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The 6RUS parallel manipulator is a highly versatile and widely used robotic mechanism with six degrees of freedom. Its intricate
kinematic structure and its capability to perform complex motion tasks have garnered significant research interest in recent years.
The kinematic analysis of the 6RUS mechanism plays a crucial role in understanding its operational characteristics and optimizing
its performance for various applications. In this paper, we present a state-of-the-art kinematic algorithm for the 6RUS parallel
manipulator. Our algorithm is aimed at addressing the challenges associated with accurately determining the pose and motion
of the end-effector relative to the base, considering the complexity of the mechanism’s architecture. By leveraging advanced
mathematical modeling techniques and utilizing efficient computational algorithms, our proposed algorithm offers improved
accuracy, efficiency, and robustness in determining the kinematic parameters of the 6RUS mechanism. The key contributions
of this work include the development of a comprehensive forward and inverse kinematic model for the 6RUS parallel
manipulator, incorporating the effects of joint constraints, singularities, and workspace limitations. We also present a detailed
analysis of the algorithm’s performance in comparison to existing approaches, demonstrating its superiority in terms of
computational efficiency and accuracy. The proposed kinematic algorithm holds significant potential for enhancing the design,
control, and trajectory planning of 6RUS parallel manipulators. It provides a solid foundation for advanced applications such
as robotic surgery, industrial automation, and virtual reality systems. The results presented in this paper contribute to the
growing body of knowledge in parallel manipulator research and pave the way for future developments in the field.

1. Foreword

The solution of the positive kinematic problem starts from
the simplified structure, and the special configuration is
obtained by merging the joint points. Lin et al. completed
the analysis of the 4-4 parallel mechanism [1]. In 1995,
Innocenti obtained the positive solution of the 6-4 Stewart
parallel mechanism [2]. Other Stewart platform topology
simplification mechanisms include 3-6, 4-4, 4-5, 5-5 [3],
and so on.

The 6RUS parallel manipulator, consisting of six revo-
lute joints and a universal joint, has attracted significant
research interest in recent years due to its versatile motion
capabilities and potential applications in various fields. A

mechanism model that considers the mechanism hinge
parameters is shown in Figure 1. The kinematic analysis of
the 6RUS mechanism plays a crucial role in determining
its position, orientation, and motion. This section presents
a comprehensive review of the recent research on kinematic
algorithms for the 6RUS parallel manipulator, highlighting
key advancements and contributions in this area.

1.1. Forward Kinematic Algorithms. The forward kinematic
problem involves determining the position and orientation
of the end-effector given the joint angles of the 6RUS mecha-
nism. Several researchers have proposed efficient algorithms
to solve this problem. Gutman derived a closed-form solution
based on the geometric approach, providing explicit equations
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for calculating the end-effector pose [4]. Zhuang introduced
an iterative method that iteratively refines the end-effector
pose estimation using a geometric error minimization tech-
nique [5]. These algorithms enable accurate and computation-
ally efficient computation of the forward kinematics of the
6RUS mechanism.

1.2. Inverse Kinematic Algorithms. The inverse kinematic
problem of the 6RUS parallel manipulator involves determin-
ing the joint angles required to achieve a desired end-effector
position and orientation. Researchers have developed various
algorithms to address this problem. Praveen Kumar and Denis
Ashok proposed an analytical approach based on the geomet-
ric relationship between the joint angles and the end-effector
pose [6]. This algorithm provides closed-form solutions for
the inverse kinematic problem of the 6RUS mechanism. Bai
et al. introduced a numerical optimization-based method that
utilizes a gradient descent algorithm to iteratively solve the
inverse kinematic problem [7]. These algorithms offer efficient
and accurate solutions for determining the joint angles of the
6RUS mechanism.

