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To further investigate the fracture response in propellant grain, numerical methodology is proposed to cope with crack
propagation simulation especially for the mixed mode condition. The numerical discrete scheme of the propellant linear
viscoelastic constitutive model is proposed, which provides a key means for the simulation of crack propagation. In order to
simulate the cohesive traction distribution on the new crack surface, the extrinsic Park-Paulino-Roesler (PPR) cohesive zone
model (CZM) is introduced. To let the crack propagate along any direction determined, element splitting technique and its
corresponding topological operations are proposed step by step. Then, computational simulation implementation process is
explained in greater detail. Typical fracture problem, single edge-notched tension test (SENT) is solved to demonstrate the
efficiency and accuracy of the proposed method. In addition, double edge-notched tension test (DENT) as well as plate tension
test with a slant crack is conducted to show the special fracture characters in viscoelastic solid propellant, like time
dependence. Computational results reveal that the method proposed can be utilized in further fracture investigation in solid
propellant combined with the experimental findings.

1. Introductions

Solid rocket motor (SRM) is widely used as the power device
of rocket, missile, and sounding rocket, as well as the boost
device of spacecraft launch and aircraft takeoff for its simple
structure, convenient operation, and high reliability. The
propellant grain is the core component of SRM. During
the period from the factory to the service of SRM, various
cracks, holes, blocks, scratches, and other defects may occur
inside the propellant grain. These defects will produce
“super” burning surface when SRM is working, which will
directly or indirectly lead to the failure of the structural
integrity of the drug column. The statistical results show that
the number of failures caused by the damage of the struc-
tural integrity of the propellant grain accounts for 98.40%
of the total SRM ignition failure. Structural integrity damage
of propellant grain is the main reason for the failure of hot

test or launch of solid rocket [1–3]. Because SRM has a wide
range of applications in military, aerospace, and other fields,
its use safety has always been a problem that cannot be
ignored. To ensure the safe use of SRM, the structural integ-
rity of the defective propellant grain must be analyzed.

The crack propagation simulation of propellant is the pre-
mise of structural integrity analysis of SRM containing defects.
Since the propellant is a typical viscoelastic material, the study
of crack propagation involves the intersection of viscoelastic
fracture mechanics, computational solid mechanics, experi-
mental mechanics, and other fields, and the related theories
and analytical methods are still immature [4]. The above fac-
tors bring great challenges to the simulation and mechanism
study of propellant crack propagation, making it one of the
core and key problems in the structural integrity analysis of
SRM. At present, the analysis of the integrity of SRM is still
on the level of strength check of propellant grain without
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defect. It is of great engineering significance to carry out the
simulation and mechanism research of propellant crack
propagation.

Series research put efforts on the theoretical and experi-
mental analysis of viscoelastic fracture problems. Knauss [5]
derived a new differential equation to investigate the growth
of a finite crack in a viscoelastic infinite plate according to
Griffith’s concept of intrinsic material surface energy. Later,
Schapery [6–8] proposed a theory of crack initiation and
growth in viscoelastic media, including theoretical part and
applications of the theory. Langlois and Gonard [9] com-
bined the linear cumulative damage theory and the concept
of failure area and derived a new law for crack propagation
in solid propellant material. Experimental results reveal a
strong dependence of the viscoelastic J-integral and the
crack tip opening displacement for solid composite propel-
lant [10]. Similarly, Wang et al. [11] evaluated the fracture
behavior based on the J-integral which changed significantly
under different tensile rates and proposed a fracture crite-
rion considering the burning rate of the propellant.

