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The superior performance of factor graphs compared to Kalman filtering in various fields and the use of factor graph algorithms
instead of Kalman filtering algorithms in moving target localization tasks can reduce target localization error by more than 50%.
However, the global factor graph algorithm may cause computational delays due to excessive computational effort. A moving
target localization algorithm based on a combination of global and incremental optimization with improved factor graphs is
proposed to improve localization accuracy and ensure that the computation time can be adapted to the requirements of online
location. A reference point is introduced into the incremental calculation process, and it is first determined whether global or
incremental calculation is used for this calculation by comparing the distance between the incremental localization results of
the calculated reference point. The position of the UAV itself is then corrected by determining the position of the reference
point, and this is used to finally locate the target. Simulation results show that the algorithm has good real-time performance
compared to the time-consuming global algorithm. The online localization error of moving targets can be reduced by 17%
compared to the incremental calculation results of the classical factor graph algorithm.

1. Introduction

Timely and accurate target location tracking is an important
task in the field of unmanned aerial vehicle (UAV) applica-
tions, and the common method is laser location. That is, the
distance between the target and the UAV and the camera’s
rotation angle relative to the UAV is obtained by means of
a camera mounted on the gimbal and a laser rangefinder.
Then, the target position relative to the UAV can be calcu-
lated, and the target position in the geodetic coordinate sys-
tem is obtained by means of coordinate conversion. The
position of the target in the geodetic coordinate system is
then obtained by means of a coordinate transformation,
which in turn gives the longitude, latitude, and altitude of
the target. In this method, there are errors in the UAV’s
own navigation, optical axis pointing errors of the camera,
and laser ranging errors, which lead to low accuracy in the
final result of target positioning due to the introduction of
many error sources. However, due to cost constraints, it is

unrealistic to improve the sensor’s measurement accuracy.
Moreover, due to the presence of random errors, an increase
in sensor accuracy may not necessarily lead to an increase in
the accuracy of measurement results. Therefore, selecting the
appropriate algorithm to process the collected information
in order to obtain optimal results is an important goal in
the UAV positioning task.

When a single UAV is used for target location and track-
ing tasks, filtering is generally used to suppress the effects of
measurement errors, with Kalman filtering and its modifica-
tions being the most common method of data fusion. For
example, in the literature [1], Song et al. used the extended
Kalman filter (EKF) algorithm for target location. In the
literature [2], Ullah et al. combine EKF, unscented Kalman
filter (UKF), and particle filter (PF) into one framework to
calculate target position. In the process of localization a
moving target, the motion state of a noncooperative target
cannot be accurately known. To avoid this problem, the lit-
erature [3] directly uses the target position at the previous
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moment plus a noise matrix with large a variance as a priori
estimate of the target position and then uses Kalman filter-
ing for moving target locating. To solve this problem, the lit-
erature [4–7] used an interacting multiple model (IMM)
algorithm to estimate a priori the target position at the next
moment and then used the EKF[4, 5] and UKF[6, 7] to fuse
the information and determine the state of the target’s
motion at the next moment. The IMM algorithm fuses sev-
eral possible target motion models and adaptively trans-
forms them to characterize the target motion state.

It can be seen that the target motion state is necessarily
estimated when using the Kalman filter algorithm for target
location. However, when tracking noncooperative targets,
errors are inevitable in everything we model about the target.
Also, the Kalman filter offers limited improvement in target
location results and does not reduce the impact of the UAV’s
own position and attitude errors on the final target location
results. And to avoid model errors and reduce the UAV’s
own position and attitude errors, we can use factor graphs
to locate the target.

In addition to eliminating the need to model the target’s
state of motion in moving target location tasks, the biggest
advantage of the factor graph algorithm over Kalman filter-
ing is that the factor graph algorithm not only calculates the
target’s position at the current moment but also optimizes
the target’s previous trajectory based on the current mea-
surements, correcting the location results of the moving tar-
get, and speeding up convergence. Moreover, in contrast to
the Kalman filter algorithm, which can only calculate the
position of the target from the position of the UAV, the fac-
tor graph algorithm can optimize the position of both the
UAV and the target and obtain the optimal estimate for both
sides at the same time. Finally, the factor graph algorithm
makes full use of the global optimization feature of factor
graphs to divide the complex problem into a number of sim-
ple problems to be calculated separately, guaranteeing the
accuracy of the algorithm while effectively reducing compu-
tational effort and computation time.

The factor graph [8–10] algorithm is an estimation algo-
rithm based on Bayesian networks, which has shown good
performance in many fields. For example, in the navigation
problem, there are Wen et al. in literature [11], Wei et al.
in literature [12], Gao et al. in literature [13], Liu et al. in lit-
erature [14], and Xu et al. in literature [15], all of which use
the factor graph algorithm instead of the Kalman filter algo-
rithm. The factor graph algorithm offers superior perfor-
mance while also ensuring good robustness. Therefore, the
factor graph algorithm can certainly play a larger role in
the target localization problem as well.

