to the linear principle of the mean value and
by combining Equations (13) and (14),

E Δ2À Á
= E Δ2

x

À Á
+ E Δ2

y

� �
+ E Δ2

z

À Á
= σ2

x + σ2
y + σ2

z , ð15Þ

where EðΔ2Þ is the theoretical average value of the square of
the satellite’s initial position error. If the point-seat variance
of A is marked as σ2A, it can be expressed as follows:

σ2A = σ2
x + σ2

y + σ2
z , ð16Þ

where the magnitude of σ2A is independent of the coordi-
nate system and σA is the satellite’s orbital position error [27].

3. Construction of Satellite’s Orbital Position
Error Model

The satellite’s initial position variance σ2A can be used to
evaluate its accuracy, but it cannot show the directional dif-
ference. It is necessary to consider the directional deviation
of the satellite’s orbital position when discussing the space
collision safety, ground coverage, or efficiency of a satellite
or a cluster. Therefore, it is necessary to determine the posi-
tional vector difference of the satellite in a three-dimensional
space. The set of equal variance position points of the satel-
lite’s initial position forms a closed surface representing
errors in all directions. However, this surface is untypical
and inconvenient to be drawn. However, its shape is similar
to an ellipsoid, as shown in Figure 4. For convenience of
analysis, the aforementioned shape is approximated by an
ellipsoid, denoted as an error ellipsoid with equal variance
(Figure 5). For simplicity, this ellipsoid will be referred to
as an error ellipsoid. The parameters U , V , and W are the
three principal axes of the ellipsoid.

3.1. The Function for the Error Ellipsoid Model. The satellite’s
initial position in orbit is presented as a normal three-
dimensional distribution in the geocentric inertial coordi-
nate system. Moreover, its density function of the joint dis-
tribution can be expressed as follows [28]:

f x, y, zð Þ = 1
2πð Þ32 Drrj j12

Á exp −
1
2 x − ~x, y − ~y, z − ~zð ÞD−1

rr x − ~x, y − ~y, z − ~zð ÞT
� �

,

ð17Þ

where ~x, ~y, and ~z are the mathematical expectations of
the initial position on the X, Y , and Z axes. Respectively,
Drr is the uncertainty matrix of the satellite’s initial position
in orbit under the geocentric inertial coordinate system, and
jDrrj is the determinant of the uncertainty matrix. The
matrix Drr can be expressed as follows:

Drr =

σ2x σxy σxz

σxy σ2y σyz

σzx σzy σ2z

26664
37775, ð18Þ

where σ2i ði = x, y, zÞ is the position variance of the coordi-
nate axis direction and σijði, j = x, y, zÞ is the covariance
between the coordinate axes.

3.2. Calculation of Uncertainty Matrix Drr . The covariance
matrix DXX of six orbital elements is expressed as Equation
(11). Therefore, the uncertainty matrix Drr can be calculated
according to the covariance propagation rate [29]:

Drr =ADXXAT , ð19Þ
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Figure 3: Error in the satellite’s initial position.
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where each element of the matrix A is the partial deriv-
ative approximate of position coordinates ðx, y, zÞ with
respect to each variable of six orbital elements in the geocen-
tric inertial coordinate system at the expected value μX , as
shown in Equation (9). Matrix A can be expressed as follows:

A =

∂x
∂a

∂x
∂e

∂x
∂i

∂x
∂Ω

∂x
∂ω

∂x
∂f

∂y
∂a

∂y
∂e

∂y
∂i

∂y
∂Ω

∂y
∂ω

∂y
∂f

∂z
∂a

∂z
∂e

∂z
∂i

∂z
∂Ω

∂z
∂ω

∂z
∂f

2666666664

3777777775

��������������
~a,~e,~i,~Ω,~ω,~fð Þ

: ð20Þ

Elements in the matrix A are partial derivatives of
the function with respect to each variable. These values
are obtained using the approximate value ~a, ~e,~i, ~Ω, ~ω, ~E0
in place of a, e, i,Ω, ω, E0, where ~a,~e,~i, ~Ω, ~ω, ~E0 are con-
stants. The accuracy is relatively high when the values
~a, ~e,~i, ~Ω, ~ω, ~E0 are very close to their respective values ~a, ~e,~i,
~Ω, ~ω, ~E0.

3.3. Calculating the Length of Error Ellipsoids Three Axes.
According to the joint distribution density function
described by Eq. (17), the same point of probability density
in the three-dimensional normal distribution space can be
expressed as follows:

x − Δx, y − Δy , z − Δz

À Á
D−1

rr x − Δx, y − Δy , z − Δz

À ÁT = k2,
ð21Þ

where k is the amplification factor of the ellipsoid since dif-
ferent probability density points form various ellipsoids.
According to linear algebra, Equation (21) is exactly the
expression of a similar ellipsoidal family. If a value of k is
provided, an ellipsoid can be obtained, as shown in Figure 6.

