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In this paper, a novel guidance law based on a reinforcement learning (RL) algorithm is presented to deal with the maneuvering
target interception problem using a deep deterministic policy gradient descent neural network. We take the missile’s line-of-sight
(LOS) rate as the observation of the RL algorithm and propose a novel reward function, which is constructed with the miss
distance and LOS rate to train the neural network off-line. In the guidance process, the trained neural network has the capacity
of mapping the missile’s LOS rate to the normal acceleration of the missile directly, so as to generate guidance commands in
real time. Under the actor-critic (AC) framework, we adopt the twin-delayed deep deterministic policy gradient (TD3)
algorithm by taking the minimum value between a pair of critics to reduce overestimation. Simulation results show that the
proposed TD3-based RL guidance law outperforms the current state of the RL guidance law, has better performance to cope
with continuous action and state space, and also has a faster convergence speed and higher reward. Furthermore, the proposed
RL guidance law has better accuracy and robustness when intercepting a maneuvering target, and the LOS rate is converged.

1. Introduction

Among modern missile missions, improving the accuracy of
the guidance system is the most important and difficult pro-
cess. The main issue is designing a guidance law, which plays
an important role in the missile guidance system, since it will
directly affect the relative motion of the missile and target,
and also has great effects on the final miss distance. Propor-
tional navigation guidance (PNG) law has been widely used
in many aircrafts of different types for a long time. Although
PNG algorithms have achieved excellent performances in
many works, they still have the disadvantage of insufficient
terminal guidance capability due to their own properties.
However, PNG makes it easy to produce a divergent acceler-
ation command in the terminal guidance stage since the
acceleration is proportional to the LOS rate. As a result,
researchers have developed various sophisticated guidance
strategies such as sliding-mode guidance law [1–3] and
finite-time convergent guidance law [4–6] to further
improve the performance. Some researchers are attempting
to merge early artificial intelligence hypotheses in order to

design new intelligent algorithms. For instance, Hossain
et al. [7] employ a genetic algorithm to generate training
data for neural networks and then apply neural networks
to optimize guidance commands based on the current states
and terminal conditions. For irregular and difficult guidance
situations, Kasmaiee et al. [8] couple two types of computa-
tional intelligence algorithms, including neural networks
and genetic algorithms for optimization. In [9, 10], a genetic
algorithm was implemented as the optimization method;
since a large number of numerical simulations were required
for this purpose, an artificial neural network was employed
for training a function between the control parameters and
the airfoil aerodynamic coefficients. Kasmaiee and Tadjfar’s
use of image processing in aerospace applications and
improving the efficiency of the spraying system is fully
described in the papers [11, 12]. Reference [13] proposes a
new guidance law based on the fuzzy logic method. Li
et al. [14] consider target acceleration as a bounded distur-
bance, then use a primal-dual neural network to solve the
optimal solution under this constraint, and develop a guid-
ance law based on model predictive control.
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Nowadays, with the powerful nonlinear approximation
and data representation, data-driven-based RL methods
have attracted considerable attention in the design of guid-
ance law, and model-free RL has been implemented chal-
lenging constrained, uncertain, multidimensional, and
nonphysical systems to estimate the long-term behaviours
of the systems under the current policy and to determine
the optimal future policies under unknown disturbances
[15]. In [16–18], Yang et al. proposed three novel algorithm
frameworks for optimal control problems based on the
Hamilton-Jacobi-Bellman (HJB) equation. As a computa-
tional method of learning through environmental interac-
tion, the Q-learning algorithm is first presented to solve
the problem of noncontinuous control. In reference [19],
an improved path planning method is proposed, in which
the authors combined a fuzzy Q-learning method with a
simulated annealing algorithm in the action search policy
to balance action exploration and utilization, and the guid-
ance and obstacle avoidance information is also used to
design a reward function for the problem of UAV local path
planning in an unknown environment. In [20, 21], the
authors have applied a Q-learning algorithm to provide a
solution for the path planning of multiple aircraft formation
flights. The authors in [22, 23] use the Q-learning algorithm,
respectively, to design a reinforcement learning guidance law
algorithm in two-dimensional and three-dimensional simu-
lation environments and compare it with proportional guid-
ance. It is proved that the guidance law based on the RL
algorithm has better accuracy. However, both of them regard
the discretized LOS rate as the state space and the discretized
normal acceleration as the action space, which is obviously
inconsistent with the actual situation. In [24], the authors
successfully solved the problem of discontinuity of normal
acceleration by discretizing the proportional coefficients as
action space; however, such a guidance law has the same
defects as PNG, and it cannot solve the problem of diver-
gence of LOS rate in specific circumstances. In order to solve
the discontinuity problem of the Q-learning algorithm, in
[25], the authors use a convolutional neural network to
approximate the behavior value function, which can solve
the problem of continuous state space and achieve better
results than Q-learning in Atari games. In [26], the authors
propose a time-controllable reentry guidance law based on
the Deep Q-Network (DQN) algorithm. That is, the neural
network is used to generate the bank angle command online
and then combined with the amplitude information to form
the final bank angle command so that the designed reentry
guidance law has good performance in task adaptability,
robustness, and time controllability. Schulman et al. [27]
propose a Proximal Policy Optimization (PPO) algorithm
based on the AC framework, which can solve the problem
of continuous action space very well. Gaudet et al. [28]
improve the PPO algorithm and propose a three-
dimensional guidance law design framework based on rein-
forcement learning for interceptors trained with the PPO
algorithm. Comparative analysis shows that the deduced
guidance law also has better performance and efficiency than
the extended Zero-Effort Miss (ZEM) policy. This is a good
solution to the problem of continuous control, but the PPO