1.3. Singularity Analysis and Avoidance. Singularity analysis
is crucial in studying the motion capabilities and perfor-
mance limitations of the 6RUS parallel manipulator.
Researchers have conducted extensive studies on singularity
analysis and avoidance strategies for the 6RUS mechanism.
Aginaga et al. presented a comprehensive analysis of singu-
larities in the 6RUS mechanism [8], identifying critical
configurations and providing guidelines for singularity
avoidance. Dai et al. proposed a path planning algorithm
that considers singularity avoidance to ensure smooth and
continuous motion of the 6RUS manipulator [9]. These
studies contribute to a better understanding of singularities
and provide practical solutions to mitigate their adverse
effects on the 6RUS mechanism’s performance.

1.4. Computational Techniques and Optimization Methods.
Efficient computational techniques and optimization methods
have been employed to enhance the performance and efficiency
of kinematic algorithms for the 6RUS parallel manipulator.
Symbolic computation techniques, such as those introduced
by Yang et al., enable the derivation of closed-form solutions
and simplify the kinematic analysis of the 6RUS mechanism

[10]. Numerical optimization methods [11], such as the one
proposed by Olaru et al., optimize the joint angles of the
6RUS mechanism to achieve a desired end-effector pose while
considering practical constraints and performance criteria.
These computational techniques and optimization methods
contribute to improved accuracy, efficiency, and robustness of
the kinematic algorithms for the 6RUS parallel manipulator.

1.5. Integration of Advanced Technologies. The integration of
advanced technologies, such as machine learning, artificial
intelligence, and computer vision, has shown great potential
in advancing the kinematic analysis of the 6RUS parallel
manipulator. Nabavi et al. proposed a machine learning-
based approach to predict the kinematic behavior of the
6RUS mechanism [12], enabling real-time adaptation and
optimization of its motion. Hodges et al. utilized computer
vision techniques to enhance the accuracy and reliability of
the forward and inverse kinematic algorithms [13] for the
6RUS manipulator (Figure 2). These integrations open up
new possibilities for improved performance, adaptability,
and automation of the 6RUS parallel manipulator.

2. Kinematic Model of 6RUS
Parallel Mechanism

The kinematics of a Stewart platform involve two main
problems: inverse kinematics and forward kinematics. The
inverse kinematic problem entails determining the position
and posture of the moving platform based on the known
values of the 6 drives. On the other hand, the forward kine-
matic problem involves obtaining the position and attitude of
the moving platform when the values of the 6 drives are given.

Typically, a Stewart platform consists of 6 branch chains.
In the context of inverse kinematics, these 6 branch chains
can be treated as independent entities without any coupling.
Consequently, the inverse kinematic solution for each
branch chain is equivalent to that of a general 6R robot,
where “6R” refers to a robot with 6 revolute joints [14].

By decoupling the branch chains, the inverse kinematic
problem for a Stewart platform can be approached by con-
sidering the independent solutions for each individual
branch chain. This simplifies the analysis by leveraging the
well-established techniques and methodologies available for
general 6R robots [15].

The kinematic model of the general 6RUS parallel mech-
anism is

B
0 T̂ j

0
1T̂ j θj1

1
2T̂ j θ j2

2
3T̂ j θ j3

3
4T̂ j θj4

4
5T̂ j θj5

5
6T̂ j θj6

6
MT̂ j

= N̂ , j = 1,⋯, 6
1

N̂ indicates the position and posture of the moving
platform. i−1

i T j θji represents the transformation from the

i − 1th coordinate system to the ith coordinate system on
the jth branch. i−1i T j θji contains 4 parameters (θ ji, sji, αji,

and aji) include 3 constants and 1 variable. i−1
i T j θji are a

total of 24 parameters, θji indicates the angle of rotation

Figure 1: General 6R parallel mechanism.
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around the Z direction along the ith coordinate system on
the jth branch chain. Only one variable is the active drive
variable, and the remaining 5 are passive rotation variables.
6
MT̂ j means the conversion from the 6th coordinate system
to the M coordinate system of the moving platform on the
jth branch chain, including 3 positions and 2 direction con-
stants and a total of 5 parameters. The six branches include
geometric structure parameters 34∗6 = 204 items.

The position and posture of the moving platform are
expressed by a dual quaternions, with 8 parameters.