In fact, there are many applications of factor graph algo-
rithms in the field of target localization. For example, in the
literature [16], Zhang et al. assume that the target motion is
nonlinear, and the extended Kalman filter (EKF) is applied,
where the observation process is implemented by a practical
position detector based on AOA, forming a unified factor
graph (FG) framework. This dynamic estimation method
offers higher robustness in the presence of unstable sensing
environments than conventional methods. However, this
method requires several iterations and is computationally

intensive. In the literature [17], Hao et al. aim at the charac-
ter of plug and play for iGPS. A factor graph model based on
a Bayesian network is built, and then a sum product algo-
rithm is used to convert the fixed model into the form of
the product of each node, which reduces the independence
of measurement information and improves the confidence
of the results. However, it is aimed at measurements in
large-scale conditions, requiring a large number of nodes
and is not applicable to the case of target location tracking
by UAVs. In the [18], Liu et al. proposed a recursive algo-
rithm to estimate the location of mobile stations in an offline
line-of-sight environment, the focus is on the non-line-of-
sight environment, and it is a recursive algorithm requiring
iterations. In the literature [19], Tang et al. proposed a colo-
cation algorithm for distributed underwater node weighted
factor graphs, i.e., using factor graphs and sum-product
algorithms to decompose global optimization into the prod-
uct of several local optimization functions, but the complex-
ity of algorithm has a certain improvement. In literature the
[20], Wan et al. simultaneously estimate the landmark posi-
tion and attitude of mobile robots online and distributed by
combining range data from each robot with the relative
robot-robot or robot landmark distances and angles. Its
main focus is on non-Gaussian distributions.

In literature [21], Vanli et al. proposed a method for esti-
mating the covariance of inputs in a factor graph formula-
tion under non-line-of-sight conditions. Same as in
literature [18], they focus on non-line-of-sight targets. In
the literature [22], Kahar Aziz et al. proposed a new geoloca-
tion technique based on factor graphs. They consider a fac-
tor graph-based geolocation technique where the input is a
sample of the direction of arrival measurements sent from
the sensor. But it requires a large number of nodes for posi-
tioning. In the literature [23], Yuan et al. provide a unified
passive location framework based on factor graph for TOA
measurement-based wireless sensor networks. Based on the
linearization of distance measurements, they build a
Forney-style factor graph model and propose a correspond-
ing Gaussian message passing algorithm to obtain the target
position. Its main focus is on the TOA problem. In the
literature [24], Zhao et al. proposed a new factor graph
and Kalman filtering (FGCKF) integration algorithm. This
algorithm, which is still combined with the Kalman filter,
does not fully serve the shortcomings of the Kalman filter
algorithm.

In the literature [25], Fan et al. established a colocaliza-
tion algorithm based on factor graphs and sum products
(FGS), transforming the global function estimation problem
into an incremental function and product estimation prob-
lem. In the literature [26], Fan et al. proposed a novel CP
algorithm based on factor graph and maximum entropy
(FGMC) to improve the global positioning accuracy of
AUVs. However, both of the above papers have the same
flaw: AUV does not need to take depth into account, so
the problem addressed in this paper falls into the two-
dimensional category. In the literature [27], Zhang et al.
used factor graph optimization (FGO) to optimize the
interagent localization solution to improve the accuracy
and robustness of the collaborative algorithm. This method
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utilizes measurement data from surrounding available GNSS
receivers; thus, a large number of nodes are required. In
literature [28], Zhu et al. proposed a distributed cooperative
localization technique based on weighted factor graphs. A
belief information transfer model is developed by combining
factor graphs and sum-product algorithms with full
consideration of collaborative node ranging errors and coor-
dinating terminal location ambiguities and weighting infor-
mation from neighboring nodes after iterative convergence
of information. This method also needs many nodes. In the lit-
erature [29], Zhang et al. developed a fingerprinting technique
based on the received signal strength difference (RSSD) and a
method using factor graphs for two-dimensional scenes to
achieve accurate detection of unknown radio transmitters. The
methodology in this paper addresses RSSD positioning. In the
literature [30], Tang et al. proposed a three-dimensional fast
colocalization algorithm (FG-3DCP), which combines factor
graph and sum-product theory to establish a multinode coloca-
lization model. This method requires multiple nodes.

In the literature [31], Bai et al. used a carrier phase mea-
surement within a window, known as the window carrier
phase, to constrain the state within the factor graph, and a
left null matrix is used to remove shared unknown ambigu-
ous variables and localize the target. This is a GNSS localiza-
tion method. In the literature [32], Pschmann et al.
represented the results of an off-the-shelf 3D object detector
as a Gaussian mixture model and incorporated it into a fac-
tor graph framework, thus providing the flexibility to assign
all detection results to all objects simultaneously. This
approach is applicable to multitarget tracking. When there
are more target points forming a point cloud, the localiza-
tion results between targets can be corrected for each other,
but when there are fewer targets, the accuracy of target local-
ization results from this method may be reduced.