Let x − Δx = ~x, y − Δy = ~y, z − Δz = ~z. Then, Equation (21)
can be written as follows:

~x, ~y, ~zð ÞD−1
rr ~x, ~y, ~zð ÞT = k2: ð22Þ

Equation (22) expresses a similar ellipsoid family with O
as the ellipsoid center under the geocentric inertial coordi-
nate system. Coordinate conversion is performed for conve-
nience in analysis. Furthermore, the expression is obtained
in the principal axis coordinate system OUVW, as shown
in Figure 7.

In Figure 7, OU, OV, and OW are the principal axes of
the ellipsoid family. According to Equations (19) and (20),
Drr is a real symmetric matrix, and there must be an orthog-
onal matrix M that satisfies the following [30]:

MTDrrM =
λ1

λ2

λ3

2664
3775: ð23Þ

Equation (23) can be transformed, and an inverse is
taken on both sides to obtain the following:

MTD−1
rr M =

λ−11

λ−12

λ−13

2664
3775: ð24Þ

Therefore,

D−1
rr =M

λ−11

λ−12

λ−13

2664
3775MT : ð25Þ

The following expression is obtained by combining
Equations (21) and (24).

MT

~x

~y

~z

2664
3775

2664
3775
T

λ−11

λ−12

λ−13

2664
3775MT

~x

~y

~z

2664
3775 = k2, ð26Þ

By substituting

MT

~x

~y

~z

2664
3775 =

u

v

w

2664
3775, ð27Þ
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U

Figure 6: Schematic diagram of similarity error ellipsoid family.
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the following expression can be obtained:

u

v

w

2664
3775
T

λ−11

λ−12

λ−13

2664
3775

u

v

w

2664
3775 = k2: ð28Þ

Additional calculation and expansion yield the following:

u2

λ1
+ v2

λ2
+ w2

λ3
= k2: ð29Þ

Equation (29) represents the error ellipsoid equation in the
principal axis coordinate system. The lengths of the half-axis
are k

ffiffiffiffiffi
λ1

p
, k

ffiffiffiffiffi
λ2

p
, and k

ffiffiffiffiffi
λ3

p
, where k is the above-defined

amplification factor and λ1, λ2, and λ3 are the eigenvalues of
the covariance matrix Drr. The length of the corresponding
ellipsoid axes can be determined by employing the covariance
matrix and the value of k.

3.4. Determining Axial Directions of the Error Ellipsoid. It is
known that the axial directions of the error ellipsoid can be
described by the Euler angles which are rotation angles from
the geodetic coordinate system OXYZ to the ellipsoidal prin-
cipal axis coordinate system OUVW. If the Euler angle
rotates under the Z − Y − X compliance, the rotation matrix
is as follows:

R = Rij
À Á

3×3 = RZ θzð ÞRY1
θy
À Á

RX2
θxð Þ, ð30Þ

where θz , θy , and θx are the rotation angles around the Z
-axis, the Y-axis after one rotation, and the X-axis after
two sequentially rotations, and RZðθzÞ, RY1

ðθyÞ and RX2
ðθxÞ

are corresponding rotation matrices [31], as shown in
Figure 8.

According to Equation (23), the corresponding ortho-
normal eigenvectors of Drr can be easily calculated and
denoted by M. Based on linear algebra [32], we can choose
M such that Mij is equal to Rij. So that the Euler angles θz ,
θy , and θx can be calculated.

3.5. Probability of Satellite Orbit Position within a Certain
Error Range. According to the probability density shown in
Equation (17) and the error ellipsoid shown in Equation
(29), the probability of the satellite’s initial position in the
error ellipsoid can be determined as follows:

P =∭
Bk

1
2πð Þ3/2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ1λ2λ3

p exp −
1
2

u2

λ1
+ v2

λ2
+ w2

λ3

� �� �
dudvdw:

ð31Þ

Let

~u = uffiffiffiffiffiffiffi
2λ1

p ,

~v = vffiffiffiffiffiffiffi
2λ2

p
~w = wffiffiffiffiffiffiffi

2λ3
p ,

8>>>>>>>><>>>>>>>>:
, ð32Þ

and substitute Equation (32) into Equation (31). Thus, the
following expression can be obtained:

