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A guidance approach with obstacle avoidance is proposed for maneuvering target interception. Firstly, by decomposing the
constrained optimal guidance problem into two associated subproblems, the overall scheme of guidance is presented. Secondly,
to improve the guidance accuracy against the maneuvering target, an MPC controller with disturbance estimation is designed,
which transforms the global optimization problem into a finite-horizon optimal control problem. An auxiliary controller is also
developed to ensure the system’s stability. Then, to achieve obstacle avoidance without affecting the guidance accuracy, a
unified function is built to assess the threats from obstacles of different shapes, based on which the optimal guidance-obstacle
avoidance model is established. Finally, to solve the above optimization problems, a hybrid solver is developed based on the
adaptive moment estimation (Adam) algorithm, whose output will serve as the real-time guidance command. The numerical
simulation results show that the guidance approach presented in this paper can achieve precise guidance and obstacle
avoidance in various scenarios, and the Monte Carlo experiment further demonstrates the robustness and computation
efficiency of the approach.

1. Introduction

To improve the hitting accuracy of interceptors, numerous
guidance approaches have been proposed over the decades
[1–4]. However, with the increasing complexity of the oper-
ational environment, current guidance approaches have
gradually shown limitations in the following cases:

(1) To achieve precise guidance when the target is
maneuvering

(2) To avoid ground obstacles or enemy threats while
pursuing the target

Therefore, the guidance problem involving the above
cases has received more attention.

For the former case, some improved guidance methods
have been presented for maneuvering target interception,
such as the augmented proportional navigation guidance

(APNG) law, adaptive sliding-mode guidance (ASMG) law,
and optimal guidance law. As an improved proportional
navigation guidance (PNG) law, APNG is characterized by
its simple form and strong practicability; it restrains the
influence of target maneuvers on guidance accuracy by add-
ing the correction term to the law of PNG [5]. Shen [6]
derived two forms of APNG, one of which was based on
the normal acceleration of target velocity and the other on
the angular acceleration of line-of-sight (LOS); however,
both of them required the exact target maneuver informa-
tion that was already known. Besides, APNG cannot over-
come the disadvantage that the required overload is
overlarge in the endgame of guidance, which may lead to
attitude instability during flight. ASMG is an emerging guid-
ance method based on variable structure control theory. It
has the advantages of being insensitive to parameter pertur-
bations and resistant to external disturbances. Ji et al. [7]
presented a novel time-varying global sliding-mode control
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technique using a linear extended state observer to esti-
mate the unknown target acceleration that could achieve
maneuvering target interception with the desired impact
angle. Authors of [8] proposed a composite three-
dimensional guidance law based on an adaptive integral
sliding mode control and utilized a nonlinear disturbance
observer to estimate and compensate for the disturbances
caused by the target maneuver. Although it has been
proven to be an advanced method for maneuvering tar-
gets during interception [9–13], ASMG still cannot deal
with guidance problems with numerous and complex
constraints.

With the ability to handle various constraints and
objectives, the optimal guidance law has received extensive
attention since its explicit formula against maneuvering
targets was derived in [14]. Later, Zhang et al. [15] consid-
ered the conditions of miss distance, impact angle, termi-
nal angle of attack, etc., and deduced the general
formulation of an optimal guidance law by solving the
Riccati equation of quadratic optimal control. The authors
of [16] provided a unified formulation of optimal
guidance-to-collision law for a target with arbitrary accel-
eration. Weiss and Shima [17] extended optimal guidance
theory to the situation where the interceptor had to avoid
a spatial region before hitting the target. However, most of
the above studies are based on the linear model in the
two-dimensional (2D) plane, which reduces the complexity
of the problem. Besides, in the derivation of the optimal
guidance law, the terminal time is difficult to estimate if
the target is maneuvering, which greatly increases the
implementation difficulty of these methods. While in
model predictive control (MPC) theory, the control action
is obtained by solving a finite-horizon open-loop optimal
control problem at each sampling instant with no need
for knowing the global terminal time, thus making MPC
an advantage in solving optimal guidance problems. How-
ever, from the current literature, MPC is more used for
guidance against stationary targets. For example, in [18],
an MPC-based cooperative guidance law is presented to
perform a salvo attack against a stationary target in the
2D plane, and in [19], a time-constrained guidance
approach for the multimissile network using a nonlinear
MPC technique is proposed, which could also achieve
the circular no-fly zone avoidance. As an advanced control
method capable of resisting external disturbances and
system uncertainties, MPC is expected to be further
extended to the guidance problem for maneuvering target
interception.

As for the latter case, obstacle avoidance has been
well studied in the unmanned aerial vehicle (UAV) path
planning literature [20–22] but rarely mentioned in guid-
ance research. The essential difference between the two
technologies is that the former only needs to lead the
UAV to reach a fixed point, while the latter needs to
guide the interceptor to hit a rapidly moving target. Pre-
cisely because of this difference, some classical obstacle
avoidance methods in UAV path planning cannot be
directly used for the guidance problem, such as the arti-
ficial potential field (APF) method [23]. In APF, the

UAV is acted on by the repulsive forces from obstacles
and the attractive force from the target, whose resultant
force determines the flight direction of the UAV [24].
Among them, the attractive force ensures that, if not
affected by any obstacle, the UAV can always aim its
flight direction at the target point; this way of keeping
the flight direction aimed is also known as the velocity
pursuit guidance law (VPGL) in the classical guidance
theory [4]. However, VPGL cannot cope with the maneu-
verability of the target in advance, and when the target
has maneuverability not inferior to the interceptor, this
kind of guidance strategy will eventually lead to failure
in the interception. Similarly, the APF will also face the
above difficulty when tackling the guidance problem
against maneuvering targets.

In addition to the above, the current guidance litera-
ture considering obstacle avoidance is commonly limited
to the 2D plane [17, 19, 25], while in a three-
dimensional (3D) space, the actual situation is much more
complex. Most of the literature on obstacle avoidance in
3D space adopts the method of simplifying obstacle
models [26], such as modeling mountains, buildings, and
enemy threats into cones, cylinders, hemispheres, and
other regular geometries [27], which not only improves
computation efficiency but also well describes the geomet-
ric characteristics of obstacles. Even so, for obstacles in
different shapes, the collision avoidance methods still vary
considerably; e.g., in [24], the points of closest are inte-
grated into the 3D APF model to determine the direction
and magnitude of repulsive forces; however, the methods
to calculate the points of closest are distinct for obstacles
in different shapes. In [28], a 3D velocity obstacle (VO)
method dedicated to cylindrical obstacles is proposed,
which can be a supplement to the 3D VO method devel-
oped for spherical obstacles in [29], but neither of them
is applicable to avoiding obstacles other than those men-
tioned above. These methods require the UAV to identify
the shapes of obstacles in advance and adopt different
ways to avoid them, which increases the difficulty of
implementation. A recently proposed method based on
fluid flow can cope with obstacles in different shapes while
considering maneuverability constraints on the UAV [27].
However, it ensures that the UAV flies to the destination
by placing a sink flow at the target point, which is essen-
tially similar to those by constructing the attractive force
and will lead to the same difficulty as the APF method
encounters in the guidance problem.