There are also some literatures on related research. In the
literature [33], Belge et al. optimal path planning and tracking
using the Harris Hawk optimization (HHO) and grey wolf
optimization (GWO) algorithms to enable UAVs to achieve
payload hold-release missions and avoid obstacles. In the liter-
ature [34], Aytaç et al. proposed an MPC controller based on
the Hammerstein model for real-time target tracking of a
three-axis frame system, resulting in the robustness of the
UAV under external disturbances. In the literature [35], Aytaç
et al. put the flight data through preprocessing, feature extrac-
tion, and feature selection to obtain a nonlinear autoregressive
heterogeneous (NARX) model of the UAV. The neural net-
work model obtained was embedded in the flight control card
to achieve real-time path tracking of the UAV. In the literature
[36], the parameters of the proposed control algorithm for the
UAV were estimated using a swarm intelligence-based meta-
heuristic optimization algorithm by Aytaç et al. Attitude and
altitude control of the quadrotor using metaheuristic optimi-
zation algorithms such as particle swarm optimization (PSO)
and Harris Hawhaks optimization (HHO) for paths with dif-
ferent geometries such as rectangular, circular, and lemon
shapes. In the literature [37], Aytaç et al. address target track-
ing modelling of a three-axis gimbal system on a UAVwith an
RRR joint structure based on experimental input (motor
speed) and output (end-effector position) data. The UAV

moves in a certain direction, and the camera on the end-
effector of the gimbal system on it adheres to the correct target.

To conclude, although motion factor graph has become
more common in the process of target localization, there is still
scope for research on factor graph localization in terms of
TOA-based tracking of moving targets by a small number of
UAVs for the environment described in this paper. This paper
proposes a moving target online tracking method with lower
computational complexity and fewer iterations, which can
provide a more accurate estimate of the target’s position while
adapting to the time requirements of online computing.

In the second section of this paper, a single UAV model
for ground target location is established, and a motion target
location model based on the Kalman filter is briefly intro-
duced. In the third section, the principle of the factor graph
algorithm is briefly introduced, and a model for moving tar-
get location using the factor graph algorithm is established.
In order to solve the shortcomings of the time-consuming
offline location task, incremental optimization is used to cal-
culate the target position at each moment, and in order to
further reduce the error of the optimization results, reference
points are introduced. In the fourth section, the error of the
incremental optimization remains large at a later stage. And
in order to further improve the accuracy of the online
optimization, the global and incremental calculations in
the factor graph optimization process are combined. The
coordinates of the reference points are obtained by alternat-
ing between the global and incremental calculations, and
then the UAV position error is constrained by fixing the
coordinates of the reference points. Subsequently, the target
position error is further reduced by constraint. In the fifth
section, a simulation is carried out to compare the incremen-
tal computation model of factor graph optimization with the
algorithm proposed in this paper, which proves that the
proposed method can effectively reduce the errors in the
moving target localization process.

The main contributions of this paper are

(1) Establishing a factor graph model for the UAV loca-
tion of moving targets and comparing it with the
results of the UKF. The global optimization of the
factor graph results in an error reduction of more
than 50% compared to UKF

(2) Introducing reference points into the incremental
location model of the factor graph to constrain the
calculation results of the UAV’s own motion trajec-
tory with reference points, thereby reducing the
error of the moving target location results

(3) Combining global and incremental calculation, choos-
ing the coordinates of a suitable reference point, reduc-
ing the calculation time, and at the same time reducing
the error of the moving target positioning results

2. Moving Target Location Model

2.1. Principle of Moving Target Location. The UAV target
location system discussed in this paper is equipped with a
satellite receiver, an inertial measurement unit, and an
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optoelectronic reconnaissance platform. When the UAV
finds the target, the optoelectronic reconnaissance platform
is able to drive the camera gimbal and lock the target in
the center of the camera’s field of view, while data on the
camera’s azimuth, pitch angle, laser ranging distance, and
UAV position and attitude are available for target position
resolution. The positioning process is shown in Figure 1.

The target is calculated under the airborne coordinate
system using a simple trigonometric sine cosine relationship.
Let the UAV position coordinates under the geodetic right-
angle coordinate system be ðxx, xy , xzÞ, and the target posi-
tion coordinates under the geodetic right-angle coordinate
system be ðlx, ly, lzÞ. Define the distance l between the
UAV and the target, the pitch angle α on plane XOZ, rotated
counter-clockwise as positive and clockwise as negative. And
the azimuth angle β is defined on plane XOY , rotated
counter-clockwise as positive. Then, the result of its
positioning in the onboard coordinate system, ðlx′ , ly′ , lz′Þ, is
as follows:

lx′ = l cos α cos β,

ly′ = l cos α sin β,

lz′ = l sin α:

ð1Þ

Subsequently, the target can be converted into a geodetic
right-angle coordinate system by means of a coordinate
transformation.