P = 1
π3/2 ∭Ck

exp −~u2 − ~v2 − ~w2À Á
d~ud~vd~w, ð33Þ

where Ck is a sphere of radius k/√2. Then, the probability that
the satellite’s initial position is within the ellipsoid Bk is equiv-
alent to the probability of falling into the sphere Ck. The
approximate probability that the satellite in orbit falls within
a certain error range can be obtained as follows [33]:

P = 4ffiffiffiffiffiffi
2π

p 〠
+∞

n=0
−1ð Þn · 1

n!
· 1
2n + 3 · k

2n+3

2n+1

 !
, ð34Þ

where k is the ellipsoidal amplification factor mentioned
above. If the covariance matrix is determined, the ratio
between the three axes

ffiffiffiffiffi
λ1

p
,

ffiffiffiffiffi
λ2

p
, and

ffiffiffiffiffi
λ3

p
of the error

ellipsoid is determined. Since the amplification ratio of the
three-axis lengths is different for various k values, the prob-
ability of the satellite’s initial orbital position being within
the error ellipsoid is also modified. The relationship
between the amplification factor k and probability P of
the satellite’s initial orbital position in the error ellipsoid
is shown in Figure 9.

As shown in Figure 9(b), the satellite’s initial orbit posi-
tion is within four times the ellipsoidal axis length under
random error. The probability of a satellite’s position within
different error limits can also be obtained.

3.6. Error Transfer of the Initial Position of the Satellite.
According to the satellite’s orbit dynamics, only the eccen-
tric anomaly of the satellite’s six orbital elements will
change from time to time, affected by the semimajor axis,
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Figure 8: The Euler angles under Z − Y − X compliance.
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eccentricity, and initial eccentric anomaly. Combining
Equations (1), (2), and (4) yields the following:

E1 − e sin E1 =
ffiffiffiffiffi
μ

a3

r
· t1 + E0 − e sin E0, ð35Þ

where E1 is the eccentric anomaly at the time t1 and E0 is
the eccentric anomaly at the initial time t0. According to
the covariance propagation law, the covariance of the
eccentric anomaly from the initial time t0 to time t1 can
be expressed as follows:

σ2E1
= ~A

σ2a 0 0 0 0 0
0 σ2e 0 0 0 0
0 0 σ2i 0 0 0
0 0 0 σ2

Ω 0 0
0 0 0 0 σ2ω 0
0 0 0 0 0 σ2E0

2666666666664

3777777777775
~AT , ð36Þ

where

~A = ∂E1
∂a

∂E1
∂e

∂E1
∂i

∂E1
∂Ω

∂E1
∂ω

∂E1
∂E0

� �����
~a,~e,~i,~Ω,~ω,~E0ð Þ

:

ð37Þ

Parameters ∂E1/∂a, ∂E1/∂e, ∂E1/∂i, ∂E1/∂Ω, ∂E1/∂ω,
and ∂E1/∂E0 are the partial derivatives of Equation (8)
with respect to each variable. These values can be obtained
by using approximate values ~a, ~e,~i, ~Ω, ~ω, ~E0 instead of a, e, i,

Ω, ω, E0. Moreover, the accuracy is relatively high when are
very close to their respective values of a, e, i,Ω, ω, E0. The
run time t is discretized to t1, t2, t3,⋯tn, and eccentric anom-
aly variance at time tn is recursively calculated from t0 to
obtain the error at any time t. Finally, the covariance matrix
of six satellite orbital elements at time tn is obtained as follows:

DXXn
=

σ2a 0 0 0 0 0
0 σ2e 0 0 0 0
0 0 σ2

i 0 0 0
0 0 0 σ2Ω 0 0
0 0 0 0 σ2ω 0
0 0 0 0 0 σ2En

2666666666664

3777777777775
: ð38Þ

Then, calculate the ellipsoid axes length, the Euler angles,
and satellite position distribution probability according to
Sections 3.3, 3.4, and 3.5, respectively.

4. Example Analysis and
Simulation Verification

Three representative types of satellites are selected as an
example: an LEO satellite with a circular orbit (S − 1), an
MEO satellite with an ellipsoid circle (S − 2), and an IGSO
satellite with a near-circular orbit (S − 3). Random errors
in the satellite’s expected initial orbit positions under the
impact of random factors are simulated and verified if the
error ellipsoid can accurately express random errors by com-
paring the Monte Carlo simulation results. Then, the transfer
of errors is also simulated based on the error ellipsoid theory.

k = 1, P = 19.9%
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Figure 9: The relationship between P and k:
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4.1. Related Satellites Expected Six Orbital Elements and
Covariance. The initial six expected orbital elements of the
three satellites are shown in Table 1.

