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For space robots, it is difficult to track continuous time-varying manifolds on SE(3) by using traditional closed-loop control
strategies, which are designed to track the position and the attitude separately. Therefore, the dynamics model should be
rebuilt, and the corresponding control strategy should be redesigned. Firstly, the dynamics equations for a space robot in the
joint space and workspace are established separately in the framework of Lie group SE(3) and screw theory based on the
Lagrange principle. Secondly, based on the proposed feedback form, a PD (proportional derivative) control law of output force
on the end-effector is designed, and a closed-loop continuous tracking control strategy is proposed using the force Jacobian
matrix and the kinematic model. The simulation results show that the control scheme has good performance when the system
state changes gently. Furthermore, a robust sliding mode tracking control scheme is designed. The simulation results show that
the proposed robust control law has better accuracy than the PD control law because the system state changes wildly. Finally, a
robust fuzzy sliding mode tracking control scheme is designed to deal with the chattering phenomenon. The simulation results
show that the proposed robust fuzzy control law can eliminate the chattering well and decrease the joint control torque
significantly. The robustness of the proposed robust fuzzy control law is also verified by numerical simulation.

1. Introduction

The emergence of on-orbit assembly stems from the growing
need to build large space structures [1]. Related technology
has been greatly promoted through the development of on-
orbit service technology, especially the on-orbit demonstra-
tion of space robot technology. However, the process of
assembling large space structures is so elaborate that it
requires an accurate and reliable operation ability for space
robots. Accordingly, a proper motion planning method
and corresponding tracking control strategy should be intro-
duced. Due to the advantages beyond traditional theory, Lie
group SE(3) and screw theory have been applied to research
in space robotics, such as kinematic modelling [2] and tra-
jectory planning. However, compatible dynamics and track-
ing control strategy are not considered in detail.

The dynamics of space robots belong to the category of
multibody system dynamics. Thus, the modelling is mainly
based on the Newton-Euler method and the Lagrange

method. The former analyzes the forces of each rigid body
based on classical Newtonian mechanics and then obtains
dynamic equations in iterative form according to the rela-
tionship of internal forces [3]. The advantages of such a
method are the clear physical meaning and the relatively
small calculation [4]. However, the equations will become
more complicated as the number of rigid bodies increases
[5]. The Lagrange method is based on the Hamiltonian prin-
ciple, and the dynamic relationship between the system state
variables and the generalized forces is built based on the
conservation of energy [6]. The advantages of such a method
are that modelling process is relatively easy, and the dynamic
equation is in the analytic form [7], but the physical mean-
ing is not clear, and the partial differential calculation is
more complex. A detailed comparison of these two methods
is presented in [8].

In addition, the Kane method is also introduced in
robotic dynamics research [9]. This method subtly uses the
partial velocity as the generalized coordinate, which is
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combined with the concept of generalized force to establish
the dynamic equations according to the Darenbel-Lagrange
principle [10]. The Kane method combines the advantages
of the Newton-Euler and Lagrange methods, which have
high calculation efficiency and concise form. Some improve-
ment methods are proposed [11, 12], which further enhance
the performance of the Kane method. Xu and Huang [13]
compare classical methods with the Kane method and
deduce the dynamic equations of a five-DOF robot using
both methods. Yin and Ge [14] derive the dynamic equa-
tions of a dual-arm space robot using the Kane-Huston
method and verify the feasibility with simple simulation.

Traditional dynamics modelling, which is based on geo-
metric relationships, makes the derivation process relatively
complicated. It brings a lot of convenience by introducing
the Lie group and Lie algebra, which have a concise and uni-
fied form and decreases the difficulty of theoretical deriva-
tion. The theory of the Lie group has been applied to the
dynamics of fixed-base robots [15, 16]. Besides, Liu et al.
[17] combine the screw theory and the Kane method and
propose a new concept of space robot dynamics.

Trajectory tracking control is crucial to accomplishing the
task for the space robots, and the performance of the tracking
controller determines the accuracy and reliability of the task.
Many trajectory-tracking control strategies are designed based
on the dynamic model. And some control theories for fixed-
base ground robots can be introduced to tracking control of
space robots, such as decomposition rate control [18], calcu-
lating torque control [19], robustness control [20], and rein-
forcement learning control [21]. Traditional dynamics
modelling, which is based on geometric relationships, makes
the derivation process relatively complicated.