2.2. Kalman Filter-Based Model for Moving Target UAV
Location. Let the UAV find the target point and take n mea-
surements of the target point. At the kth measurement, the
UAV position coordinates in the geodetic right-angle coordi-
nate system are ðxkx, xky , xkzÞ, and the target position coordinates
in the geodetic right-angle coordinate system are ðlkx, lky , lkzÞ. The
state variable lk = ðlkx, lky , lkzÞ

T
is selected to represent the target

position estimation. Using the method of literature [3], the tar-
get can be assumed to be stationary, and a larger system noise
matrix is added as a prior estimate for the solution of the new
target coordinates. Then, the discrete state equation for the
system is

lk+1 = Fk+1 kj lk + ωk, ð2Þ

where Fk+1jk is the state transfer matrix, and ωk is the system
noise matrix, obeying a Gaussian distribution with mean 0
and variance Qk, which means that ωk ∼Nð0,QkÞ.

For noncooperative targets, the target’s motion state is
unknown, and there is no available equation to describe
the motion, so the state transfer matrix is set to

Fk+1 kj =

1 0 0

0 1 0

0 0 1

2
664

3
775: ð3Þ

The distinction between moving and stationary targets is
usually made by modifying the system noise variance Qk.
When the target being tracked is stationary, Qk can be set
to a matrix of 0. But when the target being tracked is in
motion, the diagonal matrix Qk is assigned a value as
required.

The system measurement equations are set as follows:

mk = h lkð Þ + vk, ð4Þ

where vk is the measurement of random noise with covari-
ance matrix R, system noise ωk, and measurement noise vk
and are both set to mutually uncorrelated zero mean white
noise, and the measurement value vector is mk = ðα, β, lÞT .

The Kalman gain is then calculated and the posterior
mean and covariance updated according to the UKF equa-
tions for moving target location calculations.

2.3. Moving Target Localization Algorithm Based on Factor
Graph. As we all know, UKF is based on the Kalman filter
[38]. The difference between the Kalman filter and the
UKF is that the UKF uses moment matching to approximate
the distribution of certain computational processes. There-
fore, the UKF has the same limitations as the Kalman filter.
The Kalman filter belongs to the Gaussian Bayesian filters. It
solves the limitation that an analytical solution cannot be
found for the prior probability density function, normaliza-
tion constants, optimal estimates, and so on when infinite
integrals are involved by assuming that the state vector and
measurement vector are linear and by assuming that both
process noise and measurement noise obey a normal
distribution.

The factor graph, on the other hand, is a Bayesian net-
work. Thus, Kalman filtering can be considered a simpler
application of Bayesian networks. There are only two
moments, k and k + 1, and the target state at moment k + 1
can only be inferred from the estimation and measurement
at moment k; but the target state at moment k cannot be

Z

𝛼
𝛽

X

Y

Figure 1: Schematic diagram of moving target location.
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inferred back from the target state and measurement at
moment k + 1.

In the target localization problem, the Kalman filter is
more similar to a directed graph with a sequential structure,
and its graph optimization structure can be expressed as
shown in Figure 2.

Taken individually at a given moment, the Kalman filter
can then be represented as shown in Figure 3.

2.4. Factor Graph Model for Moving Target Location. Factor
graphs are probabilistic graph models based on Bayesian
networks or Markov random fields, and as an undirected
graph model, they contain both types of nodes, variable
nodes, and factor nodes. In general, the variables to be esti-
mated are denoted as “variable nodes,” the constraints
between these variables are denoted as “factor nodes,” and
the variable nodes are connected to the variable nodes by
factor nodes. In the UAV target location problem, the
UAV position and attitude variables and target position
variables are usually represented as variable nodes, while
the factor nodes are represented as sensor data in the
variable system.

By constructing a graphical model of the system over a
certain time interval, the factor graph establishes the rela-
tionship between the measured values and the system state
values and decomposes a complex problem into the product
of several simple problems. It is a data fusion method based
on posterior estimation theory that calculates the maximum
posterior estimate of the joint probability distribution func-
tion for all states.

In the factor graph algorithm, the position of the moving
target at each moment is considered a signpost, and each
signpost corresponds to the position of the UAV at each
moment. The motion state of the target is tracked by calcu-
lating the coordinates of the signpost at each moment.

The function of the factor graph algorithm is to transform
the solution of the maximum posteriori estimate of the naviga-
tion state into the inference of the factor graph. In a target loca-
tion system, if the position and attitude of the UAV at the
moment of system ti are xi, the state of the UAV up to the
moment of tk can be expressed as Xk = fx1, x2,⋯, xk−1, xkg.

