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The unmanned aerial vehicles (UAV) are now widely used in search and rescue (SAR) missions to locate casualties and survey
terrain. To solve the problem of long calculation time and large memory usage of the UAV obstacle-avoidance path-planning
algorithm in cooperative tasks, this paper proposes a method that combines the A∗ algorithm and the task allocation algorithm
to achieve a faster and more effective path-planning method. First, the environment is displayed in the form of a grid. Then,
the enhanced algorithm divides the task area for UAVs. Finally, each UAV performs SAR path planning in the mission area.
The tasks of mapping the environment and searching for target points by UAV swarms are discussed in this study. Our
research enhances A∗ algorithms for generating the shortest collision-free paths for drone swarms. Further, we evaluate the
algorithm via simulating the task assignment algorithm and path-planning algorithm of a 3D map and 2D map. Compared
with the traditional A∗ algorithm, the results demonstrate that the enhanced algorithm is effective in the scenario.

1. Introduction

In recent years, autonomous drone swarms have been an
emerging technique that can be used in the field of search
and rescue. Because of their high flexibility, wide adaptability,
and controllable economic efficiency, autonomous drone
swarms are widely applied worldwide. These days, a China
Eastern Airlines jetliner carting 132 people crashed in the
mountains in Guangxi province of China, according to the
country’s Civil Aviation Administration (CAAC). The Boeing
737 lost contact while it was enroute from Kunming to
Guangzhou and search and rescue efforts began immediately
at the scene of the crash. In this kind of situation, it is neces-
sary to search and rescue as soon as possible, and also, the
shortest path must be generated right away. Numerous
scholars have conducted extensive research in the multi-
UAV path-planning problem for search and rescue missions,
to generate the shortest path and avoid multi-UAV collision.
However, these studies primarily focus on the general 2D
and 3D path planning of UAVs, with more attention on the
obstacle-avoidance ability of UAVs when performing tasks.
There is a lack of efficient and fast task assignment algorithms.

The aim is to minimize the risk of collision with terrain obsta-
cles and to identify the shortest path for all drones in the least
amount of time. With the additional task allocation algorithm,
UAVs are assigned with different mission areas. UAVs can
parallel search the environment and perform path planning
according to the allocated mission area.

This article starts with the introduction of the 2D UAV
task assignment algorithm, then 2D and 3D multi-UAV
path-planning algorithm basics and improvements, and
finally combines UAV task assignment and an enhanced
UAV path-planning algorithm in a 3D environment. Path
planning is one of the most important technologies in
achieving the autonomous control of UAVs [1, 2]. This
report is organised as follows: in the second part, Section 2
introduces the related work on the path-planning algorithm.
Sections 3.1 and 3.2 introduce the communication between
multiple UAVs and their characteristics and analyse and
explore the UAV swarm trajectory planning algorithm and
the UAV swarm cooperative search and task assignment.
Section 3.3 gives a brief overview of the different types of
algorithms that have been used for path planning and then
focuses on the methods used by the A∗ algorithm for path
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planning. Section 3.4 introduces improvements to the A∗

algorithm to reduce the time cost and memory consumption
of the path-planning algorithm and improve the efficiency of
path planning. Section 3.5 details the steps to convert a 3D
topographic map into grid from using MATLAB to facilitate
the application of the algorithm in path planning. The fourth
part simulates the task assignment algorithm and path-
planning algorithm of the 3D map and 2D map and analyses
and compares the simulation results. It is discussed that by
implementing improvements that combine task assignment
algorithms and path planning, this enhanced path-planning
algorithm has obvious advantages. First, it effectively reduces
the occupation of memory space and computing time. Second,
the collision of UAVs during collaboration is effectively
avoided. Finally, in Section 5, conclusions will be drawn
and deficiencies and future directions for improvement will
be proposed.

2. Related Work

As autonomous drone swarms are widely used in the field of
mapping, inspection, transportation, and monitoring, a large
and growing body of literature has investigated incorporat-
ing communication into the path planning of multiple
drones for search and rescue missions to achieve dynamic
task allocation through information dissemination. Beard
and McLain [3] described the use of a group of unmanned
aerial vehicles (UAV) for collaborative search, in an area of
interest that includes areas of opportunity and areas of
potential danger. Because the goal of the drone teams is to
access as many opportunities as possible while avoiding as
many dangers as possible, to achieve cooperation, the drones
need to be restricted to each other’s communication range
and need to avoid collisions. The research by Beard and
McLain [3] on teamwork search problem UAVs with com-
munication range limitations has been considered. The
authors proposed an algorithm which finds the optimal path
of the team with feasibility consideration and develops a
path for nearby drones, and two methods that are subopti-
mal but highly efficient calculation methods are the best
leader and the best path coordination search algorithms.

Hayat et al. [4] has proposed two adaptive strategies, as
shown in Figure 1, which are based on the centralised syn-
chronous notification and connection (SIC) path-planning
strategy, and the strategies’ goal is to avoid affecting the
regional coverage goals and overall mission time which can
define the task as search, notify, and monitor with the best
possible link quality. Figure 1 shows the two strategies as fol-
lows: (a) SIC following QoS (SIC+): first, optimize the search
and notification tasks and then find the best location for
monitoring; (b) SIC with QoS (SICQ): simultaneous optimi-
zation of search, notification, and monitoring tasks. Based
on Hayat’s research, it is shown that combining communica-
tion in the path design can result in effectively performing
more tasks within a given task time and improving the qual-
ity of the resulting path in terms of connectivity. However,
the research in the literature [4] pays more attention to using
communication to assign the targets to each drone and plan

the shortest path based on the distance between the target
and the drone in 2D strategies.

Through the above task allocation method, the shortest
optimal trajectory can be generated, multiple drones can col-
laboratively search for targets in a given area, and some prior
data about the distribution of targets in these areas can be
obtained. More research on autonomous unmanned aerial
vehicle (UAV) decision-making and control has been car-
ried out in autonomous drone swarms’ cooperative control
and collision avoidance. In the field of unmanned aerial
vehicle (UAV) cooperation, Jin et al. [5] developed an exten-
sive dynamic model that captures the randomness of coop-
erative search and task assignment problems and designs
algorithms to achieve high levels of performance. Jin et al.
[5] focused on the value of predictive task allocation as a
function of the number of unknown targets and the number
of drones and proposed a hybrid algorithm on this basis
which is used to switch the use of predictions and balance
the search and task response.

Because the autonomous drone swarm is a technology
with important applications in the fields of surveying and
mapping, inspection, transportation, and surveillance, each
drone needs to complete a subobjective within the overall
target range, while avoiding collision with obstacles and
other drones in the environment being particularly impor-
tant. To achieve this goal, Ganesan et al. [6] has combined
task allocation with path planning to perform collision
avoidance during navigation and compared the grid-based
global planning algorithm with the gradient-based local
planning algorithm. Ganesan et al. [6] also evaluated poten-
tial field-planning algorithms with different cost functions
and proposed a method to adaptively modify the UAV’s
speed when using the Huber loss function to perform colli-
sion avoidance and observe its impact on the UAV’s trajec-
tory. By combining task allocation and path-planning
algorithms, the avoidance environment and local obstacle
plans are executed without global knowledge. For example,
a situation with a very large number of environmental obsta-
cles will lead to a poor approximation, while merging tasks
can alleviate. A method of adaptive change was also pro-
posed by Ganesan et al. [6] to ensure safe speed during
obstacle avoidance.