In numerical aspect, piecewise cohesive zone model
(CZM) was established to investigate the debonding, nucle-
ation, and crack propagation in propellant [12]. Cracks are
rapidly formed in the high stress area, and the redistribution
of the residual stress decreased the stress level when crack
propagates according to their research. However, few down-
trends in total stress-strain response of the representative
volume element (RVE) model means that the cracks do
not propagate across the RVE model for unknown reasons.
With the triangular enriched crack tip elements, Duan
et al. [4, 13] investigated the deformations of crack opening
and sliding displacements in the cracked viscoelastic body
and obtained the energy release rate according to the
enriched degree of freedom. Extended finite element method
(XFEM) and finite element method (FEM) are commonly
utilized in the crack propagation simulation for solid propel-
lant. Ӧzüpek and Iyidiker [14] established a computational
methodology for crack propagation analysis in solid propel-
lant by using XFEM and CZM analysis. Han et al. [15]
inserted cohesive elements between all bulk elements to sim-
ulate the crack surface in crack propagation analysis.
Recently, to avoid the defect of inserting cohesive element
in the whole mesh configuration, Cui [16] focused on the
mode-I fracture condition in solid propellant and applied
the extrinsic CZM in crack propagation simulation with
FEM. Until now, computational methodology for the mixed
mode crack propagation simulation of solid propellant using
FEM is rarely documented.

The main objective of this study is to establish an execut-
able computational crack propagation analysis method in
detail. Viscoelastic constitutive model and its numerical
implementation are introduced first in Section 2. Then, a
popular CZM with the name Park-Paulino-Roesler (PPR)
is presented in Section 3. In the next section, to cope with
the mixed mode fracture analysis, Section 4 shows topologi-
cal operations for element splitting technique. Then, a com-
putational implementation framework is explained in detail.
Numerical simulations including single edge-notched ten-
sion test (SENT), double edge-notched tension test (DENT),

and plate tension test with a slant crack are investigated to
prove the applicability of the proposed simulation method.
Some discussions and conclusions are made in Section 7.
All the analysis performed in this paper using FEM is real-
ized in self-developed solver “CHRMULAR.”

2. Viscoelastic Constitutive Model and Its
Numerical Implementation

The isotropic linear viscoelastic constitutive equation is usu-
ally expressed as follows when a constant Poisson’s ratio ν is
considered [17]:

σij tð Þ = Sij tð Þ +
1
3
δijσkk tð Þ, ð1Þ

Sij tð Þ =
1

1+ν

ðt
−∞

E t − τð Þ ∂eij τð Þ
∂τ

dτ, ð2Þ

σkk tð Þ = 1
1−2ν

ðt
−∞

E t − τð Þ ∂εkk τð Þ
∂τ

dτ, ð3Þ

in which σij, Sij, and σkk represent stress tensor, deviatoric
stress tensor, and spherical stress tensor, respectively. eij
and εkk are deviatoric strain tensor and spherical strain ten-
sor. t is loading time, and EðtÞ is the relaxation modulus
with the form of Prony series:

E tð Þ = E0 − 〠
NE

n=1
En 1 − e− t/τEnð Þ� �

, ð4Þ

in which E0 represents instantaneous relaxation modulus,
NE is the number of terms of Prony series, and En and τEn
are known model parameters of the Prony series.
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Figure 1: Traction response under different cohesive strength for
pure mode-I condition when α = 3:0 and ϕn = 2:0N/mm.
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According to Stieltjes convolution theorem, Equations
(2) and (3) can be rewritten as

Sij tð Þ =
1

1 + ν
E tð Þeij 0ð Þ +

ðt
0
E t − τð Þ ∂eij τð Þ

∂τ
dτ

� �
, ð5Þ

σkk tð Þ = 1
1 − 2ν

E tð Þεkk 0ð Þ +
ðt
0
E t − τð Þ ∂εkk τð Þ

∂τ
dτ

� �
,

ð6Þ
where eijð0Þ and εkkð0Þ are initial deviatoric strain tensor
and spherical strain tensor. The above equations will not
be applied like the elastic ones directly because of the inte-
gral form in the linear viscoelastic constitutive model. In
the following part, incremental form of the constitutive
model will be utilized in the numerical simulation.

2.1. Deviatoric Stress Tensor Part. Considering the deviatoric
part of the constitutive model, Equation (5) has the follow-
ing form at tm.