In order to solve the guidance problem regarding the
above two cases, a guidance approach with obstacle avoid-
ance is proposed for the maneuvering target interception
in this paper. The contribution of the manuscript is
described in the following: (1) by decomposing the opti-
mal guidance problem with obstacle avoidance constraints
into two subproblems associated with the triggering condi-
tion, we present the overall scheme of guidance. (2) To
make sure the interceptor can accurately hit the target, a
MPC controller with improved objective function (to
enhance control effect) and an auxiliary controller (to
guarantee the system stability) is designed, and an
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estimation method is proposed to restrain the system dis-
turbances. Through MPC, the optimal problem with
uncertain terminal time is transformed into a finite-
horizon optimal control problem. (3) To achieve collision
avoidance while changing the optimal guidance command
as little as possible, we establish an optimal guidance-
obstacle avoidance model, whose objective function con-
tains a threat function built on the VO model, to assess
the threats from the obstacles of different shapes. (4) For
solving the above two optimization problems, a hybrid
solver is developed based on the adaptive moment estima-
tion (Adam) algorithm, whose solution will be used as the
guidance command. The rest of the paper is organized as
follows. In Section 2, the preliminaries to the guidance
geometry and modeling of obstacles are presented, and
the overall scheme of guidance with obstacle avoidance is
also proposed. Section 3 develops the MPC guidance
approach with improved objective function and distur-
bance estimator. Section 4 presents the guidance-obstacle
avoidance approach as well as the hybrid solver. Numeri-
cal simulation is performed in Section 5, and finally, the
conclusions are drawn in Section 6.

2. Preliminary

2.1. Basic Assumptions. This paper studies the guidance
problem with requirements of obstacle avoidance against
maneuvering targets, the following assumptions are adopted
in the research process:

(1) Both the interceptor and the target are taken as geo-
metric points

(2) Velocities of the interceptor and the target are con-
stants, and only their directions can be changed

(3) The interceptor has ideal dynamic characteristics,
the delay of control input is not considered

(4) The obstacles encountered during guidance have
been modeled into regular geometries in advance,
whose position and geometric characteristics can be
acquired

(5) The interceptor can only obtain the position and
velocity of the target, the maneuver acceleration or
control inputs of the target cannot be measured in
advance

2.2. Guidance Geometry. The common coordinate systems to
describe guidance problems include the inertial coordinate
system, velocity coordinate system, and LOS coordinate sys-
tem [30]. In this paper, an inertial coordinate system Oxyz is
established for describing the guidance problem with obsta-
cle avoidance, and the kinematic equations of the interceptor
and the target in Oxyz are (1) and (2). Figure 1 depicts the
movement of the interceptor or the target in the inertial

coordinate system.

_xM = vM cos θM cos ψM,

_yM = vM sin θM,

_zM = −vM cos θM sin ψM,
ð1Þ

_xT = vT cos θT cos ψT,

_yT = vT sin θT,

_zT = −vT cos θT sin ψT,

ð2Þ

wherein, the subscript M and T, respectively, denote the
interceptor and the target, whose inclination angles are θM
and θT, deflection angles are ψM and ψT, and space velocities
are vM andvT.

The state vector of the guidance system is chosen as

χ = χ1, χ2,⋯,χ10½ �T = xM, yM, zM, θM, ψM, xT, yT, zT, θT, ψT½ �T:
ð3Þ

Then, the nonlinear system can be described by the state
equation:

_χ tð Þ = f χ tð Þ, u tð Þ,w tð Þð Þ, ð4Þ

f χ tð Þ, u tð Þ,w tð Þð Þ =

vM cos χ4 tð Þ cos χ5 tð Þ
vM sin χ4 tð Þ

−vM cos χ4 tð Þ sin χ5 tð Þ
u1 tð Þ
u2 tð Þ

vT cos χ9 tð Þ cos χ10 tð Þ
vT sin χ9 tð Þ

−vT cos χ9 tð Þ sin χ10 tð Þ
w1 tð Þ
w2 tð Þ

2666666666666666666666664

3777777777777777777777775

, ð5Þ

where the control input vector uðtÞ = ½u1ðtÞ, u2ðtÞ�T =
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Figure 1: Movement of the interceptor or the target in the inertial
coordinate system.
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½ _θMðtÞ, _ψMðtÞ�
T
consists of the inclination angular velocity

and the deflection angular velocity of the interceptor.
Accordingly, the system disturbance caused by the target

maneuver can be denoted as wðtÞ = ½w1ðtÞ,w2ðtÞ�T =
½ _θTðtÞ, _ψTðtÞ�

T
. The aim of guidance is to make the distance

between both sides shown in Equation (6) as small as possi-
ble at the end of the guidance.

r χ tð Þð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
3

i=1
χi − χi+5ð Þ2

s
: ð6Þ

2.3. Modeling of Obstacles. To avoid obstacles during guidance,
an efficient modeling method is first needed. In this paper, all
the obstacles or enemy threat regions are treated as regular
geometries. For example, the mountains are taken as cones,
the buildings as cylinders, and the coverage areas of enemy
radars as hemispheres. To ensure the flight safety of the inter-
ceptor, those geometries could suitably envelop the obstacles
with keeping a certain margin (safe distance) [27]. Their unified
model can be described with Equations (7) and (8).

Remark 1. For the convenience of expression, all the obsta-
cles, threat regions, and the regular geometries they are
treated as, are collectively referred to as obstacles.

Γi x, y, zð Þ = x − xoið Þ2 + z − zoið Þ2 − ς ωi, yð Þ, ð7Þ

ς ωi, yð Þ = ωi1y
2 + ωi2y + ωi3, ð8Þ

where O = foiji = 1,⋯nog is the set of obstacles, ðzoi, xoiÞ is
the projection of the geometric center of oi on the plane z
Ox, and the parameter ωi is related to the shape ofoi.

And there is

x, y, zð Þ
inside oi Γi x, y, zð Þ < 0∧0 < y <Hi

outside oi else

(
: ð9Þ

Hi is the height of oi.
For the above three typical geometries, the relationship

between their shapes and parameter ωi is shown in Figure 2.

Remark 2. The obstacle avoidance method developed in this
paper is applicable to all the obstacles that can be described
with Equations (7) and (8), while the above three are only
the typical ones among them, which are introduced to facil-
itate the analysis in the following parts.

2.4. Optimization Model of Guidance with Obstacle
Avoidance Constraints. On the basis of the above, the opti-
mal guidance problem with obstacle avoidance constraints
can be expressed as Problem 3.

Problem 3. Given the initial system statesχðt0Þ, find

u∗ tð Þ = arg min
u tð Þ

r χ tfð Þ, u tð Þ,w tð Þð Þ, ð10Þ

subject to

u tð Þ ∈U, ð11Þ

Γi χ1 tð Þ, χ2 tð Þ, χ3 tð Þð Þ > 0, ð12Þ

_r χ tfð Þð Þ = 0: ð13Þ
Herein, t0 and tf are the initial time and the terminal

time of guidance, U = f½u1, u2�Tjjuij ≤Umax i, i = 1, 2g is the
input constraint set, Equation (12) is the obstacle avoidance
constraint, and Equation (13) is the terminal condition of
guidance.

Remark 4. During guidance, the time derivative of r is always
negative, which means the distance between the interceptor
and the target constantly decreases. Once _r reaches zero,
implying that r will no longer decrease, then the guidance
ends immediately [17], so Equation (13) can be taken as
the terminal condition of guidance, which also helps to
determine the terminal time and terminal miss distance.

2.5. Overall Scheme of Guidance with Obstacle Avoidance. To
solve the above optimal guidance problem, the following
issues should be considered first:

(a) The obstacle avoidance constraint (12) is difficult to
handle

(b) Terminal time tf is hard to get unless the future
maneuver information of the target is fully known

Regarding a, a general way to deal with nonlinear con-
straints is by adding a penalty term to the objective function
[19]. The modified function will have the form of

~J χ tð Þ, u tð Þð Þ = J1 χ tð Þ, u tð Þ,w tð Þð Þ + μJ2 χ tð Þ, u tð Þð Þ, ð14Þ

where J1ðχðtÞ, uðtÞ,wðtÞÞ = rðχðtf Þ, uðtÞ,wðtÞÞ, J2ð•Þ is the
cost function constructed on the obstacle avoidance
constraint (12), μ is the weight coefficient that affects both
the guidance accuracy and the success rate of obstacle
avoidance.