One of the basic elements of autonomous and coopera-
tive missions performed by unmanned aerial vehicles
(UAV) is trajectory planning, which is necessary to ensure
the safe and collision-free movement of different vehicles.
Finding the lowest cost path through graphs is at the core
of many problems. Changes in the arc cost during the execu-
tion of the path may result in the need to replan the rest of
the path. During the replanning period, the drone needs to
wait to calculate a new path or move in the wrong direction.
Therefore, rapid replanning is essential. In order to accom-
plish this task, Yang et al. [7] discuss the rationale for the
most successful 3D path-planning algorithms developed in
recent years. According to this article, the comprehensive
applicability of the A∗ algorithm is introduced according
to its exploration mechanism and its advantages and disad-
vantages. The A∗ algorithm generates a shorter path com-
paring with other methods when computing in 3D path
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planning; however, the A∗ algorithm has the characteristic
which is a long time calculation when storing data into an
open table and a closed table. Peng et al. [8] proposed an
enhanced method which is a new way to store the array in
the open table and the closed table. This research changes
the way of array storage by accessing the number ranks of
a specified element to locate the array elements and accord-
ing to the experimental results. The operation efficiency of
the enhanced A∗ algorithm was enhanced, and the advan-
tages of the original A∗ algorithm was retained.

When developing and generating the shortest path with
those algorithms in 3D conditions, what we must do is to
optimize the path into the smoothest path based on the grid
method. Samaniego et al. [9] have implemented an architec-
ture for generating a 3D flight path for a fixed-wing
unmanned aerial vehicle (UAV). The 3D flight path needs
to consider the rotation and elevation constraints of the
drone to generate a feasible flight path by minimizing the
rotational force. Figure 2 shows the perspective view of the
3D flight problem of a fixed-wing UAV. CG represents the
position vector of the UAV’s centre of gravity. The global
coordinate system is located at the origin, and the directions
of the local body coordinate system are represented by Euler
angles, pitch angles, and yaw angles. They are defined by
three orthogonal vectors, aligned with the three axes of the
vehicle, and centred on the CG. Finally, the angular veloci-
ties X, Y , and Z along the local axis of the UAV are denoted
by p, q, and r, respectively. Samaniego et al. [9] proposed a
multiobjective optimization problem (MOP), which is aimed
at independently maximizing each turning radius of the
path. These studies introduced application communication

and path planning for UAV rotation control to generate
the shortest path to accomplish more tasks in a limited time.

Additionally, path planning is crucial for ground hexa-
pod robot search and rescue tasks. The flexibility in path
planning must be taken into account on unstructured ter-
rain. According to Chen et al. [10], the structure of the reg-
ular flexible gait planner and gait feedback is the foundation
of gait transition hierarchical control. The simulation and
experimental results demonstrate that through the use of
this control framework, the robot alters its foot trajectory
in dynamic, unstructured terrain and achieves an elastic gait
for obstacle avoidance. And Chen et al. [11] also demon-
strated how the realisation of the robot’s path planning
and wheel-leg obstacle avoidance through terrain inspection
is made possible by the application of visual perception sys-
tem recognition.

Overall, these studies highlight the need for improving
drone swarms’ path-planning algorithm for UAV search
and rescue in the 3D environment and focusing on collision
avoidance. Considering all this evidence, it seems that dur-
ing the development of the UAV swarm path-planning tech-
nology, many studies monitored UAVs to generate the
optimal route and proposed a variety of algorithms to carry
out UAV cooperation and find the shortest path for the
swarms while avoiding collision between swarms. However,
the focus of such research still needs improvement to obtain
two-dimensional shortest paths through grid-based path-
planning algorithms. One of the tough challenges for all
researchers in this domain is how to get the smoothest and
shortest path when obstacles appear in the UAV’s path. A
more systematic and theoretical analysis is required for
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Figure 1: The structure of the two adaptive strategies [4].
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applying an improving algorithm into UAV swarm path
planning in order to generate the smoothest and shortest
path while avoiding the obstacles in 3 dimensions.

Path planning is a broad research direction. How to
combine the generation of optimal routes with task assign-
ment in a 3D environment and apply it to UAV swarms
has not been extensively studied. To fill this gap, this review
critically evaluates the implementation of more efficient
methods to generate optimal paths covering an area, mini-
mizing distance while maintaining distance to obstacles
detected by sensors. This project is aimed at improving the
A∗ algorithm. By combining advantages of grid mapping,
the shortest and smoothest path is generated for the drone
swarm in the 3D environment, while avoiding the collision
of the drone swarm with environmental obstacles. With this
goal in mind, this paper presents the impact and application
of a range of grids to algorithms to determine how swarms
of drones can avoid collisions and reach targets quickly
based on the grid.

3. Methodology

In this chapter, firstly, UAV swarm task assignment algo-
rithms are introduced. Then, communication with coopera-
tive searching is introduced. Dynamic task assignment
during the SAR can be achieved with the consideration of
the task assignment and communication algorithm. Path-
planning algorithms are discussed in Section 3.3. The A∗

algorithm is chosen through comparison between multiple
algorithms due to its high performance and accuracy. Then,

the optimization of the A∗ algorithm is proposed with an
additional function to solve the problem of large memory
space requirements. Finally, the environment can be
mapped in the form of grids. And the combination of the
task assignment algorithm and the enhanced A∗ algorithm
is applied on the grid map for path planning.

3.1. UAV Swarm Task Assignment. During the search and
rescue mission of the UAV swarms, the UAVs must search
for and confirm the location of the target and must cooper-
ate as a UAV team at each target site. Jin et al. [5] discussed
an extensive dynamic model that was developed to capture
the randomness inherent in cooperative search and task
assignment problems, designed an algorithm capable of
achieving a high level of performance, and then developed
a new algorithm capable of balancing the search and task
response based on the analysis of the experimental results
of the proposed algorithm. Chen et al. [12] developed a job
assignment mechanism based on the UAV’s time restriction
for completing the mission. Each drone determines its own
shortest route and least arrival time using coordination var-
iables and broadcasts it to the team using an algorithm. Each
drone in the team then solves the same optimization prob-
lem to calculate the competition time, enabling all drones
to reach the target location and accomplish the mission in
the least amount of time feasible.

To successfully accomplish a mission, each drone will be
given a subgoal within the operation’s general scope and
navigate the environment by avoiding collisions with objects
and other drones. We are tasked with the job of covering the
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Figure 2: The collision-free point set Pi is represented by black dots; the blue line describes the discrete path constructed according to the
3D path plan; the red dashed line is the new smooth and optimized path that the UAV can follow [9].
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whole area with a swarm of UAVs, where the global position
of the target is known, and the UAV is tasked with perform-
ing a search and rescue operation to the target by identifying
the barriers. To achieve rapid coverage, the drone must
decide which settings to visit and in what sequence. In sim-
ulations, we mimic this job by combining task assignment
and route planning to ensure collision avoidance during
navigation, as well as by using a grid-based A∗ algorithm.
We need to employ the drone swarm to search and plan
the route for the unknown region including the goal location
in the drone search and rescue operation. The drone swarm
must decide which targets to visit and in what sequence to
visit them depending on the target point’s importance.
Additionally, the drone must navigate its surroundings in
order to reach the goal location while avoiding collisions
with objects and other drones.