algorithm uses random policy to explore and utilize, and
this method estimates the accurate gradient and requires
a large number of random actions to explore the accurate
gradient. Therefore, such a random operation deduced the
algorithm’s convergence speed. Lillicrap et al. [29] also
propose the deep deterministic policy gradient (DDPG)
algorithm based on the AC framework. Compared with
the PPO algorithm, the DDPG algorithm adopts a deter-
ministic policy to explore and uses Hindsight Experience
Replay (HER) to improve the efficiency of training sam-
ples and greatly improve the convergence speed of the
algorithm. By improving the DDPG algorithm, in [30],
the authors propose an online path planning method
based on deep reinforcement learning for the problem of
UAV maneuvering, target tracking, and obstacle avoidance
control. The authors [31] propose a computational guid-
ance algorithm for missile target interception based on
the DDPG algorithm. In [32, 33], the authors also pro-
posed a deep reinforcement learning guidance algorithm
based on the DDPG algorithm by improving the reward
function. In [34], the authors propose a terminal guidance
law based on the DDPG algorithm; by designing the envi-
ronment state and action of the interception problem, the
guidance law with optimal learning reward from the inter-
active data of the simulation environment is realized. In
[35], the authors design a missile guidance law using
DDPG for maneuvering target interception, but which only
considers a maneuvering mode. However, in reinforcement
learning algorithms based on value learning, such as DQN
[25], the existence of function approximation errors will lead
to the problem of Q value overestimation and suboptimal
strategies. Fujimoto et al. showed in the paper [36] that the
structure that causes the overestimation of the Q value and
the accumulation of errors exists in the AC framework, so
the authors proposed the “Twin-Delayed Deep Deterministic
policy gradient algorithm.” The algorithm limits the overesti-
mation of the Q value by selecting the minimum value of the
estimates generated in the two critic estimation networks and
uses a delayed update policy to reduce the error of each
update; this algorithm has been verified on a set of tasks on
OpenAI, and it has demonstrated the highest level in each
task environment. In [37], the authors propose autonomous
navigation of UAV in multiobstacle environments based on
TD3. Therefore, we apply TD3 instead of DDPG to improve
the estimation accuracy and robustness.

The main contributions are summarized as follows:

(i) This paper presents a new framework for missile
guidance law training. According to the problem
that may be caused by overestimation bias in the
previous RL guidance law, the minimum value
between two critics is adopted to reduce overestima-
tion and improve the robustness and accuracy of
action output

(ii) According to the analysis of the PNG algorithm, the
reward function is designed, which is beneficial for
the missile to move towards the direction of
decreasing LOS rate and higher accuracy
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(iii) The open-source Python code of Gym is used to
build a digital simulation environment with contin-
uous action space and state space. The simulation
results show that compared with the RL guidance
law based on the DDPG algorithm, our guidance
law has better convergence speed and higher returns
under the same knowing environment and has
higher accuracy than PNG, and normal acceleration
converges better

Section 2 discusses the origin of the problem and pre-
views the basics, including the relative motion model and
the Markov decision process. Section 3 establishes the guid-
ance problem under the RL framework and deduces the
algorithm principle. Section 4 discusses and analyzes the
simulation results of this paper. Section 5 discusses the con-
clusions from this work.

2. Preliminaries and Problem Setup

2.1. Relative Kinematics and Guidance Problem. To simplify
the problem, our work only focuses on the two-dimensional
environment of the relative motion between the missile and
the target and uses the dynamic analysis method to study the
guidance trajectory. The simulated model does not consider
gravity, thrust, and drag.