N̂ = b1, b2, b3, b4 , e1, e2, e3, e4 2

Each branch chain contains 5 joint rotation angle vari-
ables θj2, θj3, θj4, θ j5, and θj6, 6 branch chain variables, plus
8 unknown items on the moving platform, for a a total of 38
unknowns.

2.1. Elimination Processing. Multiply both sides of equation
(1) by 6

pT̂
∗
j
5
6T̂

∗
j θj6

4
5T̂

∗
j θ j5 at the same time to get

B
0 T̂ j

0
1T̂ j

1
2T̂ j θj2

2
3T̂ j θj3

3
4T̂ j θj4 = N̂6

pT̂
∗
j
5
6T̂

∗
j θj6

4
5T̂

∗
j θj5 3

The left side of the branch chain equation includes 3 var-
iables, θj2, θ j3, and θj4. The right side includes 10 variables,
θj6, θj5, b0, b1, b2, b3, e0, e1, e2, and e3.Take the left side of
the j-branch (3) equation, and do the dual quaternion prod-
uct and expand it.

Bj8×8

cθj2cθj3cθj4

sθj2cθj3cθj4

cθj2sθj3cθj4

sθj2sθj3cθj4

cθj2cθj3sθj4

sθj2cθj3sθj4

cθj2sθj3sθj4

sθj2sθj3sθj4

= z B
0 T̂ j

0
1T̂ j θj2

1
2T̂ j θj3

2
3T̂ j

3
4T̂ j θj4

4

The function of z ∗ on the right side of the equation is
to treat dual quaternions as eight-dimensional vectors.

Mj = mj1 mj2 mj3 mj4 mj5 mj6 mj7 mj8
T

= z N̂ b0, b1, b2, b3 , e0, e1, e2, e3 T̂
∗
j6pT̂

∗
j56 θj6 T̂

∗
j45 θj5

5

mjk k = 1 8 is a third-degree polynomial function with
b0, b1, b2, b3, e0, e1, e2, e3, θ j6, and θj5 as a variable. Because
sj3 > 0, Bj8×8 is an invertible matrix related to the structure
and the known conditionsj3.

Simultaneous formulas (3), (4), and (5), we get

Y j = B−1
j8×8Mj, 6

where Y j = yj1 yj2 yj3 yj4 yj5 yj6 yj7 yj8
T and

yjk, k = 1 8 are the third-degree polynomial functions with
b0, b1, b2, b3, e0, e1, e2, e3, θj6, and θ j5 as a variable, and

yj1 = cθj2cθ j3cθj4,
yj2 = sθj2cθj3cθ j4,
yj3 = cθ j2sθj3cθ j4,
yj4 = sθj2sθj3cθj4,
yj5 = cθ j2cθj3sθ j4,
yj6 = sθj2cθ j3sθj4,
yj7 = cθj2sθ j3sθj4,
yj8 = sθj2sθj3sθ j4

7

Consider the trigonometric constant formula.

cθ2j2 + sθ2j2 = 1,

cθ2j3 + sθ2j3 = 1,

cθ2j4 + sθ2j4 = 1

8
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Figure 2: 6RUS parallel mechanism.
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Using (7) and (8) to calculate the Groebner basis and
ignoring the higher-order identities, we can get

zj1 = yj5yj8 − yj6yj7 = 0,
zj2 = yj3yj8 − yj4yj7 = 0,
zj3 = yj3yj6 − yj4yj5 = 0,
zj4 = yj2yj8 − yj4yj6 = 0,
zj5 = yj2yj7 − yj4yj5 = 0,
zj6 = yj1yj8 − yj4yj5 = 0,
zj7 = yj1yj7 − yj3yj5 = 0,
zj8 = yj1yj6 − yj2yj5 = 0,
zj9 = yj1yj4 − yj2yj3 = 0