Each drone will reduce the amount of time required to
cover the surroundings by prioritizing access locations and
doing route planning. A route-planning algorithm is then
used to prioritize and avoid colliding with objects and other
drones. Both job assignment and route-planning calcula-
tions may be decentralised, significantly reducing the need
for complete global awareness of the surroundings in a
real-time system [13]. When a UAV swarm undertakes a
search and rescue operation, the mission may be separated
into task assignment for the target locations that need to
be visited and route planning for obstacle avoidance. The
job assignment challenge necessitates the utilisation of a
swarm of UAVs capable of mapping the surroundings in
the quickest possible period. The work is not complete until
all of the target points in the environment have been
mapped. Due to the fact that certain target locations have a
greater priority than others, the UAV must first visit the
higher-priority targets before proceeding to the lower-
priority targets. Each drone must forecast which target point
to visit and in what sequence to visit them, as well as conduct
the bare minimum step of mapping all target sites. The route-
planning algorithm utilises the projected sequence to visit the
target location and generates a trajectory that avoids colliding
with obstacles and arrives at the destination.

To establish the sequence of visits to the target sites in a
task assignment issue, the drones must utilise aggregate
knowledge about the position of the target points and auton-
omously pick activities that allow them to map the environ-
ment as rapidly as feasible. The drone can forecast each
target point using the policy network trained using the pol-
icy gradient technique described in Yang et al. [14], the exact
steps being as follows:

Step 1. To expedite the route planning and job assignment,
we choose to model the task assignment in a 2D environ-
ment and to depict the environment using a grid. The
UAV swarm is located between the beginning and target
points. Generated at random positions inside the grid, a cer-
tain number of points are randomly chosen and given a
greater priority than the other points. The drone can go in
eight directions: east, south, west, north, northeast, south-
east, northwest, and southwest.

Step 2. We need to evaluate the performance of the rein-
forcement learning algorithm by recreating the required
tasks; therefore, we put up a reward system to track the pre-
dictive capacity of the drones. Each drone is awarded with
alpha if it successfully maps a low-priority target and with
2alpha if it successfully maps a high-priority target, where
alpha is a positive real number. And if the drone delays map-
ping high-priority target sites, there are two situations which
are as follows: (1) the drone is not penalised if all high-
priority target points are mapped. (2) When there are still
unmapped high-priority target locations, the drone will be
punished with the size as the metric between its current loca-
tion and the closest unmapped high-priority point. Then, we
can calculate the final reward signal received by the drone
after all target points have been mapped.

While looking for the target spot, the drone must avoid
obstacles in its route. We must design the path for the course
of the estimated target location by the drone to avoid collid-
ing with obstacles. We use a route-planning technique stated
in Galceran and Carreras [15] that avoids barriers without
requiring complete knowledge of the environment—the
wavefront planner, which is a grid-based global planner.
The algorithm assumes that the drone can see the complete
surroundings and that any barriers in the environment are
static. As a result, each change in the obstacle location must
be sent to the drone, and the planning algorithmmust be rerun
to adapt the trajectory. When the environment is divided into
discrete grids, target cells are initialised to 0, obstacle cells to
-1, drone cells to 1, and all other cells to 2. Begin with the drone
location cell and choose all accessible cells based on connection
and initialise their values. Continue selecting and initialising all
reachable cells from the chosen cells repeatedly until the drone
reaches the destination location cell. The algorithm does a
breadth-first search in the grid, selecting the cell with the lowest
value at each step to determine the shortest route from the
drone location to the goal state.

3.2. Communication with Cooperative Searching. Communi-
cation can be introduced into the multi-UAV route-planning
issue for search and rescue missions to enable dynamic job
assignment via information distribution. While achieving this
aim, we must avoid interfering with area coverage goals and
total mission time; therefore, we must fulfil search, notifica-
tion, and monitoring while maintaining ideal link quality. By
combining the two communication mechanisms proposed in
literature [4] in the path design and making necessary policy
adjustments according to the UAV mission, it is possible to
execute more tasks in the given mission time and improve
the level of the generated path’s connectivity quality. At
various phases of a SAR operation, basic route-planning
approaches can be applied. The whole environment is
separated into sections inside the grid using the element
decomposition approach, and the obstacles’ grids are indi-
cated. Algorithms can be used to plot a route for the drone
to avoid obstructions during search and rescue operations.
Path planning discretized the space before using a graph-
based search to apply the A∗ algorithm with increased com-
plexity, optimality, and applicability.
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The UAV can identify the target by using the search
algorithm to cover the complete area for route planning.
However, the search job must also notify the ground base
station of the target location of the search. We use
information-merging communication to create search paths
and enhance the chance of item discovery via collaboration.
Using a method of connecting and talking with ground base
stations provides for efficient exploration and flexible route
planning in terms of coverage and connection characteris-
tics. By employing all drones for coverage, the resource
usage will become more efficient. When it is necessary to
disseminate information, communication tasks are allocated
to UAVs in order to shorten the total job completion time.

The route planner must be aware of the search area,
communication technology, and quality of service require-
ments before beginning a search and rescue operation with
multiple UAVs and several stationary targets in a bounded
region. This data may be utilised to design pathways that
are free of conflicts while also lowering coverage time. Each
drone must be able to ensure that it will finish its job and
return to the base station before the battery dies, implying
that the mission has a time constraint. The full search and
rescue effort may be completed in two parts. The first step
is the coverage stage, during which the UAV must follow a
preplanned course in order to complete the target search
mission. When the target is discovered, the connection
advances to the second step. The UAV must plan the mis-
sion in the current dispersed fashion based on the impor-
tance of the target and replan its course to alert the base
station and construct a path between the target location
and the base station till the search and rescue team arrives.
The drone continues to follow and cover the route until it
reaches the detection target point. The drone then relin-
quishes its coverage route and may move on to the next tar-
get site, revising its plan and spreading fresh target
information across the network. As the drones interact with
one another and gain new knowledge, they reprogram them-
selves. To maintain flight safety, UAVs are urged to broad-
cast beacons and their current mission status on a regular
basis throughout the operation. The status contains the
drone ID, the current time, the job completed, and the cur-
rent coordinates.

In order to account for the overall time necessary to
accomplish the activity, we must first account for the time
required to perform the task in each of the phases. The time
required for the search task to locate the target must be
taken into consideration in the first stage, and the time
required for the notification task and the monitoring task
must be taken into consideration in the second stage, that
is, the time required to notify the base station of the target
location after detection and the time required to reorganise
the UAV. The route design must take into consideration
the importance of search tasks in relation to notification
activities and monitoring duties.

3.3. Types of Algorithms. Path planning is a widely used
problem. In control theory, path planning needs to consider
stability, smoothness, and optimality. In this article, we will
discuss the influence of algorithms on path planning and

how to use algorithms to deal with different geometric
models. Since a cell in a grid can represent a very small space
and we need to ensure the shortest distance between the
path and the obstacle, we choose to use the grid to represent
the space state and pay attention to the feasibility and opti-
mality of the route. Different 3D path-planning algorithms
have different characteristics and can be applied to different
robots and environments. According to Yang et al. [7], they
divided 3D path-planning algorithms into five categories
with their own unique properties which are sampling-
based algorithms, node-based optimal algorithms, mathe-
matical model-based algorithms, bioinspired algorithms,
and multifusion-based algorithms. Focusing on node-based
optimal algorithms, these are the algorithms which are used
to deal with the weight information of nodes and arcs
which can also be called a grid [5]. These algorithms can
be used to find the optimal path as they generate the path
by calculating the node exploration cost which is like gen-
erated network searching.