The engagement scenario between the missile and the
target in this paper is shown in Figure 1.

In Figure 1, XY denotes the inertial coordinate,M and T
refer to the interceptor and the target, V and VT represent
the velocity of the missile and the target, respectively, q
is the line-of-sight angle between the missile and the tar-
get, −Q and σT are the flight path angles of the missile
and the target, respectively, η and ηT are the parameters
of the leading angles of the missile and the target, respec-
tively, and s0 and aT represent the normal acceleration of
the missile and the target. In this paper, it is assumed that

both the missile and the target are only subjected to a nor-
mal overload which is perpendicular to the direction of
velocity; that is, the overload is only used to change the
direction of each speed.

In a 2D coordinate system, the dynamic equations of
motion between the missile and the target are as follows:

r = xt − xm
2 + yt − ym

2,

q = arctan yt − ym
xt − xm

,

r = −VT cos ηT − V cos η,
rq =V sin η − VT sin ηT ,
q = η + σ,
q = ηT + σT ,

dσ
dt = aM

V
,

1

where a0 predict is the relative distance between the missile
and the target, r is the relative speed of the missile and the
target, q is the LOS rate, xt , yt is the position coordinate of
the target, and xm, ym is the position coordinate of the
missile.

At present, the most commonly used guidance method is
the method of PNG, in which it usually commands the mis-
sile to move to the target by calculating the normal acceler-
ation of the missile. And the missile’s normal acceleration is
proportional to the change in the line of sight angle rate. To
this end, the output of PNG is the normal acceleration aM ,
and its description is shown in the following:

aM = KVq, 2

q

𝜂T

VT

aT

aM

𝜎T

Target

Missile

r

x

y

V

𝜂

𝜎

Figure 1: Relative motion model (aM is perpendicular to V , aT is perpendicular to VT ).
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where aM denotes the normal acceleration command, K
denotes the proportionality coefficient, and V denotes the
relative speed between the missile and the target.

We differentiate the 4th formula in equation (1) with
respect to time to obtain the following dynamics:

rq + rq =V sin η + Vη cos η − VT sin ηT −VTηT cos ηT
3

Substitute equation (2) into the final formula in equation
(1), we can get σ = Kq, then substitute it into equation (3).

η = q − σ = 1 − K q,
ηT = q − σT ,
r =VT cos ηT −V cos η

4

Substitute equation system (4) into equation (3)

rq = − KV cos η + 2r q − q∗ , 5

where

q∗ = V sin η −VT sin ηT + VTσT cos ηT
KV cos η + 2r 6

Suppose the target moving in a straight line with a con-
stant speed and the missile velocity is also kept constant, V ,

VT and σT are going to be equal to 0. So it can be known from
equation (6): q∗ = 0.

Thus, equation (5) can be written as

q = −
1
r
KV cos η + 2r q 7

From equation (7), it is easy to see when −Q, i.e., K > 2
r /V cos η, then q ⋅ q < 0. In this case, the sign of q will be
opposite to that of L = −Q s, a0 predict . Therefore, the mis-
sile’s required normal acceleration decreases as q decreases,
and the missile trajectory becomes flat; this property is the
same as PNG.

However, the above conclusion holds in the assumption
of a missile with a constant speed moving and a target keep-
ing in a straight line and maneuvering at a constant speed. In
real word, the reality will be very complex, so it is obviously
different.

2.2. Markov Decision Process. Most algorithms for reinforce-
ment learning are based on the Markov decision process
(MDP). When an agent conducts reinforcement learning,
the MPD model is often used to establish corresponding
mathematical models for decision problems with uncertain
state transition probability, state space, and action space
and solve the reinforcement learning problem by solving
the mathematical model.

A MDP consists of a five-tuple:M = <S, A, P, R, γ > . The
elements of the five-tuple can be described in the following.

at

st

Environment

Noise

Replay buffer

OptimizerOptimizer

·

Noise

∇𝜙 J (𝜙)
∇a Q𝜃1

 (s, a)
Update 𝜙

st, at

(st, Rt, st + 1)

N⁎ (st, at, Rt, st + 1)

Q1 (s0, a0)

Q
2 (s0

, a
0
)

Q gradient

Update 𝜃1

Update 𝜃2

Actor
Critic

Parameter : 𝜃1, 𝜃2

Parameter : 𝜙

Min Q1, 2 (st + 1, a′)

Soft update 𝜙

Soft update 𝜃1,2
Critic loss

+

𝜋𝜙 (st)

a = 𝜋𝜙 (st)

𝜋𝜙 (st + 1)

+

s
t + 1

Figure 2: Schematic of the TD3-based RL guidance law (at represents the guidance command to be output at time t and st represents the
LOS rate ϕ captured by the seeker at time t).