Sij tmð Þ = 1
1 + ν

E tmð Þeij 0ð Þ +
ðtm
0
E tm − τð Þ ∂eij τð Þ

∂τ
dτ

� �
: ð7Þ

And the form changes at tm+1.

Sij tm+1ð Þ = 1
1 + ν

E tm+1ð Þeij 0ð Þ +
ðtm+1

0
E tm+1 − τð Þ ∂eij τð Þ

∂τ
dτ

� �
:

ð8Þ

Combining the above two equations at the two adjacent
loading times, one can acquire the incremental deviatoric
stress tensor.

1 + νð ÞΔSij tm+1ð Þ =
ðtm+1

0
E tm+1 − τð Þ ∂eij τð Þ

∂τ
dτ

−
ðtm
0
E tm − τð Þ ∂eij τð Þ

∂τ
dτ

+ E tm+1ð Þ − E tmð Þ½ �eij 0ð Þ:

ð9Þ

The incremental form seems complex in the current
expression. To obtain an easier formulation, three parts are
designed which are expressed below:

1 + νð ÞΔSij tm+1ð Þ = ΔSIij tm+1ð Þ + ΔSIIij tm+1ð Þ + ΔSIIIij tm+1ð Þ:
ð10Þ

Here

ΔSIij tm+1ð Þ =
ðtm+1

tm

E tm+1 − τð Þ ∂eij τð Þ
∂τ

dτ, ð11Þ

ΔSIIij tm+1ð Þ =
ðtm
0

E tm+1 − τð Þ − E tm − τð Þ½ � ∂eij τð Þ
∂τ

dτ, ð12Þ

ΔSIIIij tm+1ð Þ = E tm+1ð Þ − E tmð Þ½ �eij 0ð Þ: ð13Þ
If the time interval is small enough, and eij will vary lin-

early on this time interval, ΔSIij and ΔSIIij can be calculated as

ΔSIij tm+1ð Þ = E0γ
E Δtm+1ð ÞΔeij tm+1ð Þ, ð14Þ
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Figure 2: Topological operations for element splitting: (a) finding adjacent nodes and elements surrounding the crack tip, (b) locating the
element split in front of crack tip, (c) modifying nodes and elements after new crack surface generated, and (d) inserting cohesive element
along the crack surface.
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ΔSIIij tm+1ð Þ = 〠
NE

n=1
En e− Δtm+1/τEnð Þ − 1
� �

ςnij tm+1ð Þ, ð15Þ

in which

γE Δtð Þ = 1 − 〠
NE

n=1
χE
n 1 − βE

n Δtð Þ
h i

,

χE
n =

En

E0
, βE

n Δtð Þ = τEn
Δt

1 − e− Δt/τEnð Þ� �
,

ςnij tm+1ð Þ = βE
n Δtmð ÞΔeij tmð Þ + e− Δtm/τEnð Þςnij tmð Þ:

ð16Þ

When initial deviatoric strain tensor is ignored, a simple
incremental deviatoric stress tensor can be rewritten as

ΔSij tm+1ð Þ = 1
1 + ν

E0γ
E Δtm+1ð ÞΔeij tm+1ð Þ

�

+ 〠
NE

n=1
En e− Δtm+1/τEnð Þ − 1
� �

ςnij tm+1ð Þ
#
:

ð17Þ
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Figure 3: Implementation process of propellant crack propagation simulation.

𝛿

𝛿

a

h
 =

 3
5 

m
m

h
 =

 3
5 

m
m

W = 30 mm

Figure 4: Geometry and boundary conditions of SENT test
specimen.