The node-based optimal algorithm can be divided into
three elements which are Dijkstra’s algorithm, A∗ algorithm,
and D∗ algorithm. The Dijkstra algorithm is an algorithm
used to find the shortest path between nodes in a graph. In
some cases, the cost of moving between adjacent nodes in
the graph is not equal. In the Dijkstra algorithm, it is neces-
sary to calculate the total movement cost of each node from
the starting point. All the nodes to be traversed should be
placed in a priority queue and sorted according to the cost.
In the running process of the algorithm, the node with the
lowest cost is selected from the priority queue as the nest tra-
versal node until it reaches the finished line. However, when
the image is a grid and the cost of moving between nodes is
equal, Dijkstra’s algorithm becomes the same as the breadth-
first algorithm. The A∗ algorithm can be considered an
extension of Dijkstra’s algorithm. The A∗ algorithm is a very
common path-search and graph-traversal algorithm; it has
better performance and accuracy. A∗ algorithms usually
have better performance because they are guided by a heu-
ristic function, which is a search in the state space, evaluates
the location of each search to get the best location, and then
searches from that location to the target. The heuristic func-
tion saves a lot of unnecessary search paths and raises
efficiency. The A∗ algorithm calculates the priority of each
node by using the following function:

f nð Þ = g nð Þ + h nð Þ, ð1Þ

where f ðnÞ is the comprehensive priority of node n. When
we choose the next node to traverse, we always select the
node with the highest overall priority which has the lowest
value. gðnÞ is the cost of the distance between noden and
the starting point. hðnÞ is the estimated cost of the node
from the end point, which is the heuristic function of the
A∗ algorithm.

The A∗ algorithm selects the node with the highest pri-
ority with the lowest f ðnÞ value from the priority queue as
the next node to be traversed. In programming, the A∗ algo-
rithm uses two sets to represent the nodes to be traversed
and the nodes that have been traversed, which are usually
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called OPEN_set and CLOSED_set. D∗ is short for the
dynamic A∗ algorithm. The algorithm is like that of the A∗

algorithm except that the calculation of the cost may change
during the running of the algorithm.

In some cases, it is not necessary to find the shortest path
but rather to find one as quickly as possible. By adjusting the
heuristic function, we can control the speed and accuracy of
the algorithm; thus, the A∗ algorithm ensures the optimality
and fast convergence. And this is the reason why the A∗

algorithm shows flexibility during calculation. As the estima-
tion cost of the node of each state infinitely approaches the
real cost, the A∗ algorithm has a faster convergence speed
then the Dijkstra algorithm.

Nash et al. [16] proposed the Theta∗ algorithm which is
a variety of the A∗ algorithm. The Theta∗ algorithm can find
an optimal path which is shorter and more realistic as it can
generate the path with a flat and smooth turning angle by
the choice of parent states. The Theta∗ algorithm can choose
any vertex to be the parent states; however, the A∗ algorithm
can only choose the successor as the parent states. In the
experiment made in [13], they found that the Theta∗ algo-
rithm provides the best way to balance the length of the path
and the calculating time as it finds the shortest path in the
shortest time than the others. In addition, the angle-
propagation Theta∗ algorithm [16] can even find the short-
est path while not constraining the ranges of the path angle
which guarantees that the final length of the generated path
is not affected. Based on the Theta∗ algorithm, the A∗ algo-
rithm can be enhanced and extended to use more efficient
graph searching in 3D environments [17]. Yang et al. [14]
introduced the application of basic Theta∗ in the 3D envi-
ronment path planning. By applying the Theta∗ algorithm
to terrain obstacles and urban environments to evaluate
solutions for different types of obstacles and implementing
an experiment to compare the performance of the Theta∗

algorithm and the A∗ algorithm in a 3D environment, De
Phillips et al. [17] demonstrated that the Theta∗ algorithm
reduces searches in contrast to the A∗ algorithm. However,
the Theta∗ algorithm takes such a long time in checking if
there are unexpected nodes around when applied to a 3D
environment.

The A∗ algorithm is theoretically most optimal with
regard to time consideration, but its spatial growth is expo-
nential. The basics of the A∗ algorithm is that after extend-
ing a node, its valuation function is calculated and sorted
according to the evaluation function to the extended node,
thus ensuring that each extended node is the node with the
smallest valuation function. Thus, we can create the A∗ algo-
rithm with these steps.

Set up a queue and calculate the valuation function f of
the initial node, and queue the initial node, setting the head
and tail pointer of the queue.

Remove the node of the queue header, which is referred
to by the queue head pointer; if the node is the target node,
output the path and the program ends; otherwise, the node
is extended.

Check if the extended new node duplicates the node in
the queue, and discard it if it repeats with a node that is
before the queue head pointer and can no longer scale, and

if the new node repeats with the node to be extended, which
is after the queue head pointer, then compare the size of g
ðnÞ in the valuation function of the two nodes to preserve
the node with a smaller g value and then jump to step five.

If the extended new node does not duplicate the node in
the queue, insert it into the appropriate location in the node
queue that is to be extended and after the head pointer with
its size of valuation function f ðnÞ.

If the node at the head of the queue can also be extended,
go straight back to the second step. Otherwise, point the
queue header pointer to the next node and return to the
second step.

3.4. Optimization of A∗ Algorithm. Niu and Zhuo [18] devel-
oped the “cell” and “region” concepts to improve awareness
of the A∗ algorithm on the surroundings, allowing for flexi-
ble modelling of 3D environments. “Cell” is the basic unit of
the enhanced A∗ algorithm, and “region” is the spatial object
that includes a certain sort of cell. Because of the character-
istics of the cell and region, in the 3D environment, the
shape of the cell will influence the number of neighbours
of the cell and hence influence how the A∗ algorithm
searches with these neighbour cells. Following the experi-
ment conducted by Niu and Zhuo [18], in the test region,
the cell was chosen as a cube shape as the generated path
can be represented by each movement between the cube-
shaped cells; the following benefits of the enhanced A∗ algo-
rithm were demonstrated.

Because the open list of the A∗ algorithm takes a large
amount of memory space, although efforts have been made
in the past to lower the memory space cost of the A∗ algo-
rithm, the result have been insignificant. The region using
notion in the modified method overcomes the A∗ algorithm
storage consumption issue. Because of the addition of
“region,” the whole environment can be divided into several
regions, and each region can be satisfied with a small mem-
ory storage space while processing.

The modified A∗ algorithm introduced parallel comput-
ing into algorithm calculations. As the whole environment
has been divided into several regions as shown in Figure 3,
there are separate areas for path planning, and the program
will maintain calculating the ideal path for each multithread-
ing segment.

The “cell” form allows the upgraded A∗ algorithm to oper-
ate more freely. As the region is built up with several cells, any
modification to the related region will be reflected in the cell
which means that in the test area, instead of recreating the
whole issue area, we can simply make small changes to the
cells which are affected by the issue in that region.