4 International Journal of Aerospace Engineering



S represents the state set of the environment, and the
state refers to the information that the agent can obtain use-
ful for decision-making. In the reinforcement learning
framework, the agent relies on the current state to make
decisions.

A represents the action set of the agent. It is the set of
actions the agent can choose from in the current reinforce-
ment learning task.

P represents the probability of state transition. Pa
ss′ rep-

resents the probability that in the current state s s ∈ S , it

will be transferred to another state s′ s′ ∈ S after action
a a ∈ A .

Pa
ss′ = P St+1 = s′ St = s, At = a 8

Given a policy and an MDP: M = <S, A, P, R, γ > , the
probability Pπ

ss′ of a state transfer from s to s′ when exe-
cuting policy π is equal to the sum of a series of probabil-
ities, which refers to the product of the probability π a s

Actor
network

Environ
ment

s1
R1
is_done

s0 a'0  + N = a00a'

Figure 3: Generating experience procedure.

S0

S0
a0_predict

a0_predict
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−Q0 is used as loss to modify the parameters in the Actor network

Actor network Critic 1 network

Figure 4: Actor network update procedure.
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Figure 5: Critic network update procedure.
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of executing an action a and the probability Pa
ss′ that the

action can cause a state transfer from ϕ to s′ when execut-
ing the current policy π. The specific mathematical expres-
sion is as follows:

Pπ
ss′ = 〠

a∈A
π a s Pa

ss′ , 9

where ∇ϕ J ϕ =N−1∑∇aQθ1
s, a

a=πϕ s
∇ϕπϕ s is the

reward function. Ra
s represents the reward obtained after

taking action a a ∈ A in the current state s0, s1, a0. The
specific mathematical expression is as follows:

Ra
s = E Rt+1 St = s, At = a , 10

where γ is the discount factor, take γ = 0 95. The purpose
of using the discount factor is to take into account the
immediate return in the future when calculating the
cumulative return in the current state.

Since this article uses the model-free reinforcement
learning method, MDP does not involve the part of state
transition probability. Therefore, we adopt a simplified
MDP consisting of a four-tuple: s0, a0, s1, r1 . Next, we

design corresponding items based on the background of
solving the problem.

3. Guidance Law with TD3 Algorithm

3.1. Markov Decision Process Design. The environmental
information observed by the agent can describe the environ-
mental state to a certain extent. If the simulation covers all
the state space encountered by the guidance law in practice
and there is enough sampling density, the obtained guidance
law will be the optimal guidance law relative to the missile
and environmental dynamics modeled. However, in order
to better solve the problems in this paper, some information
that may interfere with the decision-making task should not
be included in the state set denoted by, so we only choose the
LOS rate as the state space, which can also cover the whole
process of guidance. To this end, we set S q . Taking into
account that the characteristics of the projectile itself have
certain restrictions on overload, the LOS rate is usually in
the range of (-0.5, 0.5) rad/s.

Traditional PNG takes the relative speed and the LOS
rate as input, and the output is the normal acceleration.
Our goal is to use the neural network to directly map the
LOS rate to the normal acceleration so that our actions

Initialize critic networks Qθ1,Qθ2 , and actor network πϕ

with random parameters θ1, θ2, ϕ
Initialize target networks θ1′ ⟵ θ1, θ2′ ⟵ θ2, ϕ′ ⟵ ϕ
Initialize replay buffer D
for t=1 to T do:

ENV reset , reset the environment initial value
While True:

Select action with exploration noisea ∼ π s + ε, ε ∼N 0, σ and
observe reward r and new state s′.

Store transition experience tuple s, a, R, s′ in D

Sample mini-batch of N transitions s, a, R, s′ from D

a⟵ πϕ′ s + ε , ε ∼ clip N 0, σ ,−c, c
y⟵ R + γ mine=1,2Qθe′ s′, a
Calculate the TD error
δi = Ri + γQθ′ s′, a −Qθ s, a
Calculate the loss function L θe=1,2
Le=1,2 =N−1∑N

i=1 y −Qθe=1,2
s, a 2

Update the critic network using gradient descent as(where, e=1,2)
∇θe

L θe = 1/N∑N
i=1δi∇θe

Qθe
si, ai

θe ′ = θe + αθe∇θe
L θe

if t mod d then
Update ϕ by the deterministic policy gradient:
∇ϕ J πϕ =N−1∑∇aQθ1

s, a
a=πϕ s

∇ϕπϕ s

ϕ′ = ϕ + αϕ∇ϕ J πϕ

Update target networks:
θi′⟵ τθi + 1 − τ θi′
ϕ′ ⟵ τϕ + 1 − τ ϕ′

end while
end for

Algorithm 1: Guidance law learning algorithm based on TD3 algorithm.
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denoted by A may select the normal acceleration, i.e.,
A N g. Here, g is the acceleration of gravity. However,
in order to ensure the normal operation of various compo-
nents, the actual aircraft needs to consider the impact of
overload and limit it to a certain range. The overload is lim-
ited to 10 times the acceleration of gravity.