However, in order to guarantee the flight safety of the
interceptor, the value of μ must be large enough to deal with
the possibility that J2 is much smaller than J1 in the initial
phase of guidance. As a result, any trivial change of J2 will
greatly impact the guidance command in the endgame,
which may lead to the failure of interception.

To tackle the above issue, we decompose the optimal
Problem 3 with constraint (12) into two subproblems, which
are shown below.

Problem 5. Given the initial system statesχðt0Þ, find

u∗ tð Þ = arg min
u tð Þ

J1 χ tð Þ, u tð Þ,w tð Þð Þ, ð15Þ

subject to (11).
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Problem 6. Given the system states χðtÞ and guidance
commandu∗ðtÞ, find

~u∗ tð Þ = arg min
~u tð Þ

~u tð Þ − u∗ tð Þk kp + J2 χ tð Þ, ~u tð Þð Þ, ð16Þ

subject to

~u tð Þ ∈U, ð17Þ

J2 χ tð Þ, u∗ tð Þð Þ > 0: ð18Þ
Here, the optimal solution to Problem 5 will be the guid-

ance command in cases where the interceptor does not need
to avoid any obstacle. Inequality (18) serves as a triggering
condition, once it holds, the interceptor needs to change its
present guidance command (by solving Problem 6) lest col-
liding with obstacles. The objective function of Problem 6
consists of the p-norm of ~uðtÞ − u∗ðtÞ and the cost function
of obstacle avoidance, to ensure the guidance command is
changed as little as possible when the obstacles are avoided.
In this way, the overall scheme of guidance with obstacle
avoidance can be shown in Figure 3. In the following sec-
tions, we will analyze the above two problems, respectively.

As for b, with the existence of system disturbances caused
by the target maneuver, it is difficult to calculate the terminal
time tf . While model predictive control (MPC) has good adapt-
ability to this kind of optimal control problems with uncertain
terminal time, by transforming them into optimal control
problems with certain optimization horizons. Consequently,

to get the optimal guidance command u∗ðtÞ from Problem 5,
a guidance approach based on MPC is proposed in Section 3.

3. MPC Guidance Approach

In this section, the optimal guidance Problem 5 will be rede-
fined as a finite-horizon optimal control problem (FHOCP)
under the MPC framework. To improve the guidance per-
formance while ensuring the system’s stability, an objective
function based on ZEM and an auxiliary controller are
designed. An estimation method is also proposed to restrain
the system disturbances. By solving FHOCP Problem 12, we
can get u∗ðkÞ at each instant.

3.1. Nonlinear MPC. As noted in the introduction, the con-
trol action of MPC is obtained at each sampling instant, thus
the system description of MPC is commonly based on a
discrete model. Using the Euler method, we can discretize
system (5) into

χ k + 1ð Þ = F χ kð Þ, u kð Þ,w kð Þð Þ ð19Þ

where δ is the sampling period of the discrete system.
At sampling instant k (corresponding to the actual time

t0 + kδ), k = 0, 1,⋯, given the initial system states χðkÞ, con-
trol input sequence uðkÞ,⋯, uðk + P − 1Þ , and system dis-
turbances wðkÞ,⋯,wðk + P − 1Þ, we can get the system

W

H

W

H

W

H

𝜔 = [0, 0,  W2]T 𝜔 = [W2/H2,  –2W2/H, W2]T 𝜔 = [–1,(H2 –W2)/H, W2]T

Figure 2: Three typical geometries of obstacle and their parameters.

Get the state of interceptor

J2 (𝜒(t), u⁎ (t)) > 0

r (𝜒(t)) = 0

u
⁎

 (t)

·

Target information

Solve problem 5

Obstacle information

Solve problem 6
TrueFalse

End

Start

True
False

u
⁎

 (t) = u
⁎

 (t)~

u
⁎

 (t)~

ʃf (𝜒(t), u⁎ (t), w (t)) dt~

Figure 3: Overall scheme of guidance with obstacle avoidance.
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states within the prediction horizon.

χ k + lð Þ = F χ k + l − 1ð Þ, u k + l − 1ð Þ,w k + l − 1ð Þð Þ, l = 1,⋯, P,

ð20Þ

where P ∈ℤ+ is the length of the prediction horizon.
Then, Problem 5 can be redefined as a FHOCP, i.e.,

Problem 7. Given the initial system states χðkÞ, find the opti-
mal control input sequence

u∗ P ; kð Þ = arg min
u P;kð Þ

J1 k, χ P ; kð Þ, u P ; kð Þ,w P ; kð Þð Þ, ð21Þ

subject to (20) and

u P ; kð Þ ∈U:, ð22Þ

After obtaining the optimal control input sequence at the
sampling instant k, we apply its first component to the actual
system. When the time comes to the next instant k + 1, we will
observe the system states and solve another FHOCP. The
above process will be repeated until the end of the control.

Due to the real-time observation and correction, MPC
can deal with external disturbances and model uncertainty,
and in the rest of this section, our focus will be on the design
of the MPC controller.

3.2. Improved Objective Function Based on ZEM. Tradition-
ally, the objective function of MPC consists of two parts, one
is called the stage cost function which describes the aim of
control, and the other is terminal cost function that guarantees
the stability of the system. In the design of the stage cost func-
tion, we introduce an approximation of the terminal miss dis-
tance, i.e., zero-effort-miss (ZEM). ZEM plays an essential role
in some existing literatures [31, 32], it implies the assumption
about the future motion of the interceptor and the target,
rather than just focusing on their current positions. Then,
based on the stage cost function, we design the terminal cost
function and its associated auxiliary controller to ensure recur-
sive feasibility and system stability. A detailed analysis of the
convergence can be seen in the appendix.

For ease of design, we introduce new state variables as

r =

rx

ry

rz

2664
3775 =

χ1 − χ6

χ2 − χ7

χ3 − χ8

2664
3775: ð23Þ

Definition 8 Zero-effort-miss (ZEM) [33]. The distance that
the interceptor would miss the target provided that the tar-
get continued along its present course, and the interceptor
made no further corrective maneuver.

According to Definition 8, we derive the analytical for-
mula of ZEM in an inertial coordinate system as

~r =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx _ry − ry _rx
À Á2 + rx _rz − rz _rxð Þ2 + ry _rz − rz _ry

À Á2
_rx

2 + _ry
2 + _rz

2

vuut : ð24Þ

And the estimation of terminal time based on ZEM is
formulated as

tgo =
_rxrx + _ryry + _rzrz
_rx

2 + _ry
2 + _rz

2 : ð25Þ

The derivation process follows that in the situation of
Definition 8, the change of distance between the interceptor
and the target with respect to time is

r tð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rx + _rxtð Þ2 + ry + _ryt

À Á2 + rz + _rztð Þ2
q

: ð26Þ

According to the extremum formula of the quadratic
function, we can get the extreme point of rðtÞ as tgo, and
the extreme value as ~r.

Remark 9. When tgo ≤ δ, both the interceptor and the target
will stop control and fly to the terminal point in their instan-
taneous attitudes. For this situation, _rðtgoÞ will be 0, and
ZEM will be equal to the actual terminal miss distance.
Therefore, to obtain the actual guidance effect, we reset δ
to tgo if there is tgo ≤ δ (see Section 5).

Let L = ðrx _ry − ry _rxÞ2 + ðrx _rz − rz _rxÞ2 + ðry _rz − rz _ryÞ2.
Then, we define the stage cost function as

JS k, χ P ; kð Þ, u P ; kð Þ,w P ; kð Þð Þ = 〠
P−1

l=0
L χ k + lð Þð Þ: ð27Þ

To guarantee the recursive feasibility and stability of the
system, the terminal cost function and the auxiliary control-
ler are designed as follows.