Trajectory tracking of space robots can be performed
either in joint space or in cartesian space. According to
tracking targets, it can be further classified into point-to-
point and continuous trajectory tracking. The latter means
that the end-effector is required to move along the desired
continuous trajectory, such as peg-in-hole insertion [22],
which makes tracking control relatively difficult. Li and
Liang [23] establish the kinematic equation of the space
robot system by using the D-H (Denavit-Hartenberg)
method and design the continuous trajectory control algo-
rithm according to the momentum conservation law. Such
an algorithm could be extended to a space robot with an
arbitrary tree structure. Galicki [24] defines a nonsingular
terminal sliding model in the workspace and proposes a
robustness controller based on the Jacobian transfer, which
can effectively eliminate the uncertainty of dynamics. Su
et al. [25] define an approximately fixed-time convergence
terminal sliding model and design a nonsingular sliding
model tracking control strategy, but it is carried out in the
joint space. In addition, most existing trajectory tracking
control laws use position or linear velocity as feedback vari-
ables. There are also attempts that use quaternion [26] or
dual quaternion [27] as feedback variables, but they are all
difficult to apply to the tracking of the continuous time-
varying manifold on SE(3).

Above all, this paper will focus on the dynamics model-
ling under the framework on Lie group SE(3) and the con-

trol problem of tracking the continuous time-varying
trajectory of the end-effector on SE(3). Highlights of this
paper are addressed below.

(1) The dynamic model of a multiarm space robot is
established by combining the Lie group SE(3) with
the Lagrange method. The model has a concise and
unified form, which can decrease the difficulty of
theoretical derivation and calculation

(2) A novel form is proposed to describe the feedback
error in the tracking control problem of the space
robot. Lie group SE(3) and screw theory are used to
build the form, which can assemble the position
and attitude, with their derivative, of the end-
effector in a unified variable. It can significantly
reduce the calculation in the process of closed-loop
control

(3) A robust fuzzy sliding mode tracking control strat-
egy is proposed to track the continuous and time-
varying trajectory, including position and attitude
together, of the end-effector. The tracking control
strategy has good control accuracy, good robustness,
and no chatter

2. Dynamic Modelling

2.1. Dynamic Equations of the Space Robot System. For a
dual-arm space robot, as provided in Figure 1, the kinetic
energy of the link of the arm in the barycentre-fixed inertial
coordinate system is
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where ωB
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i
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i , and
I _pki are the body angular velocity, the

inertia, the mass, and the velocity, respectively. i = 0 refers to
the base.

According to the definition of body velocity in screw the-
ory, formula (1) can be transformed into the following form:
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where I
Ck
i
VB

is the body velocity, and IRk
i represents the atti-

tude rotation matrix in the inertial coordinate system.
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According to the relationship between body velocity and
spatial velocity, formula (2) is transformed into
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where I
Ck
i
VS

is the spatial velocity, AdðgikÞ is the adjoint trans-

formation, b· represents the antisymmetric matrix of the cor-
responding vector, and Kk

i means generalized inertia matrix.
Therefore, the total kinetic energy of the dual-arm space

robot is,

T =
1
2

〠
2

k=1
〠
nk

i=1

I
Ck
i
VS

� �T
Kk

i
I
Ck
i
VS + I

BV
S

� �T
K0

I
BV

S

" #

=
1
2

〠
n

k=1
〠
nk

i=1

I
BV

S +AdI
Bg

B
Ck
i
VS

� �T
Kk

i
I
BV

S + AdI
Bg

B
Ck
i
VS

� ��
+ I

BV
S

� �T
K0

I
BV

S

" #

=
1
2

I
BV

S
D + 〠

n

k=1
〠
nk

i=1
AdI

Bg
B
Ck
i
VS

� �T
Kk

i
I
BV

S + AdI
Bg

B
Ck
i
VS

� �" #
,

ð4Þ

where D represents the total momentum of the dual-arm
space robot.

As is known, D = 0 is workable in the case of a free-
floating base. Substituting GJM into formula (4) yields
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where Jki are the GJM of the link and the base, respectively. _θ
is the angular velocity vector of all joints. H represents the
generalized inertia tensor of the dual-arm space robot, the
specific expression is as follows:
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where
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If the gravity is ignored and the joint elasticity is not con-
sidered, this system satisfies the Lagrange equation in the
following form:

d
dt

∂T
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−
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= τ: ð8Þ

Substituting formula (5) into the above formula, then

H€θ + _H _θ −
∂
∂θ

1
2
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Figure 1: The model of a dual-arm space robot, which has two
arms, and each arm has nk joints.