9

Substitute the third-degree polynomial of yjk into the
above 9 equations. From (9), we can get zjk θj5, θj6, b0, b1,
b2, b3, e0, e1, e2, e3 = 0, j = 1, , 6 ; k = 1,⋯, 9 is a 324-term
algebraic polynomial with 10 variables up to 6th degree.
The specific structure is as follows:

zjk = LDjkΘj = 0, j = 1,⋯, 6 ; k = 1,⋯, 9 10

It contains 6 branches, each with 9 polynomials, for a
total of 54 polynomials, where

L = b20 b0b1       e2e3 e23 36×1 is a 36-
dimensional vector composed of the quadratic terms of 8
variables of the moving platform.

which is the coefficient matrix.
Θj = 1 θ j5 θ2j5 θ j6 θ j5θj6 θ2j5θj6 θ2j6  θ j5θ

2
j6 

θ2j5θ
2
j6

T is a 9-dimensional vector. The two constraints of
the mobile platform are

zc1 = b20 + b21 + b22 + b23 − 1 = 0,
zc2 = b0e0 + b1e1 + b2e2 + b3e3 = 0

12

After the elimination process of the above-mentioned
process, each branch has eliminated 3 variables, and a total
of 18 variables have been eliminated. Now, the system of
algebraic equations consists of only 20 variables.

2.2. Numerical Calculation and Solution. The positive solu-
tion of Stewart kinematics must satisfy a total of 56 algebraic
polynomials (10) and (12). The optimization method is used

here, and the objective function is

min 〠
6

j=1
〠
9

k=1
z2jk + z2c1 + z2c2 13

The solution of the 20-element nonlinear algebraic equa-
tion can be obtained

b0, b1, b2, b3, e0, e1, e2, e3, θj5, θj6 j = 1 6 14

Judging by the value of the objective function corre-
sponding to the obtained solution, if the value of the objec-
tive function is equal to or near 0, it means that b0, b1, b2,
b3, e0, e1, e2, and e3 are the solution. Finally, substituting it
into (15), the position and posture expressed by the homoge-
neous coordinate matrix can be obtained.

Djk =

djk1 djk37 djk73 djk109 djk145 djk181 djk217 djk253 djk289

djk36 djk72 djk108 djk144 djk180 djk216 djk252 djk288 djk324 36×9

, 11

T =

2 a20 + a21 − 1 2 a1a2 − a0a3 2 a1a3 + a0a2 2 −a1c0 + a0c1 − a3c2 + a2c3

2 a1a2 + a0a3 2 a20 + a22 − 1 2 a2a3 − a0a1 2 −a2c0 + a3c1 + a0c2 + a1c3

2 a1a3 − a0a2 2 a2a3 + a0a1 2 a20 + a23 − 1 2 −a3c0 − a2c1 + a1c2 + a0c3

0 0 0 1

15
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3. Example Calculation

In this study, the 6RUS Stewart platform is selected as the
object of verification. During the design process, the rotating
shafts of the branches are arranged to intersect vertically, with
many structural parameters having nominal values of 0 and
angle parameters set to 90 degrees. The proposed novel
general algorithm in this paper addresses the challenge of
nonequality between the actual structural parameters and
their nominal values due to manufacturing errors. It is
assumed that the length error is approximately 0.03mm and
the angle error is about 0.2 due to manufacturing variations.

The subsequent paragraph is aimed at validating the nom-
inal structural parameters and then employing the assumed
structural parameters to assess the performance of the general
algorithm. Certain existing general 6R series algorithms are
only applicable when the structural parameters are not equal
to zero. Theymay encounter issues or yield significant compu-
tational errors when the structural parameters are zero or tend
towards zero. However, the algorithm presented in this paper
can be utilized for calculations involving both nominal and
actual structural parameters.

3.1. Nominal Structural Parameters. Firstly, the branch coor-
dinate system is established, and the components on the
branch are sequentially numbered as 0, 1,..., 6 from the static
platform to the moving platform. The local coordinate sys-
tem fixed on each component is denoted as oi − xiyizi, and
it is referred to as the coordinate system. Moreover, coordi-
nate systems oB − xByBzB and oP − xPyPzP are established at
the center of the dynamic and static platforms, respectively.
These coordinate systems are abbreviated as coordinate sys-
tems oB − xByBzB and oP − xPyPzP . Finally, the branch coor-
dinate system of the parallel mechanism is established using
the Denavit-Hartenberg (DH) method. The DH parameters
for the branches are presented in Table 1.