Similarly, denoting the position of the moving target at
the moment ti as li, the position of the target can be
expressed as another set by moment tk as Lk = fl1, l2,⋯,
lk−1, lkg. Denoting GPS system measurements at the moment
ti as yi, measurements collected by the GPS system up to the
moment tk can be represented as Yk = fy1, y2,⋯, yk−1, ykg.
Denote the measured quantities of the inertial guidance sys-
tem at moment ti as zi, then, by moment tk, the measured
quantities collected by the inertial guidance system are
denoted as Zk = fz1, z2,⋯, zk−1, zkg. Denote the measured
quantities from the onboard camera and laser system at
moment ti as mi, then, by moment tk, the measured quantities
collected by the system are denoted as Mk = fm1,m2,⋯,
mk−1,mkg.

According to factor graph theory, the solution to the
optimal estimate of moving target localization can be trans-
formed into the problem of solving the maximum a poster-
iori estimate of the joint probability distribution function

PðX, L, Y , Z,MÞ. Thus, the moving target position problem
can be decomposed as

P X, L, Y , Z,Mð Þ = P x0ð Þ
YN
i=1

P xi xi−1, yi, zijð Þ
YN
i=1

P mi xi, lijð Þ:

ð5Þ

Denoting all the quantities to be solved X and L as Θ
≜ ðX, LÞ, we obtain the maximum a posteriori estimate by
maximizing the joint probability PðX, L, Y , Z,MÞ in the
above equation:

Θ∗ ≜ arg max
Θ

P X, L Y , Z,Mjð Þ

= arg max
Θ

P X, L, Y , Z,Mð Þ

= arg min
Θ

− log P X, L, Y , Z,Mð Þ:
ð6Þ

The following nonlinear least squares problem was
introduced:

Θ∗ ≜ arg min
Θ

〠
N

i=1
f i xi−1, yi, zið Þ − xik k2Qi

+ hi xi, lið Þ −mik k2Ri

( )
:

ð7Þ

Linearizing the above equation and eliminating the
covariance matrix effect, we end up with the following least
squares problem:

Θ = arg min
δ

Aδ − bk k22: ð8Þ

where A and b are the factor matrix. A is the Jacobi matrix
set, b is the residual measurement matrix, and δ is the error
term in the Taylor expansion process. The factor diagram
solution can take the form of matrix decomposition followed
by Givens transformation.

As can be seen, the global calculation of the factor graph
model not only calculates the target position based on the
UAV position but it can also estimate both the UAV posi-
tion and the coordinate position, thus reducing the position-
ing error in the final result. Moreover, the factor graph not
only derives the new target position, as in the case of the
Kalman filter but can also correct the target position already
obtained, making full use of all the measurements and
improving the target positioning accuracy of the final result.

For any problem, after the system receives a new sensor
measurement each time and then generates a new factor in
the factor graph, the number of nodes in the factor graph
increases with the time the system is working. Therefore, if
the factor graph is solved globally at every moment to rees-
timate the optimal estimate of all variables, this leads to an
increase in the size of the matrix as the time increases and
the data increases, and the time required for a large number
of calculations continues to increase, which can reach more
than two hours when the number of nodes reaches 1000
and is not suitable for online localization of moving targets.
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Therefore, in most cases, only the newly added data is com-
puted, and an incremental solution (sliding window) is used
to solve the problem.

The solution and update require a QR decomposition or
Cholesky decomposition of the Jacobi matrix A into upper
triangular matrices. For the problems mentioned in this
paper, the partial differential of δ can be obtained and set
to zero, giving the following equation.

Aδ = b: ð9Þ

A is then updated to a new estimate Θ + δ and used as
the initial value for the next iteration. In the factor diagram,
the final solution is obtained by variable elimination.

According to the principles of factor graphs, the ele-
ments of the modified matrix are only relevant to the newly
added factor nodes, and the addition of new nodes only
affects the estimation of neighboring nodes and the estima-
tion of some of the state variables. Therefore, at the current
inference time, only the affected state variables and the
newly added state variables need to be estimated. When a
new factor node is added to the factor graph, the affected
part and the state variables involved are determined based

on the state variables contained in the new factor node.
The sections containing these state variables and the newly
added factor node form a new factor graph that is linked
to unaffected sections for incremental calculations.

For example, the Jacobi matrix of the factor graph at
moment t = 2 is A3.

A3 =

×

× ×

× ×

× ×

× ×

2
666666664

3
777777775
: ð10Þ

When at the moment t = 4, adding new factors to the
graph, the Jacobi matrix is A4.

A4 =

×

× ×

× ×

× ×

× ×

�× �×

�× �×

2
666666666666664

3
777777777777775

, ð11Þ

where �× denotes the newly added node.
The model for optimizing factor graphs for the moving

target localization problem discussed in this paper is as
Figure 4.