Terminal cost function

JT k, χ k + Pð Þ, u P ; kð Þ,w P ; kð Þð Þ = ρ ⋅ L χ k + Pð Þð Þ, ð28Þ

whereρ > 1, ρ ∈ℝ.
Auxiliary controller

uκ =
uκ1

uκ2

" #
=

K1 cos χ5 + K2 sin χ5
rx _χ1 + ry _χ2 + rz _χ3

K1 sin χ5 − K2 cos χ5 + rx _χ3 − rz _χ1ð Þuκ1
ryvM cos χ4

26664
37775:
ð29Þ
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In which

K =
K1

K2

" #
=

−λ rx _ry − ry _rx
À Á

+ rx ~wy − ry ~wx

−λ ry _rz − rz _ry
À Á

+ ry ~wz − rz ~wy

" #
, ð30Þ

λ > 1/2ðρ − 1Þδ, λ ∈ℝ,

~w =

~wx

~wy

~wz

2664
3775 = vT ⋅

−sin χ9 cos χ10 −cos χ9 sin χ10

cos χ9 0

sin χ9 sin χ10 −cos χ9 cos χ10

2664
3775 ⋅w:

ð31Þ

And we assume that by changing the value of λ, there
always exist uκðkÞ ∈U at any k > 0.

Then, given (27) and (28), the objective function at
instant k can be defined as

J1 k, χ P ; kð Þ, u P ; kð Þ,w P ; kð Þð Þ = JS k, χ P ; kð Þ, u P ; kð Þ,w P ; kð Þð Þ
+ JT k, χ k + Pð Þ, u P ; kð Þ,w P ; kð Þð Þ:

ð32Þ

For ease of description, we abbreviate J1ðk, χðP ; kÞ, uðP
; kÞ,wðP ; kÞÞ as J1ðkÞ and JTðk, χðk + PÞ, uðP ; kÞ,wðP ; kÞÞ
as JTðk + PjkÞ in the following sections. Accordingly, the
optimal value of the objective function at instant k is denoted
as J1

∗ðkÞ.

Remark 10. The auxiliary controller does not act on the
actual system in the initial phase of guidance, its true role
is as the component of the initial solution for each iteration
(which will be clarified in the proof), and the actual control
action is still obtained by solving the FHOCP. Once J1 con-
verges to zero, the subsequent control actions will be gener-
ated by the auxiliary controller.
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Figure 4: Situations related to the feasible range of time.
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1: // Adam for Problem12
2: // Initialization
3: Set the parameters of the algorithm:
�K1, K1, β1, β2, α
4: Generate initial solution uð0ÞðP ; kÞ using (63)
5: Initialize first and second moment estimates, initialize iteration as iter = 0
6: // Main loop
7: whileκ < �K1∧iter < K1do
8: Calculate J1ðuðiterÞðP ; kÞÞ using (49), calculate κ using (73)
9: Update uðiterÞðP ; kÞ using (65)–(70)
10: Correct uðiterÞðP ; kÞ using (72)
11: Update current iteration as iter = iter + 1
12: end while
13: Determine the optimal solution u∗ðP ; kÞ using (76), take the first components as u∗ðkÞ
14: // Determine whetheru∗ðkÞcould serve as eventual guidance command
15: Calculate J2ðu∗ðkÞÞ
16: ifJ2ðu∗ðkÞÞ = 0then
17: Determine eventual guidance command as ~u∗ðkÞ = u∗ðkÞ
18: else
19: // Adam for Problem14
20: // Initialization
21: Set the parameters of the algorithm: �K2, K2

22: Generate initial solution ~uð0Þj , j = 1,⋯,NP using (64)
23: // Main loop
24: forj:=1 to NPdo
25: Initialize first and second moment estimates, initialize iteration as iter = 0
26: whileκ < �K2∧iter < K2do

27: Calculate ~J2ð~uðiterÞj Þ using (59), calculate κ using (73)

28: Update ~uðiterÞj using (65)–(70)

29: Correct ~uðiterÞj using (72)
30: Update the current iteration as iter = iter + 1
31: end while
32: Determine the optimal individual ~u∗j using (76)
33: end for
34: Determine the optimal solution ~u∗ðkÞ using (77)
35: // Results
36: return~u∗ðkÞ

Algorithm 1: Pseudocode of the hybrid solver.
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Next, we will analyze the convergence of the system
under the action of the MPC controller, by giving Theorem
11 and its proof.

Theorem 11. Let the terminal cost function be given as in
(28), then, by introducing the auxiliary controller (29), the
optimal value of the objective function will decrease to zero.

Proof. The proof follows that by constructing a feasible solu-
tion in an instant k, as shown in

û P ; kð Þ =
u∗ k + l k − 1jð Þ, l = 0,⋯, P − 2,

uκ k + lð Þ, l = P − 1:

(
ð33Þ

We can prove that the objective function value of ûðP ;
kÞ meets J1ðkÞ ≤ J1

∗ðk − 1Þ, and there must be J1
∗ðkÞ ≤ J1ð

kÞ ≤ J1
∗ðk − 1Þ, so the requirement in Theorem 11 is guaran-

teed. For more details, see the appendix.

3.3. Disturbance Estimation Based on Historical Data. Prior
to solving the above finite-horizon optimal Problem 7, we need
to know the system disturbances within the prediction horizon,
that is wðP ; kÞ. However, since future disturbances caused by
the target maneuver cannot be measured in advance, we can
only predict them by finding the existing laws in the historical
data. Fitting extrapolation is a commonmethod in target trajec-
tory prediction [34, 35], whose basic idea is to use the preestab-
lished models or functions to approximate the historical data
and predict the future motion of the target with the fitted
model. Based on the fitting extrapolation, we propose a distur-
bance estimation method for short-term prediction and specify
its implementation at each instant. The estimation results can
be used for the MPC controller designed above.

Considering that the disturbances caused by the target
maneuver cannot be directly measured, the estimated objects
are chosen as

e kð Þ =
e1 kð Þ
e2 kð Þ

" #
=
1
δ

χ9 k + 1ð Þ − χ9 kð Þ
χ10 k + 1ð Þ − χ10 kð Þ

" #
: ð34Þ

The following assumption related to the estimated
objects is adopted in the derivation process.

Assumption 12. The estimated object

(1) is n-order differentiable with respect to time, and
there is ei

ðnÞ =∑n−1
j=0 bjiei

ðjÞ, i = 1, 2

Assumption 13. Itself and its derivatives of any order are

bounded, i.e., jeðjÞi ðtÞj ≤ dij.

Based on Assumption (12), we obtain an autonomous
linear system which can be described with

_γi =Aiγi,

ei = Cγi,
ð35Þ

where

Ai =
0 In−1

b0i b1i ⋯ bn−1,i

" #
, ð36Þ

C = ½1 0 ⋯ 0� and γi ≜ ½ei, _ei,⋯,eðn−1Þi �T.
The state response of system (35) from zero moments to

time t is formulated as

γi tð Þ = eAitγi0: ð37Þ

Herein, γi0 = γið0Þ. It also can be derived from Equation

(37) that eiðtÞ = CeAi tγi0 and eðjÞi ðtÞ = CAi
jeAi tγi0.

Using Taylor’s formula, we obtain

ei tð Þ = 〠
∞

j=0

t j

j!
CAi

jγi0 = 〠
n−1

j=0

t j

j!
CAi

jγi0 + Rn−1 tð Þ, ð38Þ

where Rn−1ðtÞ is the Lagrange remainder which satisfies
Rn−1ðtÞ = ðtn/n!ÞeiðnÞð~tÞ, ~t lies between 0 and t. So we can
draw from Equation (38), if t is in the neighborhood of
0, eiðtÞ can be approximated by a polynomial function gi
ðαi, tÞ =∑n

j=0αijt
j.