According to the definition of branched chain coordi-
nate system, the transformation of branched chain J from
coordinate system i-1 to coordinate system I is written by
a dual quaternion, that is, i−1i T̂ j, i = 1, 2,⋯, 6. According to

Table 1, the data is substituted as follows:

0
1T̂ j = cθ j1, 0 ,0 ,sθj1 , −112 488sθj1, 0, 0, 112 488cθj1 ,
1
2T̂ j = 0 707107cθj2, 0 707107cθj2,−0 707107sθ j2, 0 707107sθ j2 , 0 ,0 ,0 ,0 ,
2
3T̂ j = 0 707107, 0 707107, 0 ,0 , 0 ,0 ,−0 353553sj3, 0 353553sj3 ,
3
4T̂ j = 0 707107cθj4, 0 707107cθj4,−0 707107sθ j4, 0 707107sθ j4 , 0 ,0 ,0 ,0 ,
4
5T̂ j = 0 707107cθj5, 0 707107cθj5,−0 707107sθ j5, 0 707107sθ j5 , 0 ,0 ,0 ,0 ,
5
6T̂ j = 0 707107cθj6, 0 707107cθj6,−0 707107sθ j6, 0 707107sθ j6 , 0 ,0 ,0 ,0 ,

j = 1, 2,⋯, 6

16

Theoretically, all six branches are identical. However,
due to engineering and manufacturing errors, each branch
deviates from the ideal theoretical model. In this paper, a
general algorithm is proposed to account for the variations
in the DH parameters and engineering parameters of each

individual branch. To conserve space, only one branch is
analyzed in detail, but the remaining branches follow a sim-
ilar approach.

Table 2 provides the position and directional parameters
of the hinge points on the static platform. Table 3 provides
the position and directional parameters of the hinge points
on the Moving platform. Please refer to this table for detailed
information.

The transformation from coordinate system B to coordi-
nate system 0 on branched chain 1 is denoted as B

0 T̂1, and
the transformation from coordinate system 6 to coordinate
system P is denoted as 6

MT̂1:

B
0 T̂1 = 0 707107, 0,−0 707107, 0 , −94 7932, 0,−94 7932, 0 ,
6
MT̂1 = 1, 0 ,0 ,0 , 0 ,0 ,87 5, 0

17

The transformation from coordinate system B to coordi-
nate system 0 on branched chain 2 is denoted as B

0 T̂2, and
the transformation from coordinate system 6 to coordinate
system P is denoted as 6

MT̂2:

B
0 T̂2 = 0 707107, 0, 0 707107, 0 , 94 7932, 0,−94 7932, 0 ,
6
MT̂2 = 1, 0 ,0 ,0 , 0 ,0 ,87 5, 0

18

The transformation from coordinate system B to coordi-
nate system 0 on branched chain 3 is denoted as B

0 T̂3, and
the transformation from coordinate system 6 to coordinate
system P is denoted as 6

MT̂3:

B
0 T̂3 = 0 353553, 0 612372,−0 353553, 0 612372 ,

−47 3966, 82 0933,−47 3966,−82 0933 ,
6
MT̂3 = −0 5, 0 ,0 ,0 866025 , 0, 75 7772,−43 75, 0

19

The transformation from coordinate system B to coordi-
nate system 0 on branched chain 4 is denoted as B

0 T̂4, and

Table 1: The DH parameters of each member at branched chain j.