Since the A∗ algorithm requires a lengthy time while
searching and traversing through OPEN_set and CLOSED_
set, Nash et al. [16] proposed a new manner of array storage
in the OPEN_set and CLOSED_set which obviously increases
the efficiency of calculating the A∗ algorithm. As the basic A∗

algorithm stores the data into the OPEN_set and CLOSED_set
with the binary tree form, it is simple to add or remove the
information; however, calculating to find the node needed is
complicated and a long time range is needed as traversing all
the nodes is required when the OPEN_set and the
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CLOSED_set are searched. In order to measure the position of
the node needed for the first time, instead of traversing each
node, a new kind of data structure called the query_table ði, jÞ
[8] was proposed to improve the OPEN_set and CLOSED_set
visiting method and search for the information directly. The
nodes can be located, and the state of each node may be deter-
mined by gaining access to the structured data. With this data
structure, the node can be analysed with three different states
which are the free state, OPEN_set state, and CLOSED_set
state. After the new data structure is added, the OPEN_set
remains and the CLOSED_set can be replaced by the query_
table ði, jÞ. Inside the query function, there are five members
to be recorded for the A∗ algorithm: the f ðnÞ value of
the ði, jÞ node, the gðnÞ value of the ði, jÞ node, the hðnÞ
value of the ði, jÞ node, coordinates of the parent node of
the ði, jÞ node, and the states of the ði, jÞ node.

In this way, when a node has been extended as the parent
node, the new child node will be absolutely extended by the par-
ent node. For the new child node, the query_table ði, jÞ will
record the state as the OPEN_set state instead of the free state
which means the next parent node; then, the query_table ði, jÞ
will remove the old parent node from the OPEN_set and rere-
cord the state of the old parent node from the OPEN_set state
to the CLOSED_set state. With this recording information, we
can simply update the instructions for the nodes which can be
found by the structure data query_table ði, jÞ. When we take
random nodes and test them, we can simply get the state infor-
mation of these nodes and in addition the parent node informa-
tion of these nodes.

The basic A∗ algorithm uses the OPEN_set and the
CLOSED_set to remember all the nodes and their extended
parent or child nodes. To apply this enhanced data structure
into the A∗ algorithm, the logic of the A∗ algorithm will be
changed based on the original A∗ algorithm as per the fol-
lowing steps.

Step 1. For the chosen parent node, select the extended child
node for the parent node and apply query_table ði, jÞ to
check the node state. Set 0 for the free state, 1 for the
OPEN_set state, and 2 for the CLOSED_set state. If the state
of the node is equal to 0, then set the state of the node as 1,
and through the added data structure, the query function
will calculate the f ðnÞ, gðnÞ, and hðnÞ of this node, record
the coordinates of the parent node, and change the state of
the parent node to 2.

Step 2. After the query function has changed the state of the
old parent node into the CLOSED_set state and added all
the child nodes into the OPEN_set, the A∗ algorithm will
compare these nodes and select the one with the minimum
f ðnÞ value which will be set as the new extended parent
node. Then, based on the selected child node, the A∗ algo-
rithm can then extend new child nodes which can be used
to check if the selected child node is the suitable new parent
node for path generation. By applying query_table ði, jÞ, we
can check the state of the new child node. If the state of
the new child node is 0, then the query function will change
it to 1 and the selected child node can be set as the new
extended parent node; then, the query function can find
the next extended parent node with the new extended parent
node. However, if the state of the new child node is 1, then
query function needs to recalculate the f ðnÞ value of the
new child node and compare it with the selected old child
node. If the f ðnÞ value of the new child node is smaller
than that of the old one, the query function will remove
the selected old child node and exchanged the recorded
f ðnÞ value and the coordinate of the parent node for the
new child node. Moreover, if the state of the new child
node is 2, then it cannot be changed to the OPEN_set
state. Then, we can find the new extended parent node
and set the state to 2.
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Step 3. Determine if the target node is inside the new child
nodes. If the target node is inside the new child nodes, then
the path can be generated and the loop can be exited; other-
wise, go back to step 1 and continue to find the next
extended parent node until the A∗ algorithm finds the target
node. As each child node has been recorded with its own
parent node, then from the target node, go back with each
parent node to the initial node; this is the optimal path gen-
erated by the A∗ algorithm.

Peng et al. [8] has made a comparative experiment for
the basic A∗ algorithm and this optimal A∗ algorithm. The
A∗ algorithm and the optimal A∗ algorithm were tested for
20 times in two distinct obstacle distributions. The test find-
ings demonstrate that when the optimal A∗ algorithm is
compared to the basic A∗ algorithm, the operational effi-
ciency is increased by more than 40%, according to the
results. By using the data structure instead of the OPEN_
set and the CLOSED_set, the approach retains the benefits
of both the basic A∗ algorithm and the optimal A∗ algorithm
while simultaneously enhancing the operational efficiency of
the A∗ algorithm.

3.5. Grid Mapping. Unmanned aerial vehicle (UAV) 3D path
planning seeks to discover the most optimum and collision-
free pathways in congested 3D environments while taking
into consideration geometric, physical, and temporal restric-
tions. While the drone is generating a route, it is combining
sensor readings to determine whether the cells are vacant.
It is possible that the cells along the ray, i.e., the cells that
are not occupied, will be empty, whereas the cells at the
end of the ray may be filled with information. To repre-
sent a grid map, the map must be represented as a uni-
form array of cells in space, with each cell of the grid
representing the map as an array of values and commonly
a single byte that represents the number of cells that are
filled by a given value and the state of the cell. In order
to meet the requirements of unmanned aerial vehicle
(UAV) obstacle-avoidance analyses, we have included a

3D route-planning method for unmanned aerial vehicles
(UAV) in complex settings presented by Yan et al. [19]
into our algorithm. An octree method is used to partition
the surroundings into voxels in this approach. It is vital to
guarantee that UAVs have sufficient free space in order to
fulfil the safety criteria of the aircraft. When building
bounding box arrays in the complete 3D space to assess
open voxel connections, Yan et al. [19] demonstrated the
deployment of a probabilistic roadmap method (PRM) to
randomise bounding box arrays in order to guarantee that
unmanned aerial vehicles (UAV) have adequate space
margins to pass through. In order to provide a more effi-
cient distribution of roadmap nodes in three-dimensional
space, sampling is used.

The availability of open space in the surroundings is crit-
ical for the design of UAV flight paths, and this information
is very valuable. These details, which are represented by a 3D
mesh and can be used for 3D route planning, are supplied in
this document. So, we must seek out available space in the
surroundings. The use of the octree technique may signifi-
cantly speed up the process of creating a 3D mesh structure
in 3D modelling software. An octree is a hierarchical data
structure used for three-dimensional spatial subdivision in
computer graphics. Each of its nodes corresponds to the
space enclosed inside the cubic volume, and each node is
referred to as a voxel in certain circles. The volume will be
broken into eight subvolumes, with each subvolume being
split in turn until the voxel size reaches the required level
of detail. In order to indicate the status of the environment,
subvolumes holding 3D data will be employed to express the
fact that the environment is occupied or idle. The idle state
depicts a period when there is no activity in the surround-
ings. Detecting impediments and planning pathways in
complicated situations necessitates the use of massive calcu-
lations. It is important to guarantee that the smallest possible
free voxel may be utilised for UAV route planning to assure
safety, i.e., to prevent collisions, while preforming these
computations. This means that if the drone cannot travel
through the subvolume of the voxel, that voxel will never

1400

1200

1000

800
3.808

3.8075

3.807

3.8065 3.76

3.765

3.77
3.775

200

150

100

50

200
150

100
50

10
20
30
40
50

3.78

× 106 × 105

1

(a) (b)

Figure 4: (a) The surface of the topographic map; (b) obstacles represented in the grid map.
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be subdivided again in our calculations. It is necessary to
first identify the physical size of the drone to determine the
size of the resolution.