According to Equation (11), the covariance DXX of six
orbital elements can be expressed as follows:

DXX =

22

0:00022

0:05π
180

� �2

0:03π
180

� �2

0:03π
180

� �2

0:03π
180

� �2

266666666666666666666664

377777777777777777777775

:

ð39Þ

The expected initial orbital positions in the geocentric
inertial coordinate system can be obtained according to
Equation (8), as shown in Table 2.

4.2. The Random Initial Orbital Position Errors Based on
Error Ellipsoid. The partial equation derivative with respect
to the orbital six elements can be calculated according to
Equations (8) and (20). The partial derivative matrix A is
also acquired. Then, according to Equation (19), the uncer-
tainty matrix Drr under the geocentric inertial coordinate
system can be obtained as follows:

DrrS−1 =
20:8885 1:9628 −9:2987
1:9628 30:1972 2:2432
−9:2987 2:2432 10:1869

2664
3775,

DrrS−2 =
33:0537 −2:5663 −2:6298
−2:5663 29:9996 1:4953
−2:6298 1:4953 29:9866

2664
3775,

DrrS−3 =
390:5257 −377:3623 320:5532
−377:3623 515:2274 −317:6344
320:5532 −317:6344 650:0961

2664
3775:

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
ð40Þ

The error ellipsoid functions of the satellite’s initial
orbital position error can be obtained by substituting Drr,

rx, ry, and rz into Equation (17). The orthogonal matrix M
is then obtained as follows:

MS−1 =
−0:5000 0:8493 0:1691
0:1130 −0:1296 0:9851
−0:8586 −0:5117 0:0312

2664
3775,

MS−2 =
0:3892 −0:4943 0:7773
−0:2213 −0:8693 −0:4420
0:8942 0 −0:4478

2664
3775

MS−3 =
0:8005 −0:3021 −0:5177
0:5872 0:5681 0:5766
−0:1199 0:7655 −0:6322

2664
3775:

,

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ð41Þ

The corresponding diagonal matrix λ (km) can be obtained
via Equation (23). Then, λ can be calculated as follows:

λS−1 =
4:4767

26:1907
30:6052

2664
3775,

λS−2 =
28:4717

28:5404
36:0279

2664
3775,

λS−3 =
65:6803

287:8779
1202:2910

2664
3775:

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

ð42Þ

Lastly, the error vector of the satellite’s initial orbital
position can be calculated. The calculation results for the ampli-
fication factor k equal to one are shown in Table 3. According to
Equation (34), when k is 2.8, the satellite’s initial orbital

Table 1: Satellite’s expected initial six orbital elements.

a (km) e i (°) Ω (°) ω (°) f (°)

S − 1 6904.14 0 97.5 0 0 60

S − 2 26553.4 0.740969 63.4 240.377 270.0 0

S − 3 42167.2 0.002100 54.8 211.400 167.1 201.3

Standard deviation 2 0.0002 0.05 0.03 0.03 0.03

Table 2: The expected initial orbital positions.

x (km) y (km) z (km)

S − 1 3452.1 -780.4 5928.0

S − 2 -2677.2 1522.3 -6150.1

S − 3 -33821.8 -24813.0 5043.4
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Table 3: Results based on error ellipsoid analysis.

Parameters S − 1 S − 2 S − 3
The ellipsoid center (km) (3452.1, -780.4, 5928.0) (-2677.2, 1522.3, -6150.1) (-33822, -24813, 5043)

Minor axis length (km) 2.1158 5.3359 8.1043

Middle axis length (km) 5.1177 5.3423 16.9670

Major axis length (km) 5.5322 6.0023 34.6741

θx , θy , θz ∘ð Þ (342.7417, 277.8334, 253.1135) (72.0364, 27.4769, 79.0675) (327.5203, 306.5469, 283.5594)
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Figure 10: Shadows of error ellipsoids on three planes.
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positions will be in the ellipsoid range of approximately 95%.
Error ellipsoids are shown in Figure 10.

Table 3 and Figure 10 demonstrate that the error ellip-
soids of the three satellites differ in size, shape, and direction
because they are mainly determined by six orbital elements
and initial covariance matrices. Although these three types
of satellites have the same covariance, the values of the six
orbit elements are different from each other. So, the error
ellipsoids for S − 1, S − 2, and S − 3 are different in size,
shape, and direction. Moreover, the changes of the error
ellipsoid at every position are very complex, and we can eas-
ily get the random error of satellites by the error ellipsoid
model.

4.3. Random Initial Orbital Position Based on the Monte
Carlo Simulation. According to the following equation
[34], the number of samples can be determined.