3International Journal of Aerospace Engineering



It can be rewritten as

H€θ + C _θ = τ, ð10Þ

where
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∂
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which represents the centrifugal force and Coriolis force.
For a single-arm space robot, the above derivation pro-

cess is also applicable.

2.2. Static Force Jacobian Matrix. Static force Jacobian matrix
is also a fundamental concept in the dynamics of space robots.
Similar to the speed Jacobian matrix, it describes the mapping
relationship between the output force on the end effector and
the joint torque. This derivation is based on the equivalence
principle of work and energy. Taking a single-arm space robot
as an example, and assuming that the output force on the end
effector is FS, then the work is

Wτ =
ðt2
t1

_θ
Tτdt, ð12Þ

where I
EV

S
is the spatial velocity of the end effector. Simulta-

neously, the work done by the joint torqueτ is

Wτ =
ðt2
t1

_θ
Tτdt: ð13Þ

If joint friction is not considered, thenWF andWτ should
be equal and time-independent. Thus,

I
EV

SÀ ÁT
FS = _θ

Tτ: ð14Þ

As is known, VS = JE _θ, where JEis the speed GJM of the
end-effector for the joints. So

τ = JEð ÞTFS, ð15Þ

where ðJEÞT is the static force Jacobian matrix.

2.3. Dynamic Equations in the Workspace.When performing
trajectory tracking control of the end effector, it is also nec-
essary to establish dynamic equations in the workspace.
Firstly, according to the GJM of the end-effector, there are

_θ = J−1E
I
EV

S, IE _V
S = JE€θ + _JE _θ: ð16Þ

Accordingly,

€θ = J−1E
I
E
_V
S − _JE J

−1
E

I
EV

S
� �

: ð17Þ

Substituting formula (17) into formula (10),
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Then, substituting formula (15) into the above formula,
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where Hg = ðJEÞ−THJ−1E and Cg = ðJEÞ−TðC −HJ−1E _JEÞ
J−1E . It can be proved that the above dynamic equation
satisfies,

(1) Hg is a symmetric positive definite matrix

(2) _Hg − 2Cg is an antisymmetric matrix

2.4. Feedback Calculation Model Based on SE(3). As the
desired trajectory is expressed on SE(3), compatible feedback
should be designed first. Supposing thatgi and gdiare the
actual and desired pose of the end effector, respectively, then
the pose error can be written as

ge = g−1
di gi, ð21Þ

where ge ∈ SEð3Þ.
The tracking error in exponential coordinate is pre-

sented as

bξ e = logg g−1
di gi

À Á
, ð22Þ

where loggð⋅Þ represents the logarithmic mapping from Lie
group SE(3) to its Lie algebra se(3).

The above equation can be written in the form of screw
coordinates as

ξBe = logg g−1
di gi

À Á� �∨
: ð23Þ

It is used as feedback at the position level. It should be
noted that ξBe is with respect to the body-fixed coordinate
system of the end effector.

The feedback at the velocity level can be expressed as

VB
e = VB

i −VB
di, ð24Þ

where VB
i = ðg−1

i _giÞ∨ is the actual body velocity, and VB
di =

ðg−1
di _gdiÞ∨ is the desired body velocity.
In fact, the following relationship exists:

_ξ =G ξð ÞVB: ð25Þ
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The expression of GðξÞ in the above formula is presented
in [28] and omitted here.

Accordingly, the feedback of pose expressed on SE(3)
can be expressed as

ηB = ξBe VB
e

Â Ã
: ð26Þ

Transforming it into inertial coordinate system yields

η = Adgiη
B = ξe Ve½ �: ð27Þ

3. Continuous Trajectory Tracking
Control Strategy

3.1. PD Controller Based on Jacobian Matrix. According to
the feedback η obtained in the previous section, the follow-
ing PD control law is designed:

FSg = −Kpξe −KvVe, ð28Þ

where FSg is the output force on the end effector with respect
to the inertial coordinate system, and Kp and Kv are the
position and velocity gains, respectively.