4 International Journal of Aerospace Engineering



2.2. Spherical Stress Tensor Part. Similarly, we can obtain the
incremental spherical stress tensor.

1 − 2νð ÞΔσkk tm+1ð Þ =
ðtm+1

0
E tm+1 − τð Þ ∂εkk τð Þ

∂τ
dτ

−
ðtm
0
E tm − τð Þ ∂εkk τð Þ

∂τ
dτ

+ E tm+1ð Þ − E tmð Þ½ �εkk 0ð Þ:

ð18Þ

For convenience of numerical implementation, incre-
mental spherical stress tensor can be transformed as

1 − 2νð ÞΔσkk tm+1ð Þ = ΔσI
kk tm+1ð Þ + ΔσII

kk tm+1ð Þ + ΔσIII
kk tm+1ð Þ,

ð19Þ

where

ΔσIkk tm+1ð Þ =
ðtm+1

tm

E tm+1 − τð Þ ∂εkk τð Þ
∂τ

dτ, ð20Þ

ΔσII
kk tm+1ð Þ =

ðtm
0

E tm+1 − τð Þ − E tm − τð Þ½ � ∂εkk τð Þ
∂τ

dτ, ð21Þ

ΔσIII
kk tm+1ð Þ = E tm+1ð Þ − E tmð Þ½ �εkk 0ð Þ: ð22Þ

ΔσIkk and ΔσII
kk will have a more convenient expression

when time interval is small enough and εkk can be consid-
ered to vary linearly on this time interval.

ΔσIkk tm+1ð Þ = E0γ
E Δtm+1ð ÞΔεkk tm+1ð Þ, ð23Þ

ΔσII
kk tm+1ð Þ = 〠

NE

n=1
En e− Δtm+1/τEnð Þ − 1
� �

ςnkk tm+1ð Þ: ð24Þ

Here

γE Δtð Þ = 1 − 〠
NE

n=1
χE
n 1 − βE

n Δtð Þ
h i

,

βE
n Δtð Þ = τEn

Δt
1 − e− Δt/τEnð Þ� �

,

ςnkk tm+1ð Þ = βE
n Δtmð ÞΔekk tmð Þ + e− Δtm/τEnð Þςnkk tmð Þ:

ð25Þ

When initial spherical strain tensor is ignored, a simple
spherical deviatoric stress tensor can be rewritten as

Table 1: Parameters in the Prony series for relaxation modulus of solid propellant.

n 0 1 2 3 4 5

τEn/s — 0.592 1.148 12.081 55.579 217.588

En/MPa 20 8.37 1.80 1.56 0.734 0.431

Structured mesh (Q4) Structured mesh (T3) Unstructured mesh (T3)

Figure 5: Mesh refinement around the crack tip of three different types of mesh.
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Δσkk tm+1ð Þ = 1
1 − 2ν

E0γ
E Δtm+1ð ÞΔekk tm+1ð Þ

�

+ 〠
NE

n=1
En e− Δtm+1/τEnð Þ − 1
� �

ςnkk tm+1ð Þ
#
:

ð26Þ

According to the above numerical derivation, material
matrix for the propellant with linear viscoelastic constitutive
model can be written as under plane stress condition

D =
E0γ

E

1 − ν2

1 ν 0

ν 1 0

0 0
1 − νð Þ
2

2
6664

3
7775: ð27Þ

3. Extrinsic PPR Model

As a wildly used CZM, PPR model plays a very important
role in the research for solid propellant-related work and
shows a good performance in simulation [18–20]. For
extrinsic PPR model, the normal and tangential traction
along the fracture surface are

Tn Δn, Δtð Þ = −
Γn

δn
α 1 −

Δn

δn

� �α−1
Γt 1 −

Δtj j
δt

� �β

+ ϕt − ϕnh i
" #

,

Tt Δn, Δtð Þ = −
Γt

δt
β 1 −

Δtj j
δt

� �β−1
Γn 1 −

Δn

δn

� �α

+ ϕn − ϕth i
� �

Δt

Δtj j :

ð28Þ

Here, ϕn and ϕt are normal and tangential cohesive
energy. Δn and Δt represent the opening and sliding separa-

tions. α and β are shape parameters. δn and δt are final crack
opening and sliding separations. In addition, energy con-
stant Γn and Γt have the following relationship

Γn = −ϕnð Þ ϕn−ϕth i/ ϕn−ϕtð Þ, Γt = −ϕtð Þ ϕt−ϕnh i/ ϕt−ϕnð Þ ϕn ≠ ϕt

Γn = −ϕn, Γt = 1 ϕn = ϕt

(
:

ð29Þ

The final crack opening separations (δn, δt) are con-
trolled by the fracture energies and cohesive strength and
expressed by

δn = α
ϕn
σmax

,

δt = β
ϕt
τmax

,
ð30Þ

in which, σmax and τmax are normal and tangential cohesive
strength.