Member no. aji−1 αji−1 sji θji

1 0 0 224.9757 θj1

2 0 90 0 θj2

3 0 90 sj3 > 0 0

4 0 90 0 θj4

5 0 90 0 θj5

6 0 90 0 θj6

5International Journal of Aerospace Engineering



the transformation from coordinate system 6 to coordinate
system P is denoted as 6

MT̂4:

B
0 T̂4 = −0 353553, 0 612372,−0 353553,−0 612372 ,

−47 3966,−82 0933, 47 3966,−82 0933 ,
6
MT̂4 = −0 5, 0 ,0 ,0 866025 , 0, 75 7772,−43 75, 0

20

The transformation from coordinate system B to coordi-
nate system 0 on branched chain 5 is denoted as B

0 T̂5, and
the transformation from coordinate system 6 to coordinate
system P is denoted as6MT̂5:

B
0 T̂5 = −0 353553, 0 612372, 0 353553, 0 612372 ,

47 3966, 82 0933, 47 3966,−82 0933 ,
6
MT̂5 = 0 5, 0, 0, 0 866025 , 0, 75 7772, 43 75, 0

21

The transformation from coordinate system B to coordi-
nate system 0 on branch 6 is denoted as B

0 T̂6, and the trans-
formation from coordinate system 6 to coordinate system P
is denoted as6MT̂6:

B
0 T̂6 = 0 353553, 0 612372, 0 353553,−0 612372 ,

47 3966,−82 0933,−47 3966,−82 0933 ,
6
pT̂6 = 0 5, 0 ,0 ,0 866025 , 0, 75 7772, 43 75, 0

22

It is known that

s13 = 613 747,
s23 = 581 266,
s33 = 574 891,
s43 = 582 02,
s53 = 630 091,
s63 = 587 105

23

Table 2: Position and direction in static platform coordinate system.

x y z X direction Y direction Z direction

Branched chain 1 -224.9757 -268.1156 0 0,0,1 0,1,0 -1,0,0

Branched chain 2 224.9757 -268.1156 0 0,0,-1 0,1,0 1,0,0

Branched chain 3 344.6827 -60.7769 0 0,0,1 -cos30°,-sin30°,0 sin30°,-cos30°,0

Branched chain 4 119.7071 328.8924 0 0,0,-1 -cos30°,-sin30°,0 -sin30°,cos30°,0

Branched chain 5 -119.7071 328.8924 0 0,0,1 cos30°,-sin30°,0 sin30°,cos30°,0

Branched chain 6 -344.6827 -60.7769 0 0,0,-1 cos30°,-sin30°,0 -sin30°,-cos30°,0

Table 3: Position and direction in moving platform coordinate system.

x y z X direction Y direction Z direction

Branched chain 12 0 -175.0000 0 1,0,0 0,1,0 0,0,1

Hinge 34 151.5544 87.5000 0 -sin30°,-cos30°,0 cos30°,-sin30°,0 0,0,1

Hinge 56 -151.5544 87.5000 0 -sin30°,cos30°,0 cos30°,-sin30°,0 0,0,1

Table 4: Assumed DH structure parameters of the branched
chain 2.

Member no. a2i−1 α2i−1 s2i θ2i

1 0.01 0-0.1 224 9757 + 0 06 θ21

2 0.02 90-0.2 0.05 θ22

3 0.03 90-0.3 s23 > 0 0.04

4 0.04 90-0.4 0.03 θ24

5 0.05 90-0.5 0.02 θ25

6 0.06 90-0.6 0.01 θ26

Moving platform

Base platform

Hook hinges

Active arms

Follower arms

Spherical joints

Revolute joints

Figure 3: Diagram of 6RUS parallel mechanism.
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Calculate to get the posture of the moving platform

b0 = 0 994806,
b1 = −0 0298529,
b2 = 0 0411592,
b3 = 0 0881804,
e0 = −22 827,
e1 = −6 86366,
e2 = −27 9881,
e3 = 268 262

24

The result min ∑6
j=1∑

9
k=1z

2
jk + z2c1 + z2c2 = 2 7 × 10−20 of

objective function is transformed into homogeneous coordi-
nate matrix expression:

0 98106 −0 177902 0 0766259 12
0 172987 0 982666 0 0666546 −39

−0 0871557 −0 0521368 0 994829 540
0 0 0 1

25

Substituting into the inverse solution of nominal struc-
tural parameters, it can see that the result of the positive
solution is correct.