2.5. Reference Point-Based Factor Graph Model for Moving
Target Location. It is clear that factor graph optimization
has excellent performance over Kalman filtering in global
optimization, but its location error has the potential to con-
tinue to be reduced. Given the nature of factor graphs, which
estimate the position of both the UAV and the target point,
and can continue to optimize the previously obtained state
of the moment while updating the state of the moment,
and the photographs taken by the camera on board the

x1 x2 y2y1 xkyk–1

mkm2m1

l1 l2 lk

zkz2z1

Figure 2: Graphical model representation of the Kalman filter.

zk–1 zk

xk–1 y xk

mk

lk

k–1

Figure 3: Graphical model representation of kth-moment Kalman
filter.
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UAV, where the target is naturally in the center, there are
also some other fixed invariant points. Finding a fixed refer-
ence point to add to the calculation can reduce the error in
moving the target location compared to calculating the tar-
get position directly.

The camera carried by the UAV is not alone in the
photos obtained during the flight of the UAV; only the tar-
get, in which a clearer fixed feature point is found as a refer-
ence point, and the coordinates of the reference point are
calculated at the same time as each iteration, and the UAV’s
self-positioning error is constrained by the condition that
the reference point remains unchanged, with the graphical
model as shown in Figure 5.

We modify the previous formula by denoting the posi-
tion of the moving target at the moment ti as li and the posi-
tion of the reference point as l0. Then, by the moment tk, the
target position can be modified compared to the previous
one as Lk = fl0, l1, l2,⋯, lk−1, lkg.

Denote the measured quantities from the onboard cam-
era and laser system at moment ti as mi. By moment tk, the
measured quantities collected by the system are represented
as a different set Mk = fm01,m1,m02,m2,⋯,m0k−1,mk−1,
m0k,mkg than before.

Then, we modified the previous nonlinear least squares
problem to be modified as follows:

The resulting expression for the least squares problem is
invariant

δ∗ = arg min
δ

Aδ∗ − bk k22: ð13Þ

However, the elements of both matrices A and b are dif-
ferent from those of earlier matrices.

2.6. Factor Graph Alternating between Global and Incremental
Optimization. Factor graph optimization is superior to Kal-
man filtering in global optimization, but in the online optimi-
zation process, when only incremental optimization is used,
performance is not considered superior, and in extreme cases,
it is not even superior to Kalman filtering due to the number of
parameters to be estimated. However, if global optimization is
performed at all times, the computation time at a later stage is
too long to meet the requirements of “timely” and “accurate”
in online positioning.

The incremental calculation process will also change the
reference point value to some extent during each incremen-
tal calculation due to the presence of random measurement
errors. Global optimization results in better coordinate
errors for both the reference point coordinates and the target
than the results of incremental calculations. Therefore, in

order to make full use of the reference point, it is possible
to consider the position of the reference point as a fixed
value after obtaining a reference point with a small error,
and to use this to constrain the position of the UAV in sub-
sequent calculations and thus the resulting moving target
trajectory. If the position is taken as a fixed value in the
above method, then the selection of the appropriate result
is also an important part of the task process.

As less data is obtained in the early stages of online optimi-
zation, the time taken to perform global optimization is corre-
spondingly smaller. Therefore, during the online calculation
process, an appropriate time should be chosen for online opti-
mization in the early stages of the positioning process.

2.7. Calculation of the Coordinates of the Reference Point.
The reference point is calculated by extracting the position
of the reference point in the pixel coordinate system and
converting its coordinates under the geodesic coordinate
system by means of the coordinate conversion relationship
between the pixel coordinate system and the geodesic
coordinate system. Let the state vector of the camera carried
by the UAV at the moment i be ðpx, py, pz , pφ, pγ, pθÞ, where
ðpx, py, pzÞ is the coordinates of the camera under the geode-
sic coordinate system, ðpφ, pγ, pθÞ is its attitude, the camera

y2x0 x1 x2y1 xkyk–1

mkm2m1

l1 l2 lk

zkz2z1

Figure 4: Factor graph model of the moving target location problem.

Θ∗ ≜ arg min
Θ

〠
N

i=1
f i xi−1, yi, zið Þ − xik k2Qi

+ hi xi, lið Þ −mik k2Ri
× h0i xi, l0ð Þ −m0i


 

2

Ri

( )
: ð12Þ
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focal length is f , the optical center coordinates ðx0, y0Þ, dx
and dy represent the physical dimensions of each pixel on
the horizontal axis x and the vertical axis y, and the coordi-
nates of the reference point in the pixel coordinate system
are ðu0, v0Þ. This means that the camera’s elements of inte-
rior and exterior orientation are known, and the transforma-
tion matrix is as follows:

pzc

u

v

1

2
664

3
775 =

1
dx

0 u0

0
1
dy

v0

0 0 1

2
666664

3
777775

f 0 0

0 f 0

0 0 1

2
664

3
775 R T½ �

px

py

pz

1

2
666664

3
777775:

ð14Þ

where

pxc

pyc

pzc

2
664

3
775 = RT½ �
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1

2
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3
777775,

R =

1 0 0

0 cos pφ sin pφ

0 −sin pφ cos pφ

2
6664

3
7775

cos pγ 0 −sin pφ

0 1 0

sin pφ 0 cos pφ

2
6664

3
7775

Á
cos pθ sin pθ 0

−sin pθ cos pθ 0

0 0 1

2
6664

3
7775,

T = pxpypz
h iT

: ð15Þ

where pzc can be calculated from the coordinated values of
primary target z.