When the octree method was applied in the occupancy
grid, the condition of the environment can be identified by
doing a discrete grid analysis to see whether each cell is
occupied or empty. When the drone is equipped with
range-based sensors, the range value of each sensor will be
directly utilised to update the status of each cell as either full
or free by combining the range value of each sensor with the
location of the drone. The size of the map in the drone’s
memory expands in proportion to the size of the environ-
ment, and if a lower cell size is utilised, it will rapidly become
insufficient to keep up with the environment. To set aside
memory for each cell in the matrix so that the occupancy
grid may be satisfied, Niu and Zhuo [18] suggested a differ-
ent approach known as topological decomposition. Topo-
logical approaches are more concerned with detecting
UAV-related ambient elements than with directly assessing
the quality of the geometric environment. Occupancy grids
have been implemented using laser range-finders, stereovi-
sion sensors, or a mix of sonar and infrared sensors and sen-
sory data from stereovision.

The experiment is carried out by using a 3D mountain
environment map and replicating the mountain environ-

ment by importing a grid map of the area under consider-
ation. First, we need to create a map that encompasses the
whole landscape. The grid map representation will split
the space into free-space areas, each of which is repre-
sented by a single node. The grid-based approach is used
to create the map, and then, the topology-based method
is used to accomplish the route finding, localization, and
rectification operations. UAVs can construct maps by
using scanning ultrasonic sensors and two identical sen-
sors. In certain situations, the backtracking technique
described by Kim et al. [20] is used to cover all grid cells
and depict them in real time on the simulator window.
When employing the backtracking technique, the drone
will record the status of the node in the grid after it has
crossed the path by using the enhanced A∗ algorithm.
As a result, no sensor information is needed for the move-
ment at this moment based on the recorded grid state.
Figure 4 shows the end outcome of converting from a
constructed map in the DEM format to a grid map and
displaying it as a node.

Then, in order to attain the objective as quickly as
possible, we apply the modified A∗ algorithm to compute
the f ðnÞ value and choose the smallest value so that each
point can find the quickest and safest path. The beginning
point, passing point, and destination point are required for
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Figure 5: 2D (a) and 3D (b) task assignment examples for drone swarm.

Table 1: Result comparison.

2D 3D
Time (s) OPEN_set Path length Time (s) OPEN_set Path length

UAV without TA 4.013977 32 × 8 21 × 2 3.422817 197 × 10 52 × 3

UAV1 1.344934 24 × 8 7 × 2 1.861286 197 × 10 38 × 3

UAV with TA UAV2 1.290524 34 × 8 7 × 2 1.067759 78 × 10 8 × 3

UAV3 1.322498 24 × 8 7 × 2 0.546768 42 × 10 4 × 3
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the shortest trip. The findings are visually shown on the
construction grid map of the simulator window. We can
extract valuable information for UAV route planning from
the grid map, such as the distance and direction of the
UAV to obstacles. During flight, the drone may meet
dynamic obstacles, most notably other drones. In this
instance, the UAV must modify its course by sensing
and identifying the location of further obstacles. When
the drone changes direction, the current location is graph-
ically updated in grid cells. By comparing the updated
route to the original path, the UAV will avoid the
dynamic obstacle successfully if the original path unit col-
lides with the location of the dynamic obstacle. The A∗

algorithm can plan a new route based on the updated
path, and it can also continue the original path.

4. Results and Discussion

In this chapter, the traditional A∗ algorithm and the
enhanced A∗ algorithm are compared and discussed in
terms of running speed, memory space, and path length.
During the simulation experiments, the algorithms are
applied in 2D and 3D maps.

4.1. Task Assignment Result Analysis. We simulated an algo-
rithm study of a job assignment to test our hypothesis. In
accordance with Hayat et al. [4], the time steps given by
the outcomes of distinct policy networks do not correspond
to one another. It was possible to notice that the policy net-
work, although taking the most steps, needed the least num-
ber of parameters to watch when we simulated the amount
of time steps required by the task assignment method to
map a 12 × 12 grid. Because of this, we must choose between
time step performance and computer parameter computa-
tion to get the best overall result. An UAV swarm can com-
plete the full task by using the task assignment algorithm
and separate the tasks into each single UAV, and the UAV
swarm can cover the entire environment by employing the
A∗ algorithm to each single UAV to plan the course of that
environment within the mission range and carry out search
and rescue operations.

We will test the influence of drone swarms on the
search time for environmental coverage in the simulation
trials by assigning tasks to the drones in the swarm
throughout the simulation. In this case, we disregard the
barriers in the surroundings and simply consider the abil-
ity of the UAV to plan a route to the target location while
facing it. As shown in Figure 5, we created 2D and 3D

simulation scenarios in MATLAB to test the functionality
of the UAV swarms. Both the drone and the target point
are regarded to be points on the grid in this scenario. A
two-dimensional map of the drone’s flight environment
may be created by projecting the drone’s flight environ-
ment onto a grid map, and certain data from the two-
dimensional map can be compared and examined more
clearly using the map that was created. For our first exper-
iment, we created a basic 2D map and compared the time
it took a swarm of drones to cover an area with the time it
took a single drone to cover the complete area. It can be
plainly seen according to Table 1 that, even though
enhancing the computation of the task assignment in the
fundamental route-planning algorithm needs more pro-
cessing, the total route-planning time and the pressure of
memory space of a single drone can be effectively reduced.

4.2. Optimization of A∗ Algorithm Result Analysis. Experi-
ments to verify the enhanced 3D A∗ algorithm are being
conducted. In contrast to the classic A∗ algorithm, which
describes the experimental region using a grid, the upgraded
3D A∗ algorithm describes the experimental area using 3D
object “cells.” The upgraded A∗ algorithm, when used in
conjunction with the task assignment algorithm, can split
the whole environment into numerous regions, with each
UAV searching and covering the area that corresponds to
the division. The enhanced A∗ algorithm first determines
the joint nodes between the starting point of the UAV
swarms and an environmental boundary and then deter-
mines how much area is involved in the path planning of
each UAV by traversing the joint nodes and determining
the best path through the joint nodes.

In order to provide a more accurate view of the perfor-
mance of the upgraded 3D A∗ algorithm, we use the route-
planning results of the classic A∗ algorithm as a comparison
object to illustrate its improvement. To the contrary of the
upgraded A∗ algorithm, the optimum route solution offered
by the classic A∗ algorithm does not take into consideration
the issue of path planning according to distinct areas. Tradi-
tional A∗ algorithms tend to cover the whole environment at
once, which is inefficient. Even though this generation
approach of examining the whole environment at once is
simple, it requires a significant amount of storage space
and CPU time. During the simulation experiment, the
amount of memory space available for storing search nodes
must be equal to or more than the total number of nodes.
Accordingly, to search and map the full test region using
the classic A∗ algorithm, a grid map with dimensions of

Table 2: Comparison between time cost and memory space of the optimal A∗ algorithm with and without the task assignment algorithm.