Then, the joint control torque can be computed as

τg = JEð ÞTFSg: ð29Þ

Accordingly, detailed steps of a closed-loop tracking
control strategy are given as follows (as shown in Figure 2):

Step 1. Set the initial joint angle θ0 of the arm and the
attitude Ψ0 of the base. Set the desired pose gðtÞ

Step 2. Calculate the current pose of the end effector
according to the kinematics equation, and then obtain the
force Jacobian matrix

Step 3. Calculate the current state feedback η according
to formula (27)

Step 4. Calculate the joint control torque at the current
moment according to formula (29)

Step 5. Calculate the joint angleθi and joint angle rate _θi
at the next moment according to the dynamic equation,
and then calculate the base attitude angleΨi at the next
moment

Step 6. Repeat steps 2-5 till to the end time.

The controllers proposed in this research include the PD
controller, the robust sliding mode controller (RSMC), and
the robust fuzzy sliding mode controller (RFSMC). RSMC
or RFSMC can replace the PD controller module in
Figure 2, and then the corresponding control block diagram
is generated.

3.2. Robust Sliding Mode Tracking Controller. The PD con-
trol has a simple form and can meet general needs. However,
the control accuracy will be significantly reduced when the
state changes fast. Considering the advantages of sliding
mode control, such as the high control accuracy and strong
robustness against external disturbances, a controller based
on robust sliding mode control theory with the feedback cal-
culation model above is proposed in this section.

3.2.1. Linear Reaching Law-Based Sliding Mode Control Law.
According to the tracking feedback at the velocity level, the
sliding mode surface is designed as follows:

s = Ve +Λξe =V − Vd +Λξe, ð30Þ

where Λ is a positive definite diagonal matrix. A control law
can be given

Fg =Hg Vd −Λξeð Þ + Cg Vd −Λξeð Þ −Kvs, ð31Þ

where Kv is a positive definite diagonal matrix.

Theorem 1. For the dynamics of a space robot system, apply-
ing sliding mode surface (30) and control law (31), the system
will gradually converge to the equilibrium point.

Proof. Define the Lyapunov function as follows:

L =
1
2
sTHgs: ð32Þ

According to the sliding mode surface (30),

V = s +Vd −Λξ: ð33Þ

SimMechanics model

Desired
gd (t)

Modifed
Euler method

Kinematics GJM of force

Error PD controller Multiplier
Fg

Tg

𝛹𝜃

g

𝜂

Figure 2: PD control block diagram based on the Jacobi matrix.
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Calculating the derivation of L and substituting (28) into
it yields

_L = sTHg _s +
1
2
sT _Hgs = sTHg

_Vd − _Ve +Λ _ξe
� �

+
1
2
sT _Hgs

= sT −Hg
_Vd −Λ _ξe

� �
+Hg

_V
� �

+
1
2
sT _Hgs

= sT −Hg
_Vd −Λ _ξe

� �
− CgV + FSg

� �
+
1
2
sT _Hgs

= sT −Hg
_Vd −Λ _ξe

� �
− Cg Vd −Λξeð Þ − Cgs + FSg

� �
+
1
2
sT _Hgs = sT −Hg

_Vd −Λ _ξe
� �

− Cg Vd −Λξeð Þ + FSg
� �

+
1
2
sT _Hg − 2Cg

À Á
s = −sTKvs ⩽ −λL,

ð34Þ

where λ = λminðKvÞ/λmaxðHgÞ. λminðKvÞ is the smallest
eigenvalue of Kv, and λmaxðHgÞ is the largest eigenvalue of
Hg. It can be seen that the sliding mode surface s converges
to zero driven by the control law (31). If s ≡ 0, there is Ve
= −Λξe, then ξe,Ve progressively converge to the equilib-
rium point. Proof completed.

3.2.2. Robust Sliding Mode Control Law. When the dynamic
model can be accurately established, the sliding mode con-
trol law (31) can be substituted into the PD control strategy
to replace the PD control law. However, as the dynamic
model of the space robot is very complicated, if control law
(31) is directly adopted not only will the modelling be com-
plex but also the amount of calculation will be huge. Let

f = −Hg Vd −Λ _ηeð Þ − Cg Vd −Ληeð Þ: ð35Þ
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Figure 3: Error and pose components in the tracking process.
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Regard this term as a disturbance and assume that the
term is bounded and satisfies the following inequality:

−Hg Vd −Λ _ηeð Þ − Cg Vd −Ληeð Þ ≤D: ð36Þ

In order to overcome the disturbance term, the following
sliding mode control law is designed:

FSg = − Kvs + ρ sgn sð Þ½ �, ð37Þ

where ρis the robust coefficient andρ ≤D and ρ sgn ðsÞ is the
robust term to overcome the disturbance.