2.8. An Online Target Localization Method Combining
Global Optimization and Incremental Optimization of
Factor Graphs. In the pixel extraction process, by means of
subpixel rendering, the portion of the pixel that is less than
1 can be rendered. When the percentage value is kept at 3
decimal places, the error range does not exceed 0.1 pixels.
For the first time, when the difference between the coordi-
nate value of the reference point obtained online and the ini-
tial value of the coordinates of the reference point obtained
for the first time exceeds the ground distance d correspond-
ing to 0.1 pixels, then all the information already obtained is
optimized globally at once.

d =

1
dx

0 u0

0
1
dy

v0

0 0 1

2
666664

3
777775

−1

f 0 0

0 f 0

0 0 1

2
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3
775
−1

RT½ �−1pzc
0:1

0

1

2
664

3
775:

ð16Þ

And the final single-point positioning error δer for factor
graph optimization can be calculated from a prior Monte
Carlo simulation.

In the next calculations, the results of each calculation
are also compared with the results of the first global optimi-
zation, and when the difference between their distances
exceeds d, a global optimization is performed on all known
information about the target. If the difference between the
results of the two global optimizations is less than the final
single point location error δer , the reference point coordi-
nates are considered to have been correctly resolved. And
the reference point coordinates can be considered a known
quantity in subsequent calculations, and no further itera-
tions are performed to solve for them.

x0 x1 x2y1 y2 xk

mkm2m1

m01 m02 m0k

l1 l2

l0

lk

z1 z2 zk

yk–1

Figure 5: Moving target location factor graph model based on reference points.
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Let global optimization be performed at the initial
moment, so that the result of the calculation of the reference
point at the initial moment is denoted L1. Thereafter, if the t
th global computation is performed at some moment k, the
result of the calculation of the reference point at this
moment is denoted as Lk. The result of the incremental com-
putation at each moment i is denoted as lk0i. And k is the
number of times the global computation is performed. At
any moment i, the problem can be denoted AiΔi = Bi if
global location is performed, aiδ = bi if incremental optimi-
zation is performed, and aLi δ = bLi if incremental optimiza-
tion after fixed feature points is performed, then we have

aA aL
Â Ã δ 0 0

0 Δ 0

0 0 δ

2
664

3
775 =

b

B

bL

2
664

3
775
T

: ð17Þ

Introducing the coefficient matrix K , the calculation
described in this paper can be expressed as

aA aL
Â Ã

•K•
δ 0 0

0 Δ 0

0 0 δ

2
664

3
775 −

b

B

bL

2
664

3
775
T
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0

0

2
664

3
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T

, ð18Þ

where the coefficient matrix K satisfies

lk0i − Lk
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2
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2
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3
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ð19Þ

The online localization process is computed directly after
each new observation is obtained, while the time complexity
of the global factor graph algorithm is related to the number
of factors A, the number of possible values of variables B,
and the number of factor variables C. The algorithm
designed in this paper uses the global algorithm of the factor
graph algorithm with respect to the calculation of reference
points, and therefore has a time complexity of O(ABC).

3. Simulations

3.1. Moving Target Location Trajectory Diagram. In order to
test the performance of the factor graph algorithm, simula-
tions of the factor graph algorithm and Kalman filter algo-
rithm were carried out, and the results were analyzed,

plotting the final error results against each other. First, the
trajectory of the moving target location was represented in
Figure 6.

In Figure 6, the set of circular points at the top indicate
the UAV’s flight path, which is 100m above the ground
and moves in an S-shape in the air. The asterisk points indi-
cate the movement path of the target, which performs a uni-
form linear motion of 5m/s and uses the points (50, 0, and
0) as reference points. Let the measured values of azimuth
and pitch angle between the target and the UAV obey a
Gaussian distribution with a mean of 0 and a variance of
0.01°. Let the distance measurements between the target
and the UAV obey a Gaussian distribution with a mean of
0 and a variance of 0.01m. Finally, we let

Qk =

8 0 0

0 8 0

0 0 8

2
664

3
775 ð20Þ

3.2. Comparison of Kalman Filtering Results and Global
Optimization of Factor Graph. The global optimization
results of the Kalman filter are compared with the results
of the factor graph algorithm as Figure 7.

In Figure 7, the dotted line shows the moving target loca-
tion result of Kalman filtering, and the solid line shows the
moving target location result of factor graph optimization.
It can be seen that the average location error of the Kalman
filter is around 8m, and the average location error of the
global optimization of the factor graph without the reference
point constraint is around 3m or less, which is more than
50% less than the computational error of the Kalman filter.
It can be seen that the factor graph algorithm can obtain
more accurate target locations than the Kalman filter
algorithm, and the accuracy of the factor graph algorithm
results is difficult to achieve with the Kalman filter algo-
rithm. Therefore, the next main goal is to improve the factor
graph algorithm in order to obtain more accurate localiza-
tion results.