Then, to determine the fitting coefficients αi =
½αi0,⋯,αi,n−1�T, we need to utilize the historical data.

Bringing in data ðt1, eiðt1ÞÞ, ⋯, ðtq, eiðtqÞÞ, and t j ≠ tl if
j ≠ l and q > n, we can get the least-squares solution of the
equation Γ iαi = ei, that is

αi
∗ = Γ i

−ei: ð39Þ

Hybrid solver

MPC guidance model
(problem 12)

Obstacle avoidance model
(problem 14)

Disturbance estimator

e (P; k)

u⁎ (k)
u⁎ (k)~

~

Detector

Historical data set

Actuator

Target
information

Target
information

Obstacle
information

Figure 7: Implementation of the guidance approach with obstacle
avoidance.
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Herein,

Γ i =

1 t1 ⋯ tn−11

⋮ ⋮ ⋮

1 tq ⋯ tn−1q

2664
3775, ð40Þ

ei = ½eiðt1Þ,⋯,eiðtqÞ�T, and Γ i
− = ðΓ i

TΓ iÞ−1Γ i
T are the

left inverse of matrix Γ i. Then the fitting function can be
noted as giðαi∗, ·Þ.

The fitting error is represented in the form of matrix

εi = gi αi
∗, t1ð Þ − ei t1ð Þ,⋯,gi αi

∗, tq
À Á

− ei tq
À ÁÂ ÃT

= Γ iαi
∗ − ei = Γ iΓ i

− − Ið Þei = Γ iΓ i
− − Ið Þ Γ iϕi + Rið Þ

= Γ iΓ i
−Γ iϕi − Γ iϕi + Γ iΓ i

−Ri − Ri = Γ iΓ i
−Ri − Ri:

ð41Þ

Further, there is

Ri = Γ iΓ i
− − Ið Þ−1εi, ð42Þ

where

ϕi = Cγi0, CAiγi0,⋯,
CAi

n−1ð Þγi0
n − 1ð Þ!

" #T

,

Ri = Rn−1 t1ð Þ,⋯,Rn−1 tq
À ÁÂ ÃT

:

ð43Þ

If we use giðαi∗, ·Þ to estimate eiðtÞ, t is not among t1,⋯,
tq, the estimation error will be as shown in

~εi tð Þ = 1, t,⋯,tn−1
Â Ã

⋅ αi
∗ − ei tð Þ = 1, t,⋯,tn−1

Â Ã
⋅ Γ −

i ei − ei tð Þ
= 1, t,⋯,tn−1
Â Ã

⋅ Γ −
i Γ iϕi + Rið Þ − 1, t,⋯,tn−1

Â Ã
⋅ ϕi − Rn−1 tð Þ

= 1, t,⋯,tn−1
Â Ã

⋅ Γ −
i Ri − Rn−1 tð Þ = 1, t,⋯,tn−1

Â Ã
⋅ Γ −

i Γ iΓ
−
i − Ið Þ−1εi − Rn−1 tð Þ

ð44Þ

Table 1: Shapes and positions of obstacles in example 1.

Shape Projection of geometric center on zOx (m) Half of bottom width (m) Height (m)

Case 1 Cylinder (700,800) 300 500

Case 2 Cone (700,800) 400 600

Case 3 Hemisphere (700,800) 400 400

Table 2: The initial states of the interceptor and the target in example 1.

x mð Þ y mð Þ z mð Þ θ π radð Þ ψ π radð Þ v m/sð Þ
Interceptor 0 300 0 0 -1/4 40

Target 2000 300 2000 0 3/4 30
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Figure 8: Flight trajectories of interceptor and target in case 1.
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10 International Journal of Aerospace Engineering



According to Assumption (13), the estimation error meets

~εi tð Þj j ≤ 1, t,⋯,tn−1
Â Ã

⋅ Γ i
− Γ iΓ i

− − Ið Þ−1εi
  + din

tj jn
n!

≜ �εi tð Þ:
ð45Þ

From (45), we get the upper bound of the estimation error,
which is only determined by the sampling instants and fitting
errors. This conclusion will help to determine whether func-
tion giðαi∗, ·Þ could be used for extrapolation or not. Based
on the above derivation, the implementation of the proposed
estimation method is specified as follows:

Step 1. Before the start of guidance, we set the length of histor-
ical data as q, the allowance error of estimation as �εallow iðtÞ.

Step 2. At instant k, select k as zero moment, then the sam-
pling instants prior to k can be noted as t j = −jδ and j = 1,
⋯, q. Using historical data ðt j, eiðk − jÞÞ and j = 1,⋯, q, we

can get the coefficients α∗i ðkÞ = ½α∗i0ðkÞ,⋯,α∗i,n−1ðkÞ�T with
Equation (39) and fitting error εiðkÞwith Equation (41). Then,
with (45), we obtain the upper bound of the estimation error at
tl = lδ and l = 0,⋯, P − 1, which can be noted as �εiðtlÞ.

Step 3. Compare �εiðtlÞ with �εallow iðtÞ, if �εiðtlÞ < �εallow iðtlÞ for
∀l = 0,⋯, P − 1, indicating that we can use giðαi∗, ·Þ to esti-
mate eiðk + lÞ without causing an error, then the estimation
results shown in Equation (46) will be used for the feedfor-
ward compensation of the MPC controller.

~ei k + l kjð Þ = 1, tl,⋯,tln−1
Â Ã

⋅ α∗i kð Þ, l = 0,⋯, P − 1: ð46Þ

Otherwise, if there exist l = 0,⋯, P − 1 that makes �εið
tlÞ > �εallow iðtlÞ, which indicates that a large error will be
brought if we use giðαi∗, ·Þ to estimate eiðk + lÞ, then, in
order to avoid larger estimation error, we adopt the
assumption that the disturbance remains unchanged in
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Figure 11: Flight trajectories of interceptor and target in case 2.
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the prediction horizon [36], that is

~ei k + l kjð Þ = ei k − 1ð Þ + Δei k − 2ð Þ = 2ei k − 1ð Þ
− ei k − 2ð Þ, l = 0,⋯, P − 1:

ð47Þ

Step 4. When the time comes k + 1, the newest data eiðkÞ
is obtained. Then, we let k = k + 1and repeat step 2 and
step 3.

In this way, we get ~eðk + ljkÞ = ½~e1ðk + ljkÞ, ~e2ðk + ljkÞ�T,
l = 0,⋯, P − 1 at each instant k. Replacing the actual dis-
turbances with the estimated ones, we can obtain the pre-
dicted system states as shown in Equation (48), instead of
Equation (20).

~χ k + l kjð Þ = F ~χ k + l − 1 kjð Þ, u k + l − 1ð Þ, ~e k + l − 1 kjð Þð Þ,
ð48Þ

where~χðkjkÞ = χðkÞ.

Accordingly, the FHOCP Problem 7 can be rewritten as
follows:

Problem 12. Given the system states χðkÞ and estimated
value ~eðP ; kÞ, find the optimal control input sequence

u∗ P ; kð Þ = arg min
u P;kð Þ

J1 k, ~χ P ; kð Þ, u P ; kð Þ, ~e P ; kð Þð Þ, ð49Þ

subject to (22) and (48).

Now, we have finished the design of the MPC control-
ler, the next work will be solving Problem 12 to obtain
u∗ðkÞ. However, with the existence of complex constraints
(48) and objective function (32), we can hardly get the
analytical solution to Problem 12, thus a numerical
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iterative method is needed. Aiming at improving the solv-
ing efficiency, we develop a hybrid solver for Problem 12
and Problem 14 (to be designed in Section 4) based on
the adaptive moment estimation (Adam) algorithm, the
solution procedure will be detailed in Section 4.3.