Theorem 2. For the dynamics of a space robot system, apply-
ing sliding mode surface (30) and control law (37), the system
will gradually converge to the equilibrium point.

Proof. Define the Lyapunov function as follows:

L =
1
2
sTHgs: ð38Þ

Similar to Theorem (1),

_L = sT −Hg
_Vd −Λ _ξe

� �
− Cg Vd −Λξeð Þ + Fsg

� �
= sT −Hg

_Vd −Λ _ξe
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− Cg Vd −Λξeð Þ − Kvs + ρ sgn sð Þ½ �
� �

⩽ −sTKvs + D − ρð Þ sk k ⩽ −λL:

ð39Þ

It can be proven like Theorem (1).
Proof completed.

3.3. Robust Fuzzy Sliding Mode Tracking Controller
considering Uncertainty. The robust sliding mode tracking
controller has better control accuracy; however, when there
are uncertainties with the parameters of the system model,
the controller must choose a more significant robust coeffi-
cient or amplify the gain to ensure robust performance and
control accuracy which may lead to the obvious chattering
of the control torque. In order to solve this problem, fuzzy
ideas are introduced into to sliding mode control law to
approximate the dynamic model with uncertain parameters,
which can realize robust and stable control of the space
robot.

3.3.1. Fuzzy Approximation Method. Taking into account the
unavoidable external interference, introduce the interference
force Fgto the dynamic model as follow.

Hg
_V + ~Cg

_V = Fg + Fd: ð40Þ

The following fuzzy sliding mode control law is designed

Fg = −f̂ − Kvs, ð41Þ

where f̂ is the estimated value of the fuzzy system. Substitut-
ing the control law into equation (40) to obtain

Hg _s = −Cs − f̂ − Kvs + f + Fd = − C + Kvð Þs −~f + Fd = − C + Kvð Þs + ζ0,

ð42Þ

where ~f = f̂ − f and ζ0 = −~f + Fd .
The fuzzy approximation can be used to estimate the

function f in equation (35),

f = −Hg Vd −Λ _ηeð Þ − Cg Vd −Ληeð Þ =W∗β + ϵ, ð43Þ

where W∗is the optimal weight matrix of the fuzzy approx-
imation system, ϵis the approximation error of the system,
and β is the basis function.

Let Ŵbe the estimation of W∗ and let the sliding mode
surface s as the input variable of the basis function, and then
the dynamic compensation part of the space robot control
law is estimated to be

f̂ = Ŵβ + ϵ: ð44Þ

3.3.2. Robust Fuzzy Sliding Mode Tracking Control Law.
Firstly, assuming that

(1) The output of the fuzzy approximation system is
bounded, and the total external disturbance of the
estimated system is bounded, which is expressed as

f̂k k ≤f M: ð45Þ

(2) The estimation error of the fuzzy approximation sys-
tem is bounded, which is expressed as

ϵk k ≤ϵM , ð46Þ

where ϵM is a positive constant.

(3) The estimated weight of the fuzzy approximation
system is bounded, which is expressed as

tr W∗TW∗À Á
≤WM , ð47Þ

where WM is a positive constant.
The input variable of the fuzzy system is designed as

x = sT, _sT
Â ÃT

: ð48Þ

Then, the control law can be reshaped as

Fg = −Ŵβ xð ÞKvs − v, ð49Þ
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where v is a robust term used to overcome approximation
errors and interference. Let ~W = Ŵ −W∗ be the estimation
error of the optimal weight matrix.

According to the above control law, there is

Hg _s = − C +Kvð Þs − Ŵβ − ϵ + f + Fd − v

= − C +Kvð Þs − ~Wβ − ϵ + Fd − v = − C +Kvð Þs + ζ1,
ð50Þ

where ζ1 = − ~Wβ − ϵ + Fd − v, and kϵk ≤ ϵM , kFdk ≤ FdM .
The robust term v is designed as

v = ϵM + FdMð Þsgn sð Þ: ð51Þ

The adaptive updating law of the optimal weight matrix
is taken as

_̂W = σsβT, ð52Þ

where σ is a positive constant.

Theorem 3. For the dynamics of a space robot system consid-
ering interference, the fuzzy approximation method is used to
estimate the uncertainty of the system, and the weight matrix
updating law is set as formula (52), then the system under the
action of the control law (49) will gradually converge to the
equilibrium point.