The reward function serves as a feedback system that
indicates to the missile from the environment whether its
performance is good or bad. In order to solve the two prob-
lems of achieving LOS rate convergence to 0 and improving
guidance accuracy, the reward function designed in this
work can be divided into two parts:

R1 =

0 1
q

, otherwise,

100, if 0 1
q

> 100,
11

R2 =

100
r

, if r < 10,

10000, if 100
r

> 10000
12

The first part is shown in equation (11). Here, R1 is the
reward generated at the current moment of t. The smaller
the q is, the higher the reward is, and the highest one is
100. And the second part R2 is a terminal reward. The reward
can only be generated when the distance error r < 10m. It is
expected that the estimated minimum miss can reach 0.01,
and the upper limit of the reward will be controlled. The
upper limit of the reward will be controlled, and the smaller
the r is, the higher the terminal reward the agent gets, which
can promote the agent to explore with higher accuracy.

To this end, the final reward function can be defined as
follows:

R =
R1 + R2 if end& if r < 10,
R1 otherwise,

13

where end is when the termination condition is true.

3.2. Reinforcement Learning. Reinforcement learning con-
siders the paradigm of the agent’s interaction with its envi-
ronment, and its purpose is to make the agent take the
behavior that maximizes the benefits, so as to get an optimal
strategy. Based on the above MDP design, the continuous
time can be divided into multiple discrete moments t. At
each moment, the agent adopting policy π selects the corre-
sponding action a according to the state s and then interacts
with the environment to obtain the reward R of this step and
the state s′. The return is defined as the discounted sum of
the reward.

Gt = 〠
i=t

T

γi−tR si, ai 14

Here is a discount factor γ ∈ 0, 1 used to determine the
priority of short-term rewards, R is the result of the return
function at time t, and Gt is the cumulative sum of subse-
quent rewards after the time point.

The action value is defined as the Qπ st , at will be
obtained when the agent takes action a by following the pol-
icy π in the state s at the time t. This value is obtained
through the critic function.

Qπ st , at = E Gt st , at 15

According to the meaning of accumulative rewards
above, reinforcement learning proposes the definition of
value function calculated by the Bellman equation, which

Table 3: Policy and value function network architecture.

Layer Policy network Value network

Input layer 1 2

Hidden1 30 10

Hidden2 40 15

Output 1 1

Table 1: Dynamic model initial simulation parameters.

Parameter Value

Missile position (m) (0, 0)

Missile speed (m/s) 1200

Target speed (m/s) 800

Relative range (m) Random (30000, 40000)

LOS angle (°) Random (40, 70)

Missile’s flight path angle (°) LOS angle + random (-10, 10)

Target’s flight path angle (°) Random (150, 180)

Table 2: Hyperparameters for TD3 algorithm.

Parameter Value

Number of hidden layers 2

BATCH_SIZE 32

Replay buffer size 50000

Actor learning rate 10-5

Critic learning rate 2 × 10−5

Policy noise 0.2

Noise bound 0.5

Soft update factor τ 0.01

Discounting factor γ 0.95

Delay steps 5

Gradient optimizer Adam
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can provide an evaluation value for a certain state of the
agent, as shown in the following:

Qπ st , at = Ert ,st+1~E R st , at + γEat+1~π Qπ st+1, at+1
16

The deterministic policy gradient (DPG) algorithms [38]
map the state to a deterministic action by expressing the pol-
icy as a policy function. When the policy is deterministic, the
equation for calculating the behavior value function using
Bellman’s equation will become the following equation:

Qπ st , at = ERt ,st+1~E R st , at + γQπ st+1, π st+1 17

In the RL framework, the agent’s goal is to find an opti-
mal policy Q with parameter ϕ to maximize the total reward
received over a sequence of time steps:

ϕ∗ = arg max
ϕ

Q s, πϕ 18

Supposing policy y = r + γ min Q1,Q2 is a determinis-
tic policy, the gradient of the behavior value function to the
parameter can easily be calculated by the rule of chain deri-
vation as follows:

∂Q s, a
∂ϕ

= ∂Q s, a
∂a

⋅
∂π
∂ϕ a=πϕ

= ∇ϕπϕ ⋅ ∇aQ s, a
a=πϕ

19

TD3 uses off-policy to calculate the deterministic policy
gradient. Because the deterministic policy gradient itself is
not exploratory, the data it generates lacks diversity, so there
is no way to learn. The off-policy method is that the agent
uses exploratory policy to generate data and calculates the
policy gradient based on these data. We still use π to repre-

sent the behavior policy, and the policy function parameter
ϕ is updated by the following gradient terms:

∇ϕ J ϕ = Es∼pπ ∇aQ
π s, a a=π s ∇ϕπϕ s 20

3.3. Network Structure of TD3. The network structure of the
TD3 algorithm can be described in the following:

As illustrated in Figure 2, the actor-network input is
environment states, and the output is agent action. Critic
network input is the state and action, and the output is the
corresponding Q value. The purpose of the actor network
is to output the action at that maximizes Q st , at according
to the state st . The larger Q st , at the calculated by at is, the
better the network training. The purpose of the critic net-
work is to output its action value Q st , at according to the
state action st , at . The difference between the actor net-
work and the target actor network is that the actor network
is updated in the replay buffer at each step, while the target
actor network copies the actor’s network parameters at
intervals to achieve its update. This “lag update” is to ensure
the stability of training when training the actor network. The
purpose of the target critic network is the same as that of the
target actor network. It also wants to use a network that is
not frequently updated to make the critic network converge
stably. The soft update method between them is as follows:

θ′⟵ τθ + 1 − τ θ′,
ϕ′ ⟵ τϕ + 1 − τ ϕ′,

21

where θ and ϕ, respectively, are the parameters of the critic
and the actor network.

Figure 3 shows the process of generating experience.
Given a state s0, get action a0′ through the actor network,
and then add noise N to get action a0 = a0′ +N (noise is to
ensure certain exploration), and then we input a0 into the
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Figure 6: Comparison of learning curves of the two algorithms. (a) The convergence curves of average reward. (b) The convergence curves
of the miss distance.
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environment to get s1 and R1, thus get an experience like
this: s0, a0, s1, R1 , and then put the experience in the replay
buffer.

The significance of the existence of the replay buffer is to
eliminate the correlation of experience because, in rein-
forcement learning, the adjacent action is usually strongly
correlated, if we break it up and put it into the replay
buffer, the neural network can be better trained when we
randomly select a batch of experiences from the replay
buffer to train it.

The actor-network update procedure is shown in
Figure 4. The s0 represents known items, we take out a batch
of experience from the replay buffer; here is an experience:
s0, a0, s1, R0 as an example to describe the process of train-
ing a neural network.

According to the description of the actor network in Sec-
tion 3.1, the loss function of the actor network is −Q, and the
smaller the −Q is, the better the performance. This −Q needs

to be obtained from the critic1 network, as shown in
Figure 5.

Input the s0 in the experience into the actor network to
get the predicted action a0 predict without noise, directly
input s0 and a0 predict into the critic1 network to get the value
of Q, and then use −Q as a loss function to modify the actor
network. The loss function equation is as follows:

L = −Q s, a0 predict 22

As mentioned in Section 3.2, the network parameters ϕ
of the actor network are updated through a deterministic
gradient, so equation (19) becomes

∇ϕ J ϕ =N−1〠∇aQθ1
s, a

a=πϕ s
∇ϕπϕ s 23
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Figure 7: Comparison of convergence performance between the DDPG and TD3 model: (a) cumulative reward comparison of several
different learning rates of DDPG, (b) miss-distance comparison of several different learning rates of DDPG, (c) cumulative reward
comparison of several different learning rates of our guidance algorithm, (d) miss-distance comparison of several different learning rates
of our guidance algorithm.
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As shown in Figure 5, s0, s1, a0 represent known items.
This section describes the critic network update procedure,
which we still use experience: s0, a0, s1, R1 as an example
to describe the process of training the critic network.

As shown in Figure 5, the TD3 algorithm uses two tar-
get critic networks considering that the critic network
always overestimates the Q value in actual applications.
It borrows the idea of dueling double DQN (DDQN)
[39] and adopts two networks to estimate the Q value
and choose the smaller one to avoid overestimating the
value as much as possible.