4. Guidance-Obstacle Avoidance Approach

After getting the optimal guidance command u∗ðkÞ from
the MPC controller, we should further consider whether
taking u∗ðkÞ as the actual input can guarantee the flight
safety of the interceptor, and if not, how to successfully
avoid the obstacles without affecting the guidance accu-
racy. To tackle the above issue, our main work in this sec-
tion is as follows:

(1) Inspired by the velocity-obstacle model, we design a
function to assess the threat from obstacles of differ-
ent shapes, which is called the threat function

(2) By listing all possible situations related to the threat
function, we derive the analytical expression of it
and redefine Problem 6 as Problem 14

(3) Based on the Adam algorithm, we develop a hybrid
solver for Problem 12 and Problem 14, whose output
will serve as the real-time guidance command ~u∗ðkÞ
of the interceptor

4.1. Threat Assessment for a Single Obstacle Based on the
Velocity-Obstacle Model. As a classical geometry-based
method, VO has been proven to be effective when handling
cases where obstacles are in the 2D form [29]. Its basic
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principle is to find a set of flight angles, i.e., the collision
cone. Along these angles, the interceptor will collide with
obstacles. Nevertheless, when dealing with 3D obstacles of
different shapes, it is rather difficult for VO to determine
the boundary of the collision cone and establish its unified
expression. Inspired by the VO model, we consider the rela-
tive motion of the interceptor and the obstacle and establish
a unified function to assess the threat from obstacles of dif-
ferent shapes. Any feasible flight angle will be assigned a
function value that depends on whether the interceptor will
collide with the obstacle and, if so, the severity of the
collision.

Considering the motion of the interceptor in the
inertial coordinate system, if the interceptor makes no
further maneuver, the change toΓi, according to (7), as
shown in

eΓi χ ,ωi, tð Þ = χ1 + _χ1t − xoið Þ2 + χ3 + _χ3t − zoið Þ2 − ς ωi, χ2 + _χ2tð Þ:
ð50Þ

Herein, the feasible range of t is

t ∈Ti = τ 0 < χ2 + _χ2τ ≤Hi∧τ < tgo χð Þ∧τ > 0
��È É

: ð51Þ

Remark 13. It can be noted from (51) that besides the
existing constraint that limits the flight height of the
interceptor to the range where the interceptor will prob-

ably collide with the obstacle, an additional constraint t
< tgoðχÞ is also put onto t, which is added for the case
where the interceptor hits the target earlier than it
encounters the obstacle.

Then, let

λi =

λi1 = _χ1
2 + _χ3

2 − ωi1 _χ2
2,

λi2 = 2 _χ1 χ1 − xoið Þ + 2 _χ3 χ3 − zoið Þ − 2ωi1χ2 _χ2 − ωi2 _χ2,

λi3 = χ1 − xoið Þ2 + χ3 − zoið Þ2 − ωi1χ2
2 − ωi2χ2 − ωi3,

8>><>>:
ð52Þ

yielding

eΓi χ,ωi, tð Þ = λi1t
2 + λi2t + λi3: ð53Þ

Define the threat function of the single obstacle as

ζi χ,ωið Þ =max 0,− min
t∈Ti

eΓi χ,ωi, tð Þ
� �

: ð54Þ

In this way, the deeper the interceptor enters the obstacle
along its current heading, the greater the threat of the obsta-
cle will be. If the interceptor does not collide with the obsta-
cle without any further maneuvering, the threat of the
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Figure 18: Target maneuver inputs in case 4, case 5, and case 6.
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obstacle will be zero. However, since the feasible range of t
involves different situations, the value of min

t∈Ti

eΓiðχ,ωi, tÞ in
Equation (54) is hard to determine, hence around which fur-
ther discussion is carried out.

4.2. Analytical Expression for Threat Function and Cost
Function. In order to obtain the exact value of min

t∈Ti

eΓiðχ ,ωi
, tÞ, all the possible situations related to Ti are summed
up. From Equation (51), they are

Figure 4 gives a visual representation of the above
situations.

Then, according to the relationship between the extreme
point of the monadic quadratic function and the endpoints

of the feasible interval Ti, as shown in Figure 5, min
t∈Ti

eΓiðχ,
ωi, tÞ can be formulated as (56) in piecewise form.

Let
min
Ti=∅

eΓi χ ,ωi, tð Þ =M, ð57Þ

where M ∈ℝ+ is a large positive rational number. Then, the
value of ζiðχ ,ωiÞ in any possible situation can be deter-
mined with (55), (56), (57), and (54).

The total cost of obstacle avoidance is regarded as the
sum of threats from all the detected obstacles, that is (58).
Using the predicted system states at the next sampling time,
the objective function for Problem 6 can be defined as

J2 χð Þ = 〠
no

i

ζi χ,ωið Þ, ð58Þ

~J2 χ kð Þ, ~u kð Þð Þ = ~u kð Þ − u∗ kð Þk kp + J2 χ kð Þ, ~u kð Þð Þ

= ~u kð Þ − u∗ kð Þk kp + 〠
no

i

ζi ~χ k + 1 kjð Þ,ωið Þ:

ð59Þ

Herein, ~χðk + 1jkÞ is obtained from Equation (48). Func-
tion images of ~J2 in different situations are shown in
Figure 6.

Finally, the optimal Problem 6 can be rewritten as
follows:

Problem 14. Given the system states χðkÞ, estimated value
~eðkjkÞ, and the guidance command u∗ðkÞ obtained from

Ti = ai, bi½ � =

0,
Hi − χ2

_χ2

� �
, χ2 <Hi∧ _χ2 > 0∧

Hi − χ2
_χ2

≤ tgo χð Þ,

0,−
χ2
_χ2

� �
, χ2 <Hi∧ _χ2 < 0∧−

χ2
_χ2

≤ tgo χð Þ,

0, tgo χð ÞÂ Ã
, χ2 <Hi∧ _χ2 > 0∧

Hi − χ2
_χ2

> tgo χð Þ
� �

∨ χ2 <Hi∧ _χ2 < 0∧−
χ2
_χ2

> tgo χð Þ
� �

∨ χ2 <Hi∧ _χ2 = 0ð Þ,

Hi − χ2
_χ2

,−
χ2
_χ2

� �
, χ2 ≥Hi∧ _χ2 < 0∧−

χ2
_χ2

≤ tgo χð Þ,

Hi − χ2
_χ2

, tgo χð Þ
� �

, χ2 ≥Hi∧ _χ2 < 0∧
Hi − χ2

_χ2
< tgo χð Þ < −

χ2
_χ2
,

∅, else

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:
ð55Þ

min
t∈ ai ,bi½ �

eΓi χ ,ωi, tð Þ =

eΓi χ, ωi, aið Þ, λi1 > 0∧−
λi2
2λi1

≤ ai

� �
∨ λi1 < 0∧−

λi2
2λi1

> bi

� �
∨ λi1 < 0∧ai < −

λi2
2λi1

≤ bi∧ai + bi +
λi2
λi1

< 0
� �

,

eΓi χ, ωi, bið Þ, λi1 > 0∧−
λi2
2λi1

> bi

� �
∨ λi1 < 0∧−

λi2
2λi1

≤ ai

� �
∨ λi1 < 0∧ai < −

λi2
2λi1

≤ bi∧ai + bi +
λi2
λi1

≥ 0
� �

,

eΓi χ ,ωi,−
λi2
2λi1

� �
, λi1 > 0∧ai < −

λi2
2λi1

≤ bi:

8>>>>>>>><>>>>>>>>:
ð56Þ
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Problem 12, find the optimal guidance-obstacle avoidance
command

~u∗ kð Þ = arg min
~u kð Þ

~J2 χ kð Þ, ~u kð Þð Þ = arg min
~u kð Þ

~u kð Þ − u∗ kð Þk kp

+ 〠
no

i

ζi F χ kð Þ, ~u kð Þ, ~e k kjð Þð Þ,ωið Þ,

ð60Þ

subject to

~u kð Þ ∈U, ð61Þ

J2 χ kð Þ, u∗ kð Þð Þ > 0: ð62Þ
By solving Problem 14, we minimize the threat of

obstacles while keeping the guidance command unchanged
as much as possible, thus the guidance accuracy and the
flight safety are both guaranteed. In the following part,
we will elaborate on the solution process of Problem 12
and Problem 14.