N ≥
Zα · σ
ε

� �2
, ð43Þ

where N is the number of samples, σ is the standard
deviation of the random variable, ε is the simulation error
of the Monte Carlo method, and Zα is the α quantile on
the standard normal distribution. Let σ = 0:1, Zα = 3, and
ε = 0:002, then N ≥ 22500. In this experiment, 25000
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samples are chosen. The results of the Monte Carlo simu-
lation using the same six orbital elements and the same
covariance matrix are shown in Figure 11.

Figure 11 shows the initial positions of the satellites
based on the Monte Carlo method, represented by black
points, and the respective ellipsoids derived from
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Figure 12: Comparison between the two methods for analyzing the probability of a satellite’s initial orbital position.
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Figure 12. The figure illustrates that the initial position dis-
tribution areas exhibit ellipsoidal shapes on the three planes
of the coordinate system. Additionally, the probability is
higher in the central area compared to the edge area. These
features are consistent with the error ellipsoid model pro-
posed in this paper.

4.4. Comparison with the Error Ellipsoids and the Simulation
Results Based on the Monte Carlo Method. According to
Figures 10 and 11, the error ellipsoids are very similar to
the simulation results of the Monte Carlo method, includ-
ing the shape, size, and rotation angles. To further verify
the rationality of the error ellipsoid for expressing random
errors, the initial positions of the satellite simulation are
compared with the range of the error ellipsoid, and the
probability of the satellite’s orbital initial position in the
ellipsoid is calculated with a certain k, as shown in
Table 4. The probability of the satellite’s initial orbital
position estimated by the error ellipsoid model is com-
pared with the simulation results for the entire range of
the amplification factor k from 0 to 4, as shown in
Figure 12. At k = 0, the cumulative probability distribution
is consistently zero for both the error ellipsoid model and the
Monte Carlo method. For certain values of k, the two methods
have slight errors. However, as the size of the ellipsoid
increases with k, the probabilities of the satellite’s initial orbital
position within the ellipsoid increase and eventually reach 1
for both methods, resulting in a greater degree of similarity
in the cumulative probability distribution.

According to Table 4 and Figure 12, the data from the
two methods about three types of satellites are all very
close at a certain k value. The probability of the Monte
Carlo simulation is slightly bigger than those of the error
ellipsoid results. Since the Monte Carlo experiments were
conducted many times, the results are close to the actual
result. Therefore, it can be considered that the error ellip-
soid is close to the actual one, and the distribution proba-
bility is slightly lower than the actual probability. This
indicates that the error ellipsoid theoretical model can reli-
ably estimate the satellite’s orbital position under random
error.

Figure 13 shows the calculation time spent by the error
ellipsoid theoretical model and the Monte Carlo method.

According to the figure, it can be found that the calcula-
tion time of the Monte Carlo method increases linearly with
the improvement of simulation accuracy, while the proposed
method in this paper remains almost unchanged. When the

simulation error control is 0.2%, the Monte Carlo method
calculation takes 1000 times longer than the error ellipsoid
model method. Therefore, the method proposed in this arti-
cle has higher computational efficiency.

4.5. Promotion and Application of the Error Ellipsoid Theory.
Moreover, the error ellipsoid theory can analyze a satellite’s
initial position error range under any orbital element and
covariance. Figure 14 shows the error ellipsoid axial length
and direction of the satellite’s initial position at different true
anomalies for the LEO, MEO, and IGSO satellites. In fact,
the Euler angles and the lengths of the axes are all gradually
changing with the true anomaly. Specifically, in order to well
display the directions of the error ellipsoid axes, the ranges
of the Euler angles are specified as follows: θx ∈ ½0∘, 360∘Þ,
θy ∈ ½−180∘, 180∘Þ, and θz ∈ ½0∘, 360∘Þ. When the Euler angle
exceeds the value range, it will be equivalently converted to
the specified value range, and it will cause a dramatic change
in the figure.
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Figure 13: Calculation time versus simulation error for the error
ellipsoid method and the Monte Carlo method.

Table 4: Probability of the satellite’s initial position distribution in a certain k.

Value of k
Distribution probability based
on error ellipsoid theory (%)

The results of the Monte Carlo
simulation probability (%)

S − 1 S − 2 S − 3
1.00 19.87 22.64 22.55 21.89

1.50 47.78 50.95 50.21 50.48

2.00 73.85 76.25 75.57 75.50

2.50 89.99 90.98 90.90 90.99

2.80 95.06 95.86 95.78 95.44
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According to Figures 14 and 15, different change rules
accompany various orbits. If one of the six orbital elements
changes, the size, shape, and angles of the axes’ inclination
of the error ellipsoid will change. These changes are very
complex and difficult to regulate. However, they are all sym-
metric about the major or minor axes of the orbit.