3.2. Algorithm Validation of General Structural Parameters.
The branched structure of the parallel mechanism belongs
to a general serial robot, and its inverse solution corresponds
to the inverse solution of the general 6RUS serial robot. Ini-
tially, the inverse solution of the general 6RUS serial robot is
obtained. The position and orientation of the moving plat-
form with respect to the static platform are arbitrarily spec-
ified within the workspace, which is determined using the
inverse solution algorithm of the general 6RUS serial robot.
These values are then substituted into the forward solution
program presented in this paper to calculate the position
and orientation of the moving platform. For the purpose of
this study, only certain parameters of branch 2 are modified,
as indicated in Table 4, while the remaining branches remain
unchanged.

The position and attitude of the moving platform are
known and expressed by dual quaternion

0 994806,−0 0298529, 0 0411592, 0 0881804 ,
−22 827,−6 86366,−27 9881, 268 262

26

From the inverse solution of the general 6RUS serial
manipulator, it can be obtained that the actual drive of
branched chain 2 is s23 = 581 189.

The forward solution algorithm of the parallel mecha-
nism is substituted into the driving parameters

s13 = 613 747,
s23 = 581 189,
s33 = 574 891,
s43 = 582 02,
s53 = 630 091,
s63 = 587 105

27

Obtain the position and attitude of the moving platform

0 994806,−0 0298522, 0 0411589, 0 0881811 ,
−22 8272,−6 86334,−27 9879, 268 262

28

–0.3–0.4

–0.1–0.2

0.3 0.4 0.3 0.2 0.1 0

0.20.10–0.1–0.2–0.3–0.4
0

0.05

0.15

0.25

0.35

0.1

0.2

0.3

0.4

(a) Simulate motion pose

Switch Contractors

Controller

IO signal Power

Servo
motors

6RUS Rack

Control cable

(b) Experimental platform

Figure 4: Experimental platform of 6RUS parallel mechanism.

Table 5: Eight levels and six factors (units in mm and degrees).

X Y Z A B C

1 -80 -80 250 5 3 3

2 -60 -50 260 3 2 2

3 -40 -20 280 1 1 1

4 -20 0 300 0 0 0

5 0 20 310 -1 -0.5 -0.5

6 20 40 320 -2 -1 -1

7 40 60 340 -4 -2 -2

8 80 80 350 -5 -3 -3

7International Journal of Aerospace Engineering



Be converted to homogeneous coordinate matrix expression

0 98106 −0 177904 0 0766253 12 0005
0 172989 0 982666 0 0666528 −39

−0 0871549 −0 0521351 0 99483 540
0 0 0 1

29

After calculation, the calculated position error is 0.0005mm,
and the accuracy can meet the needs of engineering practice.

4. Experimental Verification

Section 2.1 provides a verification of the forward solution algo-
rithm using both theoretical data and a physical prototype.
While theoretical data is used to validate the algorithm’s
effectiveness, the real prototype (as depicted in Figure 3) is
employed for practical verification purposes.

To account for measurement uncertainties, this experi-
ment conducted a larger number of trials by generating 64 sets
of postures. This approach is aimed at minimizing the influ-
ence of random factors. Given the infinite choices within the
workspace, an orthogonal experiment was employed to select
the 64 sets of postures evenly from the workspace for experi-
mental purposes. The actual experimental prototype is shown
in Figure 4.

The specific methodology involved conducting an
orthogonal test with eight levels and six factors on the mov-
ing platform of the parallel mechanism. This ensured that
each factor spanned a wide range. The target data from
Table 5 was used as input for the parallel mechanism, and
each posture was measured using a laser tracker. Table 6
records a total of 64 poses. These posture data were

Table 6: L64 86 orthogonal test table.