Because two target critic networks are used, the fre-
quently updated critic network needs a corresponding num-
ber and is finally updated with the smaller of the two Q
values:

y = r + γ min Q1,Q2 24

The above equation is used as the mean square error of
Q1 s0, a0 and Q2 s0, a0 , respectively. And then we use the
mean square error as the loss function for gradient descent.
The loss function is defined as follows:

Le=1,2 =N−1 〠
N

i=1
y −Qθe=1,2

s, a
2

25

By calculating equation (24), the gradient ∇aQθi=1,2
s, a

of Q value with respect to the parameter θe=1,2 is obtained,
which will be used in the calculation of equation (22).

In addition, note that the entire critic module actually
trains the parameters of two critic neural networks. The
parameters of the target actor network and two target critic
networks are updated by the actor network and two critic

networks (as shown in equation (21)), and noise N is added
to the predicted action a1 predict of the target actor network,
which becomes action a1N before being used as input to
the two target critic networks, thus making the Q value of
the next step more precise.

The detailed pseudocode of TD3 is summarized in
Algorithm 1.

4. Simulation and Analysis

In this section, we consider two target maneuvering modes:
sinusoidal maneuvering and constant maneuvering, and
then test them from three aspects: flight trajectory, normal
acceleration, and LOS rate. Finally, we analyze the perfor-
mance of the three guidance laws from the miss distance.

First, when the target is in sinusoidal maneuver, TD3
and DDPG algorithms were used to train the neural network
with the parameters in Tables 1 and 2 for 10,000 episodes.
The actor and critic functions are implemented by four-
layer fully connected neural networks; critic1 and critic2
use the same network architectures, and the network archi-
tectures are as shown in Table 3. Except for the critic output
layer, each neuron in other layers is activated by the Relu
function, which is
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Figure 8: Miss-distance comparison.

Table 4: Miss-distance comparison.

TD3 DDPG PNG

Number of effective hits 2000 2000 1986

Number of direct hits 1999 2000 993

Average miss distance (m) 0.27 0.28 2.58
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Relu x =
x, if x ≥ 0,
0, if x < 0,

26

The output layer of the actor network is activated by the
tanh function, which is defined as

tanh x = ex − e−x

ex + e−x
27

The policy and value functions are periodically updated
during optimization after accumulating trajectory rollouts
of replay buffer size.

As shown in Figure 6(a), the TD3 algorithm has con-
verged when it is close to 4000 episodes, while the DDPG
algorithm has converged when it is close to 8000 training
rounds, and the reward obtained after TD3 is stable is higher
than that of the DDPG algorithm. Figure 6(b) shows the var-
iation trend of the final miss distance during the training of
the two algorithms.

To test the convergence of the two algorithms, the agent
is trained at several learning rates, as presented in Figure 7.
The learning rate of the critic network in the two algorithms
is twice that of the actor network. From Figure 7, one can
note that our guidance algorithm is more stable than the
DDPG guidance law; the DDPG algorithm cannot even con-
verge at learning rates between 0.001 and 0.00001.
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Figure 9: Ballistic trajectory.

Table 5: Test result.

1th 2th 3th 4th 5th 6th

Distance (m) 32148 32857 33924 36696 30000 40000

LOS angle (°) 68 42 46 57 40 70

Missile’s flight path angle (°) 61 35 47 50 30 80

Target’s flight path angle (°) 162 178 166 157 180 180

PNG miss distance (m) 4019.92 15.92 1.37 5.43 16.45 11.64

DDPG miss distance (m) 0.0003 0.87 0.05 0.11 0.56 0.29

TD3 miss distance (m) 0.34 0.26 0.60 0.30 2.44 0.44
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When the trained TD3 algorithm is compared to the
PNG, the two are randomly tested 2000 times. Because the
LOS rate converges only when K is large enough, the PNG
method takes the minimum value under the three conditions
of the proportionality coefficient K = 3, 4, 5. We call the miss
distance <10m as an effective hit, and the miss distance
<2m as a direct hit.

As shown in Figure 8 and Table 4, in 2000 tests, the RL
guidance law based on the TD3 algorithm is much better
than PNG in guidance accuracy, but there is not much dif-
ference between it and DDPG. In the number of miss dis-
tance less than 10m, TD3 is slightly higher than PNG, but
if the miss distance is reduced to less than 2m, the gap is

obvious, TD3 is almost 100% successful, but PNG is only
50%.