According to the calculation and the conducted analyses,
the accuracy of the error propagation with time will drop
rapidly using the error ellipsoid theory. However, it can
roughly estimate the error range of the satellite’s position
in orbit. The length changes of the three axes for the LEO
satellite are shown in Figure 16.
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Figure 14: Three-axis lengths of error ellipsoid at different true anomalies.
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According to Figure 16, theminor axis changes periodically.
The maximum value is approximately 2.43km and appears at
the true anomaly of 0° and 180°, while the minimum value is
roughly 2km and appears at the true anomaly of 90° and
270°. Similar change regulation is observed for the middle and
major axes. During a specific period, the maximum values

appear at the true anomaly of 90° and 270°, and the minimum
values appear at 0° and 180°. Furthermore, the major axis will
become longer over time, while different orbital elements will
lead to various change laws, complicating the entire process.

The ellipsoidal volume is introduced to explain the vari-
ation of satellite orbit position error range. The size of the
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Figure 15: Three angles of axes inclination of error ellipsoid at different true anomalies.
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error range response of an ellipsoidal volume is shown indi-
rectly in Figure 17.

As shown in Figure 17, the volume of the error ellipsoid
increases gradually. In each period, the smallest point is
found at 0° and 180° of the true anomaly, and the largest
position is found at 90° and 270° of the true anomaly.

According to calculation and analysis, the accuracy will
decrease rapidly with time. Therefore, the error ellipsoid the-
oretical model can only be used to estimate the position
error roughly.

5. Conclusions

In this paper, the rationality of the error ellipsoid for
describing the positioning error of satellites in orbit was
deduced and demonstrated. According to the uncertainty
matrix of the satellite’s six orbital elements under random
error, the equal probability density surface of the random
error of the initial orbital position was approximated as an
ellipsoid. The length and the direction of the three axes of
the ellipsoid were determined, and the calculation method
of the probability of the satellite entering the orbit within a
certain error range was provided. According to the actual
case of aerospace engineering, the experiments of launching
LEO, MEO, and IGSO satellites into orbit under the influ-
ence of random factors were simulated using the Monte
Carlo method and STK software. Thus, the actual distribu-
tion of the experimental satellite’s initial orbit positions
was obtained. A comparison with the probability distribu-
tion of the orbital position under the error ellipsoid model
showed that the analysis results of the ellipsoid model were
consistent with the simulation results. Consequently, it can
be concluded that the error ellipsoid theory can be used to
estimate the random orbital position error. Lastly, the satel-
lite’s initial position error propagation in orbit can be simply
simulated using the error ellipsoid model.

Accurately estimating the random error of the satellite in
orbit is of great significance, and it can calculate the collision
safety during satellites and the coverage effect on the ground.
The contribution of this paper consists in the rapid, simple,
and reliable model of error ellipsoid to determine the satellites’
orbital positions. This model is very useful for large-scale con-
stellations. This study is based on six independent variances of
orbital elements, and an approximate treatment is made during
error transmission. However, the variances are complex, and
the accuracy of error transmission will decrease significantly
with time. In the next stage, the error of the satellite’s orbit
and its impact on the efficiency can be further investigated via
the ellipsoid theory and the error propagation characteristics.

Data Availability

Data and materials for replication of the case studies will be
available from the corresponding author upon request.

Conflicts of Interest

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the Natural Science Foundation of
China under Grant nos. 42271391 and 62006214, the Joint
Funds of Equipment Pre-Research and Ministry of Educa-
tion of China under Grant no. 8091B022148, the 14th
Five-year Pre-research Project of Civil Aerospace in China,
and the Hubei excellent young and middle-aged science
and technology innovation team plan project under Grant
no. T2021031.

6.5

6

5.5

4.5

4

3.5

3

2.5

2
0 1 2 3 4 5 6

5

A
xi

al
 le

ng
th

 (k
m

)

Time (s) ×104

Minor axis
Middle axis
Major axis

Figure 16: The curve of axis length versus time.

300

280

260

240

220

200

180

Vo
lu

m
e o

f e
rr

or
 el

lip
so

id
 (m

3 )

Time (s) ×104
0 1 2 3 4 5 6

Figure 17: The curve of error ellipsoid change with respect to time.

16 International Journal of Aerospace Engineering



References

[1] F. R. Hoots, P. W. Schumacher, and R. A. Glover, “History of
analytical orbit modeling in the U.S. space surveillance sys-
tem,” Journal of Guidance, Control and Dynamic, vol. 27,
no. 2, pp. 174–185, 2004.