Figure 1 shows the traction response under different
cohesive strength. Unlike the traditional intrinsic CZMs,
traction/separation relation shows a monotonically nonin-
creasing curve. There is no artificial stiffness when crack
propagate is much suitable for the crack propagation simu-
lation along unknown path [21]. The final crack opening
separation will decrease with the increased cohesive strength
because the area between the axis and the curve is a constant
value which is defined as cohesive energy.

4. Topological Operations for Element Splitting

According to Griffith’s theory that the crack will open at a
plane normal to the direction of maximum stress [22], crack
will propagate when maximum principal stress reaches the

(a) (b) (c)

(d)

Figure 7: Deformed configuration for (a) structured mesh (Q4), (b) structured mesh (T3), and (c) unstructured mesh (T3). (d) Undeformed
configuration for Unstructured mesh (T3) at t = 35 s.
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cohesive strength in this paper. In a previous article, crack
that propagates along the element edges has been introduced
in detail [16], and this part will mainly focus on the condi-
tion that crack propagates across the element. When maxi-
mum principal stress in the crack tip satisfies the criterion
as state before, topological operations for element splitting
will be activated following the next steps.

(A) Searing all the nodes and elements in the current
mesh configuration and finding the adjacent nodes
and elements of node A (crack tip). In Figure 2(a),
adjacent nodes and elements of node A are marked
with red and light bule, respectively. For the conve-
nience of subsequent operations, let the adjacent
node direction labeled as d1, d2, d3, d4, d5, and d6.
It is worth noting that d4 and d5 coincide with the
crack surfaces which are all free edges in the current
mesh. At the same time, we note the crack propaga-
tion direction with dc which is calculated according
to maximum principal stress on node A

(B) With the help of crack propagation direction and
adjacent node direction, one can locate the element
(marked with light green) which will be split in front
of the crack tip. To avoid polygon in the current
mesh when a new crack tip node D inserted after
element splitting operation, adjacent element of the
former split element must be split too which is
marked with yellow in Figure 2(b). After the second
splitting operation, two old elements (marked with
light green and yellow) will be replaced by four
new smaller triangular elements. Some auxiliary
directions are defined in this step for the generation
of new crack surface. In all node A’s new adjacent
elements, connecting A and the middle point of
node A’s opposite edge, adjacent element directions
are labeled as e1, e2, e3, e4, e5 and e6

(C) In the next step, nodes on each element should be
modified according to the new mesh configuration as
shown in Figure 2(c). New node A’ sharing the same
coordinates with node A is added to generate the
new crack surface. A’s adjacent elements whose ele-
ment directions lie between d4 and dc should replace
node A with A’ in their constitutional relations. Thus,
a new crack surface generated after the participation of
node A’. Considering the historical data which should
be transferred during the FEM analysis, four new
smaller triangular elements will inherit all the history
information from their parent (elements marked with
light green and yellow in Figure 2(b)).

(D) At the end, to simulate the traction force along the
crack surface, cohesive element is inserted using
the old crack tip node A, new crack tip node D,
and node A’. New crack tip node D will be used
twice to form a 4-node cohesive element in
Figure 2(d). To simulate the traction along the

new crack surface, extrinsic PPR model as proposed
in the former section will be applied on the new
inserted cohesive element. Implementations of the
cohesive element as well as the extrinsic PPR model
can be referred in Park and Paulino’s work [23].

5. Computational Simulation Implementation

Different from the general finite element simulation calcula-
tion, the process of crack propagation simulation calculation
is more complicated, and the calculation will be more time-
consuming. Figure 3 shows the complete flow of propellant
crack propagation simulation for readers’ reference. First,
the main program loads the mesh, materials, and boundary
conditions. As required, the crack tip node data that need
to be tracked are marked.