Simulation results after adding reference points while
optimizing are shown in Figure 8.
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Figure 6: Moving target positioning trajectory.
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In Figure 8, the dotted line shows the moving target loca-
tion results without the addition of reference points, which
are the same as in Figure 8, and the solid line shows the
moving target location results after the addition of reference
points. The global optimized location error without the ref-
erence point constraint remains unchanged, and it can be
seen that the resultant error of factor graph location with
the addition of the reference point constraint is reduced
compared to the error before the addition of the reference
point, with its location error reduced by more than 20%. It
can be seen that the addition of reference points greatly
improves the accuracy of the results of factor graph localiza-

tion. However, the global localization algorithm is not suit-
able for online localization and is prone to delays when the
task moves to a later stage when the computational volume
is high.

3.3. Comparison of Incremental Optimization Results for
Factor Graph. A comparison of the results of incremental
and global calculations after the addition of reference points
is shown Figure 9.

In Figure 9, the dotted line indicates the error of the
global optimization result with the participation of the refer-
ence point, and the solid line indicates the error of the incre-
mental optimization result with the participation of the
reference point. The simulation shows that factor graph
optimization has superiority over Kalman filtering in global
optimization. But in the online optimization process, when
only incremental optimization is used, performance is not
considered superior. And in extreme cases, it does not even
compare better than Kalman filtering results due to the large
number of parameters to be estimated. Thus, some improve-
ment of the online optimization algorithm is needed. Direct
use of factor graphs for on-line localization does not
improve the accuracy of target localization results. There-
fore, in order to make full use of the performance of factor
graph localization, the on-line factor graph localization algo-
rithm needs to be improved.

Due to various errors in the measurement process, the
coordinates of the reference point during online positioning
also oscillate during the calculation process, which will be
compared with the positioning error of the reference point
for global positioning. The results of positioning the refer-
ence point during online positioning are shown in Figure 10.

In Figure 10, the dotted line shows the calculation error
of the reference point coordinates during incremental posi-
tioning, while the solid line shows the positioning error of
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Figure 7: Comparison of the error of the global optimization
results of Kalman filter and factor graph algorithm.
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Figure 8: Comparison of the error of the factor graph optimization
results with and without reference points.
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Figure 9: Comparison of the error of the incremental optimization
results with reference points and the global optimization results
with reference points.
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the reference point obtained after global positioning. It can
be seen that the error at the reference point during incre-
mental positioning is large and can reach more than twice
the result of the global positioning error. Therefore, a fixed
reference point position can be considered to constrain the
UAV’s path during online positioning, resulting in more
accurate target positioning results.

3.4. A Combination of Incremental and Global Positioning
Methods. A comparison of the incremental optimization
error with reference points and the final optimization algo-
rithm is shown in Figure 11.

In Figure 11, the resulting error of the incremental opti-
mization algorithm with the reference point constraint is
shown on the dotted line, and the resulting error calculated
by the combined incremental optimization and global opti-
mization method is shown in a solid line. Compared with
the two, the combination of incremental and global optimi-
zation can improve location accuracy by more than 17%.
Therefore, the method proposed in this paper is effective.

Error between global optimization results with reference
points and final optimization algorithm is shown in Figure 12.

In Figure 12, the error of the global optimization algo-
rithm results with reference point constraints is shown on
the dotted line, and the error of the results calculated by
the combined incremental optimization and global optimi-
zation location method is shown in red. It can be seen that
the error of the combined incremental optimization and
global optimization location method has been reduced con-
siderably but is still large compared to the error of the global
calculation. In comparison between the two, the error result
of the final positioning method is 30% larger than that of the
global optimization of reference points.

4. Conclusions

In this paper, we propose an algorithm for UAV target loca-
tion based on a combination of global and incremental opti-
mization of the reference point factor graph. Through
simulation analysis, the algorithm can effectively reduce
the localization error of online target location while ensuring
that the calculation time meets the “on-time” requirement of
online localization, which can significantly reduce the result
error of online localization, 17% less than the online local-
ization method using only incremental location, and ensure
the accuracy of the result when moving target localization.

The target localization method proposed in this paper
can effectively reduce the accuracy of moving target
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Figure 10: Positioning error of reference points in global and
incremental calculations.
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Figure 11: Comparison of the error of the incremental optimization
error with reference points and final the optimization algorithm.
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localization. However, it is equally evident that even after
some improvements, there is still a gap between the target
localization accuracy of the online localization algorithm
and that of the global localization algorithm.

Therefore, there is still a need to improve the factor
graph-based target localization algorithm, and the future
work plan for this paper is

(1) Develop a method to further reduce the location
error of moving targets to reduce the gap between
online and global location error of moving targets

(2) To obtain the final single-point location error A for fac-
tor graph optimization by numerical calculation,
replacing the data obtained by Monte Carlo simulation
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