Time (s) OPEN_set Path length

UAV without TA 72.653799 5751 × 8 4626 × 2

UAV with TA

Range 1 4.762879 192 × 8 127 × 2

Range 2 26.462905 3286 × 8 2981 × 2

Range 3 26.172347 1582 × 8 1343 × 2

Range 4 7.598442 290 × 8 175 × 2
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200 × 200 units is required. Instead of considering the whole
area, the updated A∗ algorithm simply must evaluate a
specific region. Figure 4 describes that in the simulation

experiment, the algorithm first determines the area to be
explored and evaluated based on the initial position of the
drone swarms.

To begin, we created a basic 2D map for simulation
trials, in which the regions representing obstacles were
marked with dots to indicate their locations. Although
barriers of the obstacles in the actual world are often
not of regular forms, we deal with these irregular obsta-
cles by regularizing their shapes in order to imitate the
smooth progression of the experiment and hence the

200

180

160

140

120

100

80

60

40

20

20 40 60 80 100 120 140 160 180 200

Target

Target

Target

Target

Figure 6: UAV swarms searching the environment for four ranges and four targets.

50

40

30

20

10

200
150

100
50

200
150

100
50

Target

Target
Target

Target

Initial position

Figure 7: UAV swarm path planning via the optimal A∗ algorithm in the 3D environment.

Table 3: Comparison between time cost and memory space of the optimal A∗ algorithm and the traditional A∗ algorithm.

Time (s) OPEN_set Path length

Traditional A∗ algorithm 51.53069 13,061 × 8 12,742 × 2

Optimal A∗ algorithm 29.64890 13,057 × 8 12,742 × 2

Table 4: Three sets of UAV starting points and target points.

Start position Target position

Group 1 (10, 10, 45) (132, 128, 27)

Group 2 (15, 29, 22) (93, 125, 15)

Group 3 (3, 35, 20) (36, 137, 10)
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smooth advancement of the experiment. Areas with no
impediments are represented by blank spaces. The map
has been scaled to 200 × 200 pixels, and the target point
and the beginning point of the drone swarm have been
randomly placed on the map. The two algorithms are
performed at the same time, and the outcomes as well
as the time spent running each algorithm are logged
and analysed. The results of the calculations are reported
in Table 2.

It can be observed from the comparison that the upgraded
algorithm running time and running efficiency are twice as
fast as the old algorithm running time and efficiency. The
revised A∗ algorithm, as a result, has greater coverage environ-
ment efficiency and therefore significantly enhances the effi-
ciency of route planning in search and rescue operations. In
order to determine whether or not the algorithm’s overall
route-planning capabilities can be utilised in a 3D environ-
ment, we must simulate the obstacle-avoidance flight of the

UAV in a 3D environment. It is vital to guarantee that the
experimental simulation settings in the three-dimensional
environment are compatible with the two-dimensional envi-
ronment, which has the dimensions 200 × 200 × 50, as illus-
trated in Figure 6. In addition, the UAV swarm’s beginning
location and target position should be the same. Simulation
of the modified A∗ algorithm and the classic A∗ algorithm is
displayed, and the correctly created flight paths are indicated
as blue lines. The findings of the simulation can be used to val-
idate the viability of the modified A∗ algorithm in a three-
dimensional space setting. The path planning of the upgraded
A∗ algorithm in the 3D environment is shown in Figure 6.

According to our simulation experiments, the classic A∗

algorithm searches the whole region in 72.653799 seconds,
which is a significant time investment. By using the
enhanced A∗ algorithm in the simulation experiment, we
were able to determine the amount of time necessary to
search for each region. It takes 4.762879 seconds to complete
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Figure 8: Path planning for simulating group 1 with the optimal A∗ algorithm (a) and traditional A∗ algorithm (b).
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the search route in region 1 and 26.462905 seconds in
region 2, while it takes 26.172347 seconds and 7.598442
seconds to complete the search path in region 3 and
region 4, respectively. As can clearly be seen, the total time
required by the enhanced A∗ algorithm to search in each
area is less than the total time required by the classic A∗

algorithm to search over the whole experimental region.
Furthermore, because of the enhanced A∗ algorithm’s
parallel-computing capability, which means that each
UAV can search its own area at the same time, the total
search time can be equal to the search time of the most
time-consuming area. Consequently, it becomes reasonable
to recognize that the aggregated time cost is only equal to
the time cost that is the highest in each of the areas con-
cerned, i.e., that the overall time cost is equal to the search
time of 26.462905 seconds for region 2. When compared
to the search time cost of the classic A∗ algorithm, such
a search time result significantly lowers the amount of cal-
culation time and searching cost of the computers.

Following the introduction of the enhanced A∗ algo-
rithm, we discovered that the enhanced A∗ algorithm not
only decreases the computing time but also reduces the
amount of storage required. For the sake of our experiments,
we can compare the cost of dynamic storage. The cache size
of temporary storage which is the amount of storage space
needed by the open list during the operation of the A∗ algo-
rithm can be used to illustrate the dynamic storage cost of
the algorithm. The classic A∗ algorithm has a dynamic
overhead of 5751 × 8 double bytes for storing an element
in its memory. However, 192 × 8 double bytes in range 1,
3286 × 8 double bytes in range 2, 1582 × 8 double bytes in
range 3, and 290 × 8 double bytes in range 4 represent the
dynamic storage overhead of the newly enhanced A∗ algo-
rithm, and the total storage cost can be determined by the
sum of these four zones’ storage costs which is equal to
5350 × 8 double bytes. Moreover, in the situation of parallel-
ism, the optimized algorithm only requires the dynamic
storage space equivalent to the maximum area dynamic
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Figure 9: Path planning for simulating group 2 with the optimal A∗ algorithm (a) and traditional A∗ algorithm (b).
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storage cost; i.e., the enhanced A∗ algorithm only requires
the temporary usage of 3286 × 8 double bytes of storage
space.

The A∗ algorithm running speed is expected to be
enhanced further in the following steps. We have shown
via simulation studies that the running speed of the A∗ algo-
rithm is greatly enhanced because of the addition of the new
data structure. A grid map of 200 × 200 pixels is used in the
environment, as shown in Figure 7. The beginning point of
the grid position is ð20, 80Þ, the ending point of the grid
position is ð145, 180Þ, and the width of each side of the grid
is set at 1 cm. Obstacles that cannot be traversed, drone posi-
tions, and target locations are still shown on the grid. The
simulation program is still MATLAB, and it runs the A∗

algorithm to find the best route of each grid diagram and
to generate the ideal path diagram of the final search.
Figure 7 depicts the route optimization impact diagram of
the simulation experiment based on the grid diagram, in
which the blue line depicts the optimum path from the start

point to the end point. Table 3 shows the time it took to find
the best route using the standard A∗ algorithm and the time
it took to find the ideal path using the modified A∗ algo-
rithm. When the data in the table is compared, it can be
observed that the upgraded A∗ algorithm optimum route
search time is much less than that of the classic A∗ algo-
rithm’s ideal path-search time.