Then, under the current input conditions, the corre-
sponding displacement, stress, and strain fields are calcu-
lated. The maximum principal stress parameters of all
crack tip nodes were calculated, and then, the following
operations were carried out for each crack tip node. Deter-
mine whether the maximum principal stress at the crack
tip node is greater than the cohesive strength. When the
maximum principal stress is greater than the cohesive
strength, the topological operation of crack propagation
along the element edge (reference [16]) or inside the element
(Section 5) is carried out. Then, the displacement, stress, and
strain fields under the current mesh are recalculated. Then,
the residual force of the current mesh configuration is calcu-
lated, and the convergence criterion is used to judge whether
it converges. On the other hand, when the maximum princi-
pal stress is less than the cohesive strength, the convergence
judgment is directly carried out.

Next, when the convergence criterion is not satisfied, the
computation time step needs to be reduced, and the
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Figure 8: Load response with different crack length with
unstructured mesh (T3).
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computation data is restored to the previous computation
step. The computation was terminated when the computa-
tion time step could not be reduced any further. Conversely,
when the computation converges, the current computation
data are saved until the computation time reaches the total
computation time.

6. Numerical Examples

6.1. Single Edge-Notched Tension Test. To verify the numer-
ical implementation of the constitutive model, cohesive
element, and element splitting technique proposed, a com-
mon single edge-notched tension test under mode-I fracture
condition is utilized. In Figure 4, specimen made by solid
propellant with W = 30mm and h = 35mm was designed
and tested in a previous research [15]. Along its edge, a pre-
defined crack with the length a is located on the horizontal
midline of the specimen. Stretch tests with displacement
applied along the upper and bottom surface are conducted
to investigate the fracture response of the solid propellant.
Parameters in the Prony series for relaxation modulus of
solid propellant are listed in Table 1 as well as adopted in
the simulation. In addition, Poisson’s ratio is set as 0.49 as
utilized in the reference paper [15]. In this analysis, cohesive
energy and cohesive strength are 1.0N/mm and 0.5476MPa,
respectively, in both normal and tangential direction accord-
ing to reference research. Shape parameters are all set as 3.0
after parameter analysis.

Three typical mesh configurations, structured mesh
(Q4), structured mesh (T3), and unstructured mesh (T3)
as shown in Figure 5 are selected to check the mesh type
dependency of the crack propagation simulation technique.
Mesh convergence test is conducted ahead of time to
avoid interference factor. Total number of elements are
4080, 15060, and 12350, respectively. 4353, 7703, and
6348 nodes are used, respectively, in those three types of
mesh configuration.

Figure 6 shows the load response during the stretch test
with the loading rate 10mm/min when crack length is
15mm. Compared with the experimental results, results
shows that three different mesh types can describe the frac-
ture response perfectly with or without element splitting
technique. It is worth to mention that more elements along
the crack path will provide more accurate traction on the
crack surface; thus, free edges in Figures 7(b) and 7(c) seem
more slippery than that in Figure 7(a). Although linear
triangular element is involved, crack propagates along the
right direction in this typical mode-I fracture condition
which can be revealed in Figure 7(d).

Other experiments are conducted with different crack
length. In Figure 8, load response is plotted when a/w is
0.644, 0.598, 0.495, 0.441, and 0.328, respectively. Computa-
tional results are all extracted from unstructured mesh (T3)
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with element splitting technique. Although computational
results when a/w = 0:644 are not good enough, other results
match the experimental results well.

With contrastive analysis of single edge-notched tension
test, one can prove that numerical implementation of consti-
tutive model, cohesive element, and element splitting tech-
nique proposed can deal with the crack simulation analysis
for solid propellant effectively.