We take 4 of these tests and then take 2 boundary values
for testing. The proportional coefficient of these 6 tests is
K = 3, and the target performs sinusoidal maneuvers.
Table 5 shows the recorded 6 initial dynamic model simula-
tion parameters and the final miss distance comparison:

As can be seen from Figure 9, all 6 tests of the RL guid-
ance law have a quick-hitting time compared with PNG. In
the first test, it can be seen that PNG guidance accuracy
has a large error. The second and fifth tests clearly show that
the PNG algorithm did not hit the target of a locally enlarged
image.
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Finally, take the fifth and sixth times as examples to
compare the LOS rate and normal acceleration. The changes
in the LOS rate and normal acceleration of the RL guidance
law based on the DDPG algorithm in the fifth test are shown
in Figure 10. They have relatively unstable oscillations at the
guidance end, and the oscillations will have a greater impact
on the stability of the projectile. It can be seen that the RL-
based guidance law implemented in the DDPG algorithm
has not achieved a good training effect after ten thousand
training times.

As shown in Figure 10(b), the robustness of the RL-
based guidance law implemented in DDPG is poor, so it will
not participate in the subsequent comparison of the LOS
rate and the normal acceleration.

As shown in Figure 11, the LOS rate of the two
algorithms is generally stable in the early stage. How-
ever, as mentioned in Section 2.1, PNG’s LOS rate fails
to converge in the final trajectory stage when the target
presents non-straight motion, and the RL guidance law
based on the TD3 algorithm has better convergence than
PNG.

The PNG algorithm follows the change rule of equation
(2), so the normal acceleration diverges at the last moment,
and the normal overload required at the terminal stage is
too large. In contrast to the reinforcement learning algorithm,
although the curve is not as smooth as the normal accelera-
tion, it does not oscillate as violently as Figure 10(b), and its
normal acceleration is better than PNG in terms of terminal
convergence, which is more realistic.

In addition, we also tried the second scenario to see if it
has a good generalization to the engagement scenarios we
did not experience in the training process. As a result, the
fifth and sixth initial state parameters in Table 5 were left
unchanged, while the target maneuvering mode was chan-
ged to constant maneuvering 20m/s2.

As shown in Figures 12 and 13, when the target maneu-
vering mode is changed to continual maneuvering, the per-
formance of the two guidance laws improves, but the
guidance law still outperforms PNG in the terminal stage,
and its accuracy is still higher, as presented in Table 6. This
demonstrates that the guidance law has a high degree of
generalization.
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Figure 11: Comparison results of the 5th and 6th tests.

13International Journal of Aerospace Engineering



30000

20000

20000

10000

10000

6th

5th

35000

25000

15000

15000

5000

50000

0

−5000

Y
 (m

)

X (m)

PNG
TD3
Target

Figure 12: Ballistic trajectory.
LO

S 
ra

te
 (°

/s
)

A
m

 (m
\s

2 )

Time (s)Time (s)

0.0 0.010.0 10.02.5 2.512.5 12.55.0 5.015.0 15.07.5 7.517.5 17.5

−750

750

−1000

1000

−100

−80

−60

−40

−20

0

−500

500

−250

250

0

PNG
TD3

(a) The 5th test

1000

750

500

250

0

−250

−500

−750

−1000

−10.0

−5.0

−2.5

−7.5

−12.5

−17.5

−15.0

50

0.0

15 2510 20 0 5 15 2510 20

A
m

 (m
\s

2 )

LO
S 

ra
te

 (°
/s

)

Time (s)Time (s)

PNG
TD3

(b) The 6th test

Figure 13: Comparison results of constant maneuver.
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5. Conclusion

We have demonstrated that when facing a maneuvering tar-
get, the performance of the resulting guidance strategy is
better than that of the traditional proportional guidance
method by directly mapping the LOS rate to the overload
instruction via a neural network. The simulation results
show that (1) RL guidance law based on TD3 has better
accuracy and convergence of normal acceleration compared
with PNG; (2) when designing guidance law based on RL
algorithm framework, the TD3 algorithm outperforms
DDPG in terms of robustness; and (3) the guidance law also
has a good generalization to new engagement scenarios that
have not been experienced during training. Furthermore,
because the RL algorithm is a model-free framework, it can
optimize guidance laws in more complicated environmental
frameworks. Therefore, we believe that designing guidance
law based on the RL framework will be an effective way to
intercept maneuvering targets in the future. The following
work may consider RL guidance law performance in more
realistic combat environments that contain acceleration of
gravity, aerodynamic forces, thrust, and air humidity.

Nomenclature

MPD: Markov decision process
RL: Reinforcement learning
s: State vector in the MDP
a: Action vector in the MDP
θ: The parameter of the critic network
ϕ: The parameter of the actor network
R st , at : Reward for being in state s when selecting the

corresponding action a at the time t
Gt : The cumulative sum of subsequent rewards after

the time point t
p x : The probability density p associated with the

random variable x
E f x : Expectation of f x , i.e., +∞

−∞p x f x dx
Qπ st , at : The action value for agent taking action a by

following the policy π in the state s at the time t.
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