[2] J. S. Knogl, P. Henkel, and C. Gunter, “Precise positioning of a
geostationary data relay using LEO satellites,” in 53rd Interna-
tional Symposium ELMAR-2011, pp. 325–328, Zadar, Croatia,
September 2011.

[3] N. V. Vighnesam, A. Sonney, and P. K. Soni, “CARTOSAT-
1 orbit determination system and achieved accuracy during
early phase,” in AIAA/AAS Astrodynamics Specialist Confer-
ence, pp. 511–522, Mackinac Island, MI, United States,
2007.

[4] B. Yi, D. Gu, K. Shao et al., “Precise relative orbit determina-
tion for Chinese TH-2 satellite formation using onboard GPS
and BDS2 observations,” Remote Sensing, vol. 13, no. 21, 2021.

[5] M. Liu, Y. Yuan, J. Ou, and G. Yang, “Precise orbit determina-
tion and precision comparison for FY3C and FY3D with
receiver antenna GPS and BDS PCV using spaceborne BDS
and GPS observation data,” Advance in Space Research,
vol. 71, no. 1, pp. 375–389, 2023.

[6] D. Li, X. Cheng, X. Jia, and W. Yang, “Precision analysis of
BDS-3 satellite orbit by using SLR data,” China Satellite Navi-
gation Conference (CSNC) 2019 Proceedings. CSNC 2019, ,
pp. 389–399, Springer, Singapore, 2019.

[7] D. Gu, X. Tu, and D. Yi, “System error calibration for GPS pre-
cise orbit determination with SLR data,” Journal of National
University of Defense Technology, vol. 30, no. 6, pp. 14–18,
2008.

[8] Z. Li, X. Yang, G. Ai, H. Si, R. Qiao, and C. Feng, “A new
method for determination of satellite orbits by transfer,” Sci-
ence in China Series G: Physics, Mechanics & Astronomy,
vol. 52, no. 3, pp. 384–392, 2009.

[9] R. Deng, H. Qin, H. Li, D. Wang, and H. Lyu, “Non-coopera-
tive LEO satellite orbit determination based on single pass
Doppler measurements,” IEEE Transactions on Aerospace
and Electronic Systems, vol. 59, 2022.

[10] M. H. A. Larki, M. Maboodi, and H. Bolandi, “Satellite orbit
determination based on gradient method,” in 2012 24th Chi-
nese Control and Decision Conference (CCDC), pp. 2554–
2559, Taiyuan, China, 2012.

[11] X. Bai, Research on Orbital Prediction Error and Collision
Probability of Space Objects, [Ph.D. Thesis], National Univer-
sity of Defense Technology, Changsha, China, 2013.

[12] N. Cressie and J. Kornak, “Spatial statistics in the presence of
location error with an application to remote sensing of the
environment,” Statistical Science, vol. 18, no. 4, pp. 436–456,
2003.

[13] J. Gabrosek and N. Cressie, “The effect on attribute prediction
of location uncertainty in spatial data,” Geographical Analysis,
vol. 34, no. 3, pp. 262–285, 2002.

[14] G. Arbia, D. A. Griffith, and R. P. Haining, “Spatial error prop-
agation when computing linear combinations of spectral
bands,” Environmental and Ecological Statistics, vol. 10,
no. 3, pp. 375–396, 2003.

[15] C. R. Ehlschlaeger, “Representing multiple spatial statistics in
generalized elevation uncertainty models£°moving beyond
the variogram,” International Journal of Geographical Infor-
mation Science, vol. 16, no. 3, pp. 259–285, 2002.

[16] F. J. Aguilar and F. Carvajal, “Effects of terrain morphology
£¬sampling density£¬and interpolation methods on grid
DEM accuracy,” Photogrammetric Engineering and Remote
Sensing, vol. 71, no. 7, pp. 805–816, 2005.

[17] F. J. Aguilar, M. A. Aguilar, and F. Agüera, “Accuracy assess-
ment of digital elevation models using a non-parametric
approach,” International Journal of Geographical Information
Science, vol. 21, no. 6, pp. 667–686, 2007.

[18] F. J. Aguilar and J. P. Mills, “Accuracy assessment of LIDAR-
DERIVED digital elevation models,” The Photogrammetric
Record, vol. 23, no. 122, pp. 148–169, 2008.

[19] Z. Li, “Mathematical models of the accuracy of digital terrain
model surfaces linearly constructed from square gridded data,”
Photogrammetric Record, vol. 14, no. 82, pp. 661–674, 1993.