4.3. Solver for the Optimal Guidance-Obstacle Avoidance
Command. As an emerging algorithm in the deep learning
field, Adam has great advantages in solving both convex
and nonconvex optimization problems [37], it computes
the adaptive learning rate for each optimization variable
from estimates of the first and second moment of the gradi-
ent [38], thus improving the convergence speed of objective
function in many optimization scenarios. However, affected

by the initial solution, Adam is sometimes trapped in local
optima like most single solution-based algorithms and
requires further improvement in combination with specific
situations.
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Figure 20: Flight trajectory projections of interceptor and target in
case 4.
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Figure 19: Flight trajectories of interceptor and target in case 4.

Table 3: The initial states of the interceptor and the target in example 2.

x mð Þ y mð Þ z mð Þ θ π radð Þ ψ π radð Þ v m/sð Þ
Interceptor 0 300 0 0 -1/4 40

Target 5000 300 5000 0 3/4 30
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In this part, to get the optimal guidance-obstacle avoid-
ance command while ensuring the real-time performance
of control, the following arrangement is made:

(1) For high-dimensional optimal Problem 12 with a rel-
atively simple objective function, the Adam based on
single-point iteration is used for finding the optimal
solution u∗ðkÞ. To guarantee the initial feasibility, we
choose ûðP ; kÞ (which is constructed in Section 3.2)
as the initial solution. That is

u 0ð Þ P ; kð Þ = û P ; kð Þ ð63Þ

(2) For Problem 14 with a nonconvex objective function,
the Adam is extended to a population-based algo-
rithm. To expand the searching regions and help
jump out of local optima, the opposition-based
learning strategy is adopted when generating the ini-
tial population, which is to add the opposite individ-
uals of selected ones into the initial population [39],
in case the initial solutions may be far away from the
optimal one

The initial solutions selected for Problem 14 are ~u∗ðk −
1Þ, u∗ðkÞ, and ½0, 0�T, whose opposite individuals −~u∗ðk − 1
Þ and −u∗ðkÞ will also be included in the initial population.
Hence the initial population can be labeled as

~u 0ð Þ
1 = ~u∗ k − 1ð Þ,⋯,~u 0ð Þ

5 = −u∗ kð Þ
n o

: ð64Þ

The update rules for both uðiterÞðP ; kÞ and ~uðiterÞj , j = 1,
⋯, 5 are identical, here to unified description, we denote

uðiterÞðP ; kÞ, ~uðiterÞj as uðiterÞ ∈ℝNu, and J1ð·Þ, ~J2ð·Þ as Jð
uðiterÞÞ, so the update process of uðiterÞ can be described as
(65)–(70).

Get gradient with respect to the objective function

g iterð Þ = ∇u J u iter‐1ð Þ
� �

: ð65Þ

Update the biased first-moment estimate

η iterð Þ = β1η
iter‐1ð Þ + 1 − β1ð Þg iterð Þ: ð66Þ

Update the biased second-moment estimate

ν iterð Þ = β2ν
iter‐1ð Þ + 1 − β2ð Þg iterð Þ ⊙ g iterð Þ: ð67Þ

Compute the bias-corrected first-moment estimate

bη iterð Þ = η iterð Þ/ 1 − β1
iter

� �
: ð68Þ

Compute bias-corrected second-moment estimate

bν iterð Þ = ν iterð Þ/ 1 − β2
iter

� �
: ð69Þ

Update uðiterÞ

u iterð Þ = u iter‐1ð Þ − α ⋅ bη iterð Þ/
ffiffiffiffiffiffiffiffiffiffiffibν iterð Þ

p
+ ε

� �
: ð70Þ

Herein, all operations on vectors are element-wise, β1
and β2∈ð0, 1� are the decay rates for the moment estimates,
α∈ð0, 1� is the step size, and ε ∈ℝ+ is a small positive rational
number. The initial biased moment estimates meet ηð0Þ =
νð0Þ = ϑ.

Moreover, to make uðiterÞ = ½uðiterÞ1 ,⋯,uðiterÞNu �T meet the
control input constraints during iteration, the nonlinear
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Figure 22: Changes of control inputs in case 4.
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saturation function Satð•Þ is introduced.

Sat u iterð Þ
i Umax ij

� �
=

u iterð Þ
i , u iterð Þ

i

��� ��� ≤Umax i,

Umax i ⋅ sign u iterð Þ
i

� �
, else:

8><>:
ð71Þ

Then, uðiterÞ will be corrected as shown in

u iterð Þ = Sat u iterð Þ
1 Umax 1j

� �
,⋯,Sat u iterð Þ

Nu Umax Nuj
� �h iT

:

ð72Þ

The stop criteria of iteration are formulated according to
the number of invalid iterations and total iterations. Invalid
iterations refer to those where the values of the objective
function do not decrease significantly, so the number of
invalid iterations can be expressed as

κ = 〠
iter

i=1
σ J u ið Þ

� �
− J u i−1ð Þ

� �
+ ε0

� �
, ð73Þ

where ε0 ∈ℝ+ is a small positive rational number, σð•Þ is the
unit step function.

σ Jð Þ =
1, J ≥ 0,

0, J < 0,

(
ð74Þ

The iteration will continue until there is

κ ≥ �K∨iter ≥ K: ð75Þ

So the optimal solution of Adam based on single point
iteration can be determined as (76), or if the Adam is popu-
lation-based, the optimal solution will be determined after

iterations of all individuals are completed, that is

u∗ = arg min
u ið Þ

J u ið Þ
� �

, i = 0,⋯, iter ð76Þ

~u∗ = arg min
~u∗j

J ~u∗j
� �

, j = 0,⋯,NP ð77Þ

wherein ~u∗j is the optimal individual and NP is the pop-
ulation size.
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Figure 24: Flight trajectory projections of interceptor and target in
case 5.
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Figure 25: Changes of two distances in case 5.
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The complete pseudocode of the proposed hybrid solver
for Problem 12 and Problem 14 is listed in Algorithm 1.

Now, we have finished the design of the proposed guid-
ance approach with obstacle avoidance, whose complete
implementation at each sampling instant is shown in
Figure 7.

5. Numerical Simulation

In order to demonstrate the effectiveness of the proposed
guidance-obstacle avoidance approach, simulations are per-
formed in the single-obstacle scenario and multiobstacle sce-
nario, respectively. Target maneuver inputs in both
scenarios are randomly generated based on some common
input signals, such as sine wave and random square wave.
The simulation results of the proposed approach will be
compared with those of the improved APF method [24]
and APNG [6] in terms of guidance performance, obstacle
avoidance performance, and maximum control inputs
required. A Monte Carlo experiment is also performed to
further demonstrate the robustness and computation effi-
ciency of the approach.

5.1. Example 1 (Single-Obstacle Scenario). In this part, the
interceptor will encounter one of the three typical obstacles
in each case, to test the performance of the proposed
approach in dealing with simple scenarios. The shape and
position of the obstacle for each case are shown in Table 1.

The initial states of the interceptor and the target in three
cases are shown in Table 2.

In all three cases, the sampling period and the length of
the prediction horizon are set as Equation (78) and Equation
(79), thus we can obtain the actual terminal miss distance
according to Remark 9. The control input constraints for
the proposed approach are set to Umax 1 = 0:05 rad/s and
Umax 2 = 0:1 rad/s. The detection range of interceptor to
obstacles, also known as the range of repulsive force in the
APF method, is set to 400m, and the scale factors of APNG

are set to k1 = 10 and k2 = 10.