6.2. Double Edge-Notched Tension Test. A double edge-
notched tension test is also employed to investigate the
mixed mode fracture response under the proposed computa-
tional framework. As in Figure 9, geometry, boundary con-
ditions, and finite element discretization of test specimen
are illustrated. Refinement meshes are designed surrounding
the crack tip and potential crack paths. With total 4434
nodes and 8614 triangular elements, DENT test specimen
is discretized with coarse mesh and fine mesh placed in the
appropriate part.

Same material parameters are adopted in this simulation.
In Figure 10, load response under different loading rates is
plotted. Obviously, higher loading rate will introduce higher
load response directly. For viscoelastic materials, when load-
ing time increase, relaxation modulus will decrease at the

same time; thus, higher loading rate will delay the decrease
of relaxation modulus compared with lower loading rate
and introduce higher load response. Figure 11 shows the
crack patterns of plate tension specimen when displacement
is 1.5mm. Crack propagates much deeper when v = 10mm/
min as lower loading rate let the specimen show a softer tex-
ture in viscoelastic domain.

Further, under different cohesive energy and cohesive
strength, parameter analysis is conducted. In Figure 12, higher
cohesive energy and cohesive strength will both increase the
load response. However, for changed cohesive energy, load
response just various after the peak load and stay is almost
unchanged before the peak load. After peak load, load
response starts to show difference under different cohesive
strength. Generally, higher cohesive energy consumes more
fracture energy of the same specimen. On the other hand, peak
load increases dramatically under higher cohesive strength. In
other words, different cohesive strength will show different
fracture response obviously than cohesive energy.

6.3. Plate Tension Test with a Slant Crack. Relaxation
response is a typical feature for viscoelastic solid propellant.
For relaxation test, a step displacement Δ is applied and
keeps unchanged. Figure 13(a) shows a plate tension test
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Figure 12: Load response under different (a) cohesive energy and (b) cohesive strength.
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Figure 11: Crack patterns of plate tension test specimen when displacement is 1.5mm.
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specimen with width 48mm and height 115mm. Slant crack
with angle β is located on the middle of the specimen. Crack
length a is a fixed constant 10mm in this simulation.
Figure 13(b) shows the mesh configuration when β is 45°

with 4107 nodes and 8044 elements. In this section, material
parameters are the same as used in the former sections.

Three types of meshes when β is 30°, 60°, and 90° are
selected and analyzed when step displacement Δ is 10mm.
In Figure 14, deformed mesh configurations are plotted for
four typical loading times. Slant crack will be enlarged and
spread out on both sides when loading time increases in
the relaxation stage. Results show that cracks propagate

along the horizontal direction rather than the angle of β.
When β increases from 30° to 90°, holes introduced by crack
propagation are more of a circle because the initial crack is
much closer to the horizontal direction.

Figure 15 shows the effects of step displacementΔ in relax-
ation stage when β = 90°. When loading time increases, load
response decreases rapidly at the beginning and gradually
slows down. When step displacement Δ applied, strain energy
is stored totally on the specimen. During the relaxation stage,
strain energy is consumed on the crack propagation and
deformation. Thus, larger step displacement Δ corresponding
to higher strain energy will generate higher load response.
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Figure 13: (a) Geometry and boundary conditions and (b) finite element discretization of plate tension test specimen.
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Figure 14: Crack patterns of plate under different loading time and angle β.
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7. Conclusions

In this paper, crack propagation simulation method in visco-
elastic solid propellant is investigated. Incremental method is
utilized to derive the deviatoric and spherical stress tensor in
each time step considering the time related integration in vis-
coelastic constitutive model. To take the traction along the
crack surface into account, extrinsic PPR model is adopted.
Topological operations for element splitting technique are
presented step by step which will help the reads to have a bet-
ter understanding. Computational simulation implementation
is shown to provide a more executable scheme.

Numerical simulation of SENT shows a strong adapta-
tion of the computational methodology proposed in crack
propagation simulation for viscoelastic solid propellant.
DENT and plate tension test with a slant crack gave convinc-
ing evidence for mixed mode crack propagation simulation.
Time dependent structural response which belongs to visco-
elastic material’s typical feature is demonstrated in the last
two examples.
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