Proof. Define the Lyapunov function as follows:

Lf u =
1
2
sTHgs +

1
2σ

tr ~W
T ~W

� �
: ð53Þ

Derivation of the above formula is

_Lf u = sTHg _s +
1
2
sT _Hgs +

1
σ
tr ~W

T _~W
� �

: ð54Þ

Substituting equation (50) into the above equation,

_Lf u = −sTKv _s +
1
2
sT _Hg − 2Cg

À Á
s +

1
σ
tr ~W

T _~W
� �

+ sT −ϵ + Fd − vð Þ = −sTKv _s +
1
σ
tr ~W

T _~W
� �

+ sT − ~Wβ
À Á

+ sT −ϵ + Fd − vð Þ = −sTKv _s

+
1
σ
tr ~W

T _~W − σsβT
� �� �

+ sT −ϵ + Fd − vð Þ:

ð55Þ

Substituting the updating law (52) into the above equa-
tion,

_Lf u = −sTKv _s + sT ϵ + Fd − vð Þ, ð56Þ

due to

sT −ϵ + Fd − vð Þ = sT −ϵ + Fdð Þ − sTv

= sT −ϵ + Fdð Þ − sT ϵM + FdMð Þ sgn sð Þ
= sT −ϵ + Fdð Þ − sk k ϵM + FdMð Þ ⩽ 0

ð57Þ

Then, there is

_Lf u ⩽ −sTKv _s ⩽ 0: ð58Þ

If _Lf u ≡ 0, then s ≡ 0. According to the LaSalle invariance
principle, the closed-loop system has the property of gradual
stability as t⟶∞, s⟶ 0. Thus, the error of the pose in
exponential form and the velocity will gradually converge
to zero as η⟶ 0, Ve ⟶ 0; so the pose and velocity of the
end-effector will gradually converge to desired values as
g⟶ gd ,V ⟶Vd .

Proof completed.

4. Simulation Example

Considering a planar, three-DOF space robot as a simulation
case and verifying the effectiveness and control performance
of the proposed control strategies. The initial pose and the
final pose are given as follows:

g0 =

5:797

E3×3 0:6105

0

0 1

2
6666664

3
7777775
,

gn =

5:296

Rz 30∘ð Þ 1:9615

0

0 1

2
6666664

3
7777775
:

ð59Þ

The desired trajectory gdðtÞ is planned based on the
drive transformation method and screw theory.

4.1. Simulation Results of PD Controller. Simulations of the
PD controller are performed in MATLAB/Simulink, and
the results are obtained as follows. The state error varying
with time is shown in Figure 3(a), as is seen in which the
maximum error is about 8 × 10−3, and the steady state error
is less than 2 × 10−3. Figures 3(b)–3(d) show the comparison
between the actual and desired pose components. It can be
seen that the tracking process is ideal.

The output force on the end effector and the joint con-
trol torque obtained by the PD control law is shown in
Figures 4 and 5 separately. The joint control torque is rela-
tively small, and no saturation occurs. The space robot’s
joint motions are shown in Figures 6 and 7. It can be seen
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that the joint motions are continuous and smooth without
sudden change. To sum up, the designed PD controller per-
forms well under the gentle motion state.

4.2. Simulation Results of the Robust Sliding Mode Controller.
The simulation object remains the same as in the previous
section, and the initial and final poses remain unchanged.
The desired trajectory is replanned to move faster. The
parameters of the sliding mode controller are set as Kv =
diag ð½0, 0, 667, 667, 667, 0�Þ, Λ = diag ð½0, 0, 4:20, 4:20, 4:20,
0�Þ, and ρ = 3:3.

The PD control strategy and the robust sliding mode
tracking control strategy are simulated, respectively, and
simulation results are obtained as follows. From compari-
sons of Figures 8(a) and 3(a), it can be seen that accuracy
of PD control has been significantly reduced, the maximum

error has reached 0.013, and the steady-state error also
increases. In the same situation, the accuracy of the robust
sliding mode control is higher, the maximum error is about
9 × 10−3, and the steady-state error remains within 2 × 10−3
as in Figure 8(b). Figures 9(a) and 9(b) show the joint con-
trol torque of the two control algorithms. In contrast, the
control torque of sliding mode control has a specific chatter-
ing phenomenon.