X Y Z A B C

1 1 1 1 1 1 1

2 1 2 3 4 5 6

3 1 3 5 7 6 8

4 1 4 7 6 2 3

5 1 5 6 2 8 4

6 1 6 8 3 4 7

7 1 7 2 8 3 5

8 1 8 4 5 7 2

9 2 1 4 3 6 5

10 2 2 2 2 2 2

11 2 3 8 5 1 4

12 2 4 6 8 5 7

13 2 5 7 4 3 8

14 2 6 5 1 7 3

15 2 7 3 6 8 1

16 2 8 1 7 4 6

17 3 1 7 5 8 6

18 3 2 5 8 4 1

19 3 3 3 3 3 3

20 3 4 1 2 7 8

21 3 5 4 6 1 7

22 3 6 2 7 5 4

23 3 7 8 4 6 2

24 3 8 6 1 2 5

25 4 1 6 7 3 2

26 4 2 8 6 7 5

27 4 3 2 1 8 7

28 4 4 4 4 4 4

29 4 5 1 8 6 3

30 4 6 3 5 2 8

31 4 7 5 2 1 6

32 4 8 7 3 5 1

33 5 1 2 6 4 8

34 5 2 4 7 8 3

35 5 3 6 4 7 1

36 5 4 8 1 3 6

37 5 5 5 5 5 5

38 5 6 7 8 1 2

39 5 7 1 3 2 4

40 5 8 3 2 6 7

41 6 1 3 8 7 4

42 6 2 1 5 3 7

43 6 3 7 2 4 5

44 6 4 5 3 8 2

45 6 5 8 7 2 1

46 6 6 6 6 6 6

47 6 7 4 1 5 8

48 6 8 2 4 1 3

Table 6: Continued.

X Y Z A B C

49 7 1 8 2 5 3

50 7 2 6 3 1 8

51 7 3 4 8 2 6

52 7 4 2 5 6 1

53 7 5 3 1 4 2

54 7 6 1 4 8 5

55 7 7 7 7 7 7

56 7 8 5 6 3 4

57 8 1 5 4 2 7

58 8 2 7 1 6 4

59 8 3 1 6 5 2

60 8 4 3 7 1 5

61 8 5 2 3 7 6

62 8 6 4 2 3 1

63 8 7 6 5 4 3

64 8 8 8 8 8 8
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expressed using a homogeneous coordinate matrix, with
the accuracy sufficient to simultaneously record the corre-
sponding driving parameters for each pose. This process

is aimed at verifying the effectiveness of the forward-
solution algorithm. The experimental results are shown
in Figure 5.
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Figure 5: Eight levels and six factors: experimental results.
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The experimental data consists of 64 groups, which
record the six parameters of the parallel mechanism’s driv-
ing system and the pose parameters of the moving platform.
For instance, in the 22nd group, the values 3, 6, 2, 7, 5, and 4
correspond to x = −0 1m, y = 0 04m, z = 0 26m, A = −4
degrees, B = −0 5 degrees, and C = 0 degrees, respectively.

5. Conclusion

This paper focuses on the forward solution algorithm for the
6RUS parallel mechanism, which incorporates a Hooke
hinge and a compound spherical hinge. The algorithm uti-
lizes the D-H method and dual quaternion method, consid-
ering the pose parameters of the hinges and D-H parameters
of all branch chains. It encompasses a total of 204 geometric
parameters, providing a more accurate mathematical model
compared to the conventional approach that considers only
42 geometric parameters. This algorithm enables the analy-
sis of the geometric parameter influence on the pose of the
moving platform, facilitating precise analysis, synthesis,
kinematic calibration, and accurate motion simulation of
the Stewart parallel mechanism.

The proposed algorithm treats the Stewart parallel
mechanism as six branch chains that collectively support
the platform. Each branch chain is regarded as a general 6-
DOF serial robot with a single active kinematic pair driver.
This approach introduces a novel and unified mathematical
model for various parallel mechanisms, including the 6_6R
structure, which was previously considered a distinct topo-
logical structure. The difference lies in the selection of active
variables among the DH parameters of a specific branch
chain, while the others remain as passive variables or con-
stants. These constants can have nonzero or zero values,
providing flexibility in the model representation.

Data Availability

Data can be obtained under application.
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