4.3. Enhanced A∗ Algorithm in Complicated Environment
Result Analysis. Finally, for the UAV to be successful in the
simulated search environment experiment, it must be capa-
ble of doing route planning in a complicated geographic con-
text. It is our intention for the drone to go from its starting
place in its memory map to the target point at the furthest
end of the map. Upon obtaining complete knowledge about
a given region, the robot may extend its memory map while
travelling to another place, which is generally a target point
location that can be searched from a distance, and the previous
area is removed from the list of enlarged areas.
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Figure 10: Path planning for simulating group 3 with the optimal A∗ algorithm (a) and traditional A∗ algorithm (b).
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We must first employ a bigger and more sophisticated
environment to assess the efficiency of our algorithm perfor-
mance and optimization in order to ensure that it is as suc-
cessful as possible. The grid map technique is used to map
distinct natural mountain settings in a grid, which is then
processed by MATLAB. Using MATLAB, the raw data for
all environment is recorded in DEM format and shown as
grid maps, which are then processed. In order to make our
simulation studies easier, we used mountain model data that
was readily accessible on the internet. The data is acquired
by drone using sensors such as laser rangefinders and other
similar technologies.

As shown in Table 4, the experiment is to select three dif-
ferent sets of UAV starting points and mission target points in
the same mountain habitat. The mountain environment faced
by the first group is very straightforward, the mountain does
not have a significant height difference, and the drone can
have a relatively clear vision. In the second set of cases, the
dip between high and low peaks might make route planning
for UAVs more difficult due to the uneven terrain. It is more
difficult to navigate in the final group, and the drone must tra-
verse a mountain range to locate a target position that must be
looked for and retrieved on the opposite side of the mountain
range. We execute route planning using the modified A∗ algo-
rithm in three distinct settings and measure the time it takes
the UAV to complete the goal of covering the whole environ-
ment in each environment. Figures 8–10 depict the outcomes
of the route-planning process. We then compare the results as
shown in Table 5. Experiments have shown that the algorithm
can determine the safest and fastest route for unmanned aerial
vehicle (UAV) swarms in challenging situations.

According to these results, it is clear that it is possible to
scale an algorithm over several drones and prevent repeat train-
ing by using a task assignment model which means that we can
train on one drone and then duplicate the model’s parameters
across numerous drones while still doing calculations. This
method allows us to save significant amounts of computational
resources. When job assignment is done using a policy net-
work, however, it is necessary to verify that all visited target
sites are stationary since the UAV must know the sequence
in which the search target points will be visited before the mis-
sion can begin. Drones may depart from their initially antici-
pated optimal course in real life owing to measurement
mistakes or the necessity to avoid obstacles, as is the case with
humans. It will be necessary to perform the task of correcting
the deviated path according to the information search by the

UAV during the travel process through the policy network to
be able to correct the initially predicted action. This will
increase the computational requirements of the system.

And following the use of communication as a task target
in task assignment, the entire time taken from task start to
task assignment and notification of target location is signifi-
cantly reduced. This is in accordance with prior analyses and
our experimental findings. With regard to the connection
quality of the path obtained by the final object detection,
the quality of the coverage path is highly dependent on the
connectivity of the network. The use of communication
can help the UAV to guarantee the quality of the coverage
path to a certain extent. When the density of drones and
the density of the connection network reach a specific level,
the drone swarms can determine the position of the target
point immediately after the drone has discovered the target
point which allows for faster response times. Therefore, in
future development and application, machine learning and
other methods can be introduced to conduct autonomous
training on UAV path planning to ensure that UAVs avoid
deviating from the optimal path.

5. Conclusions

The task assignment method is combined with the A∗ path-
planning algorithm, and we conduct obstacle avoidance and
locally planned activities without having a global under-
standing of the obstacles in the environment. An approach
that that is only focused on the obstacle-avoidance search
and rescue route in the 2D environment is also proposed,
and this method is then applied to the 3D environment path
design. This method can shorten the time required for route
planning while maintaining safety during obstacle avoid-
ance. These assessments and outcomes will make it easier
to make decisions about how robots finish task assignment
and route planning, and they can be used for other systems
and not only swarms of drones. The problems of task assign-
ment and route planning are combined into our work.
When confronted with a circumstance in which there are a
significant number of obstacles, we may handle the task
assignment and route-planning tasks concurrently under a
single general framework by merging the two issues
described above. Using agent learning, the UAV can attain
the desired state while also avoiding obstacles at the same
time in this framework.

Table 5: Comparison between time cost and memory space of the optimal A∗ algorithm and the traditional A∗ algorithm.

Time (s) OPEN_set Path length

Optimal A∗ algorithm

Group 1 83.302443 8682 × 10 2823 × 3

Group 2 1397.958990 32648 × 10 22,004 × 3

Group 3 2398.762770 53063 × 10 42,966 × 3

Traditional A∗ algorithm

Group 1 5327.154309 72576 × 10 56,733 × 3

Group 2 5226.409287 58245 × 10 45,836 × 3

Group 3 5825.127755 83178 × 10 73,759 × 3
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By merging task assignment and route planning, our
enhanced A∗ algorithm is capable of solving complicated
environment-oriented problems with high efficiency. This
enhanced A∗ algorithm not only provides a considerable
increase in computing speed and a significant reduction in
search time but also decreases the amount of computer
memory required by the algorithm to perform its functions.
UAV search and rescue operations benefit from this
enhanced A∗ algorithm in another way as well; because
drone swarms can subdivide the space, drones can react to
an increased number of emergent situations with more flex-
ibility. A significant role for this application in the process of
drone search and rescue is played by the military. When an
aircraft crashes, it is quite simple for it to spark additional
calamities, such as forest fires, in the surrounding area. At
this point, the drone will need to alter certain search and res-
cue paths to accommodate the current scenario. As an
example, if the UAV is not allowed to visit area A during
the experiment, it must merely make minor adjustments to
the route plan of area A and attempt to find a new path.
Using this correction approach, the modified A∗ algorithm
does not need to search for and find the solution for the
entire environment, which saves a significant amount of
unneeded memory usage as well as computation time.

The modified A∗ algorithm can additionally take into
account a variety of other optimization techniques. When
developing the enhanced A∗ algorithm, for example, it is
possible to use the idea of layers. By using the notion of
layers, we are able to further subdivide the environment
into cells that have the same vertical features and are con-
tained inside a common horizontal extent. This updated
A∗ algorithm is more focused on combining task assign-
ment and route planning at the same level as our previous
A∗ algorithm. While the conventional approach of search-
ing and route planning in a 3D environment does not
need as much search and mapping time as it is focused
just on the horizontal plane, it does necessitate much more
computer memory space and more search and mapping
time to cover the complete area. We can suppose that by
adding the notion of layers, the area of scanning the envi-
ronment can be allotted to numerous UAVs in a layer-by-
layer way, therefore increasing the efficiency of the search.
This algorithm of looking for information about the sur-
roundings can be done layer by layer. Path planning can
be expanded to include more than just the x-axis and y
-axis movement directions by including a layer-by-layer
method into mission planning. Furthermore, this way of
unlimited movement can be used to search for nodes that
cannot be found in numerous horizontal planes. It is also
possible to minimize the need for additional memory
space in the 3D environment by using the way of search-
ing for coverage environments with the collaboration of
the drone swarms.

Data Availability

The data used to support the findings of this study are
available from the corresponding author upon request.
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