[20] Z. Li, “A comparative study of the accuracy of digital terrain
models (DTMs) based on various data models,” ISPRS Journal
of Photogrammetry and Remote Sensing, vol. 49, no. 1, pp. 2–
11, 1994.

[21] G. J. Hunter and M. F. Goodchild, “Modeling the uncertainty
of slope and aspect estimates derived from spatial databases,”
Geographical Analysis, vol. 29, no. 1, pp. 35–49, 1997.

[22] P. C. Kyriakidis, A. M. Shortridge, and M. F. Goodchild,
“Geostatistics for conflation and accuracy assessment of digital
elevation models,” International Journal of Geographical Infor-
mation Science, vol. 13, no. 7, pp. 677–707, 1999.

[23] C. Q. Zhu, W. Z. Shi, Q. Li et al., “Estimation of average DEM
accuracy under linear interpolation considering random error
at the nodes of TIN model,” International Journal of Remote
Sensing, vol. 26, no. 24, pp. 5509–5523, 2005.

[24] C. Lopez, “Locating some types of random errors in digital ter-
rain models,” International Journal of Geographical Informa-
tion Science, vol. 11, no. 7, pp. 677–698, 1997.

[25] M. Albani and B. Klinkenberg, “A spatial filter for the removal
of striping artifacts in digital elevation models,” Photogram-
metric Engineering and Remote Sensing, vol. 69, no. 7,
pp. 755–765, 2003.

[26] J. Zhao, Orbital Dynamics of Spacecraft, Harbin Institute of
Technology Press, Harbin, China, 2011.

[27] S. Wang, Error Theory and Surveying Adjustment, Tongji Uni-
versity Press, Shanghai, China, 2015.

[28] L. Werner, Probability Theory, De Gruyter Graduate, Ewing
Hall Newark, DE, USA, 2016.

[29] G. Dai, X. Chen, M. Zuo, L. Peng, M. Wang, and Z. Song, “The
influence of orbital element error on satellite coverage calcula-
tion,” International Journal of Aerospace Engineering,
vol. 2018, Article ID 7547128, 13 pages, 2018.

[30] Q. Xie, Advanced Algebra, Fudan University Press, Shanghai,
China, 2022.

[31] H. Li, E. Bai, M. Mi, and Y. Yan, “Identification of Euler angles
of permanent magnet spherical motor rotor based on hall sen-
sors array,” Measurement, vol. 199, article 111500, 2022.

[32] Z. Chen, Higher Algebra and Analytic Geometry, Higher Edu-
cation Press, Beijing, China, 2008.

[33] H. Vazquez-Leal, R. Castaneda-Sheissa, U. Filobello-Nino,
A. Sarmiento-Reyes, and J. Sanchez Orea, “High accurate sim-
ple approximation of normal distribution integral,” Mathe-
matical Problems in Engineering, vol. 2012, Article ID
124029, 22 pages, 2012.

[34] T. Zou and L. Zhao, “A method for estimating sample size of
Monte Carlo method in accident reconstruction,” China Safety
Science Journal, vol. 23, no. 5, pp. 22–26, 2013.

17International Journal of Aerospace Engineering


	Random Error Estimation and Propagation Analysis for Satellites’ Initial Positions
	1. Introduction
	2. Background Material
	2.1. Concepts and Symbols
	2.2. Coordinate System with Respect to the Satellite
	2.3. Equation of Satellite Motion
	2.4. Expression for the Initial Orbital Position of a Satellite
	2.5. Random Error Expression of the Initial Orbital Position in the Geocentric Inertial Coordinate System

	3. Construction of Satellite’s Orbital Position Error Model
	3.1. The Function for the Error Ellipsoid Model
	3.2. Calculation of Uncertainty Matrix Drr
	3.3. Calculating the Length of Error Ellipsoids Three Axes
	3.4. Determining Axial Directions of the Error Ellipsoid
	3.5. Probability of Satellite Orbit Position within a Certain Error Range
	3.6. Error Transfer of the Initial Position of the Satellite

	4. Example Analysis and Simulation Verification
	4.1. Related Satellites Expected Six Orbital Elements and Covariance
	4.2. The Random Initial Orbital Position Errors Based on Error Ellipsoid
	4.3. Random Initial Orbital Position Based on the Monte Carlo Simulation
	4.4. Comparison with the Error Ellipsoids and the Simulation Results Based on the Monte Carlo Method
	4.5. Promotion and Application of the Error Ellipsoid Theory

	5. Conclusions
	Data Availability
	Conflicts of Interest
	Acknowledgments