4.3. Simulation Results of the Robust Fuzzy Sliding Mode
Controller. The simulation object remains the same as in
the previous section, and the initial and final poses
remain unchanged. Set the parameters of the robust slid-
ing mode controller as Kv = diag ð½0, 0, 1067, 967, 967, 0�Þ
,Λ = diag ð½0, 0, 4:20, 4:20, 4:20, 0�Þ,and ρ = 5. Seven fuzzy
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subjection functions of the fuzzy sliding mode controller
are as follows:

μA1
k
xð Þ = 1

1 + e5 x+ π/4ð Þð Þ ,

μA2
k
xð Þ = e−0:5

x+1
0:25ð Þ2 ,

μA3
k
xð Þ = e−0:5

x+0:5
0:25ð Þ2 ,

μA4
k
xð Þ = e−0:5

x
0:25ð Þ2 ,

μA5
k
xð Þ = e−0:5

x−0:5
0:25ð Þ2 ,

μA6
k
xð Þ = e−0:5

x−1
0:25ð Þ2 ,

μA7
k
xð Þ = 1

1 + e5 x−π/4ð Þ : ð60Þ

The robust sliding mode tracking control strategy and the
robust fuzzy sliding mode tracking control strategy are simu-
lated, respectively, and simulation results are obtained as fol-
lows. It can be seen in Figures 10(a) and 10(b) and
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Figure 9: Comparison of joint control torque of the two control algorithms.
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Figures 11(a) and 11(b) that, after increasing the gain and
robust coefficient of the robust sliding mode control, the con-
trol accuracy is improved. However, the joint control torque
has serious chattering. In contrast, fuzzy sliding mode control
can effectively eliminate chattering while ensuring similar
accuracy, and the peak value of joint control torque is also sig-
nificantly better. Figure 12 shows the output force of the end
effector and the corresponding estimated value obtained dur-
ing the fuzzy sliding-mode control algorithm process.

4.4. Simulation Results of Robust Fuzzy Sliding Mode
Controller with Interference Force. In order to verify the

robust performance of the fuzzy sliding mode controller,
the interference force is set as follows:

Fd =

0

0

0:6 sin 2t +
π

3

� �
0:5 sin 3t +

π

4

� �
0:5 sin 3t +

π

4

� �
0

2
66666666666664

3
77777777777775
: ð61Þ
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The simulation is performed under the same conditions as
Section 4.3, and the following results are obtained. After the
interference force is added, the state feedback error and joint
control torque are shown in Figures 13(a) and 13(b). Compar-
ing with Figures 10(b) and 11(b), respectively, it can be seen
that the interference force only has an impact on the system
within the first 1 s, which makes the error and joint torque
amplify compared with when there is no disturbance, but keep
it unanimous afterward. It demonstrates that the fuzzy sliding
mode tracking controller has good robustness.

Furthermore, another simulation is performed with a
pulse interference force set as follows:

Fd1 =

0

0

−2 + 0:6 sin 2t +
π

3

� �
−2 + 0:5 sin 3t +

π

4

� �
−2 + 0:5 sin 3t +

π

4

� �
0

2
66666666666664

3
77777777777775
, 3 < t < 5,

Fd , other:

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

ð62Þ
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Figure 13: Simulation results of robust fuzzy sliding mode controller with interference force.
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Following results are obtained. It can be seen in
Figure 14(a) that the error keeps very similar, while the joint
control torque fluctuates slightly in the third and fifth sec-
onds in Figure 14(b); however, the system can still keep sta-
ble after the pulse, which demonstrates the robustness of the
fuzzy sliding mode tracking controller again.

5. Conclusion

Firstly, based on the Lagrange principle and the generalized
Jacobian matrix, the dynamic equations in the joint space
and workspace are established separately. Then, a feedback
calculation model is proposed based on the screw theory.
Furthermore, the PD and robust fuzzy sliding mode control
laws are designed separately. Finally, the closed-loop control
strategies are constructed by integrating control laws, the
GJM, a dynamic model, and a kinematic model. The effec-
tiveness of each control law is verified by simulations, and
the control accuracy and performance are compared and
analyzed. It can be summarized that the proposed dynamic
modelling method is feasible and efficient. The PD controller
is proven to have relatively high control accuracy. Neverthe-
less, the accuracy reduces when the system state changes
more dramatically. The robust sliding mode controller is
able to overcome such disadvantages, and the fuzzy sliding
mode controller could solve the chattering problem.
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