δ =
0:1, tgo ≥ δ,

tgo, else,

(
ð78Þ

P =
5, tgo > δ ⋅ P0,

1, else:

(
ð79Þ

Simulation results of each case are shown in
Figures 8–16, respectively. Wherein, Figures 8, 11, and
14 show the flight trajectories of the interceptor and tar-
get, it can be found that the interceptor using the pro-
posed guidance-obstacle avoidance approach has a
smoother trajectory than that using the improved APF
method and needs fewer corrective maneuver actions in
the endgame of guidance. Figures 9, 12, and 15 represent
the change in distance between the interceptor and target,
as well as the change in distance between the interceptor
and obstacle. It can be noticed that, in terms of guidance
performance, the proposed approach achieves the highest
guidance accuracy in all three cases, followed by APNG.
The improved APF method ranks last, still, its guidance
accuracy is acceptable, which is because the interceptor
using the APF method makes large-amplitude maneuver
actions in the endgame of guidance to pursue the target,
as shown in Figures 10, 13, and 16. However, for most
interceptors with limited maneuverability, it is impractical
to conduct such a maneuver that the instant angular
velocity is up to 60 rad/s (which represents an overload
of up to 240 g under the given velocity), so the guidance
accuracy of the improved APF method in practice may
be much lower than that in the simulation. The intercep-
tor using the proposed approach, by contrast, keeps its
control inputs within limits all through the guidance pro-
cess. In terms of obstacle avoidance performance, the
interceptors using the proposed approach and using the
improved APF method successfully avoid collision in all
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Figure 26: Changes of control inputs in case 5.
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three cases; however, under the same set of detection
range, the interceptor using the proposed approach per-
forms evasive maneuver earlier than that using APF and
requires smaller control inputs.

5.2. Example 2 (Multiobstacle Scenario). In this part, the
random terrain with multiple obstacles is created for each
case (case 4, case 5, and case 6), and the proposed
approach will be tested whether it can adapt to more com-
plicated situations. The terrain and the target maneuver
input in each case are shown in Figures 17 and 18. The
initial states of the interceptor and the target in three cases
can be seen in Table 3, and other simulation parameters
are the same as those in example 1. Similarly, the maxi-
mum control inputs are still used for comparison together
with the guidance accuracy and obstacle avoidance
performance.

Simulation results of each case are shown in
Figures 19–30, respectively. Wherein Figures 19, 23, and
27 show the flight trajectories of the interceptor and
the target in 3D space, whose projections on the plane
zOx are shown in Figures 20, 24, and 28. Figures 21,
25, and 29 represent the change in distance between
the interceptor and the target, as well as the change in
minimum distance between the interceptor and obstacles.
Figures 22, 26, and 30 show the change of control inputs
for different methods. It can be found that the intercep-
tor using the improved APF method approaches the tar-
get faster in the initial phase, whereas interceptors using
the proposed approach and APNG end up with a
smaller miss distance. The principal reason is that the
latter two methods focus more on the future motion of
both sides, while the former only takes the current posi-
tion of the target into account, thus making it unable to
cope with the target maneuver in the endgame. It also
can be noted that in case 5 and case 6, the improved
APF method fails to escape the local optima when
addressing overlapping obstacles, so the interceptor can-
not further approach the target, while the interceptor

using the proposed approach successfully avoids multiple
overlapping obstacles and achieves the highest guidance
accuracy in all three cases, which illustrates that the pro-
posed approach is more robust when facing complicated
situations. Moreover, with the proposed approach, the
control inputs of the interceptor can always be limited
to the given ranges, which provides the condition for
applying the proposed approach to other types of
interceptors.
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Figure 28: Flight trajectory projections of interceptor and target in
case 6.
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Figure 29: Changes of two distances in case 6.
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5.3. Monte Carlo Experiment. In order to further demon-
strate the robustness and computation efficiency of the pro-
posed approach, a Monte Carlo experiment is performed.
Under the terrain condition of case 5, the interceptor is
required to intercept a target in each simulation, where the
target maneuver input is generated based on some random
signals (see Table 4 for the generation rules). The experi-
ment is carried out with the hardware of an Intel (R) Core
(TM) i7-10750H CPU at 2.60GHz, 2.59GHz, and 16GB
RAM, and the parameters of the hybrid solver are set to
�K1 = 3, K1 = 100, �K2 = 5, andK2 = 30. The initial states of
both sides and other simulation parameters are the same as
those in example 2.

To make the results more representative, the cases where
the interceptor does not need to avoid obstacles are excluded
from the experiment. For each simulation, the terminal miss
distance, the minimum distance between the interceptor and
obstacles, and the average computation duration (at each
sampling instant) are recorded. Finally, 100 groups of results
will be retained.

Figures 31–33 show the results of each simulation.
Figures 34–36 show the statistical distribution and cumula-
tive frequency of the above three indexes. Wherein, the aver-
age terminal miss distance of all simulations is 1:7315 × 10−5
m, the total success rate of obstacle avoidance is 96%, and
the average computation duration at each sampling instant
is 0.0113 s. In terms of robustness, the proposed approach
can achieve a high guidance accuracy against maneuvering
targets and a satisfying obstacle avoidance success rate under
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Figure 30: Changes of control inputs in case 6.

Table 4: The generation rules of the target maneuver input in Monte Carlo experiment.

Random number μ1iμ1i ∈ 0, 1½ �, i = 1, 2 Form of signal Maneuver input wi tð Þ (μ2i, t ji are random numbers)

μ1i ≤ 0:33 Constant wi tð Þ = 2μ2i − 1ð Þwmax i, μ2i ∈ 0, 1½ �
0:33 < μ1i ≤ 0:67 Sine wave wi tð Þ =wmax i sin μ2itð Þ, μ2i ∈ 0, 1½ �

μ1i > 0:67 Square wave wi tð Þ =
wmax i, t ∈ t2j,i, t2j+1,i

Â Á
,

−wmax i, t ∈ t2j−1,i, t2j,i
Â Á

,

(
, t1i < t2i <⋯∈ℚ+
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Figure 31: Terminal miss distance of each simulation.
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obstacles of each simulation.
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complicated terrain conditions. As for computation effi-
ciency, the average computation duration of the approach
is about one-tenth of the set sampling period, which means
a relatively ample response time left for the control actuator
of the interceptor.

From the results of the Monte Carlo experiment, the
proposed approach can be extended to more application sce-
narios and has the opportunity to be further applied to engi-
neering practice.

6. Conclusion

Three-dimensional guidance against maneuvering targets
with requirements for obstacle avoidance is studied in this
paper, and a novel guidance approach based on optimization
techniques and MPC theory is proposed. Firstly, we decom-
pose the optimal guidance problem into two-associated sub-
problems and provide the overall scheme of guidance on this
basis. Secondly, the MPC controller with disturbance estima-
tor is designed for the maneuvering target interception, thus
we obtain a FHOCP in place of the optimization problem with
uncertain terminal time. Then, to address the optimal
guidance-obstacle avoidance problem, we design a unified
function to assess the threat from obstacles of different shapes.
Finally, a hybrid solver is developed to get the real-time guid-
ance command. Numerical simulation and a Monte Carlo
experiment are carried out to demonstrate the effectiveness
and robustness of the proposed approach, and it is shown that,
compared with some existing methods, the guidance approach
presented in this paper has obvious advantages in both guid-
ance and obstacle avoidance performance, even if the maneu-
verability of interceptor is limited. Our future work will focus
on the cooperative guidance of multiple interceptors in a com-
plex environment with threats and obstacles, the terminal
impact angle will also be considered.

Appendix

Proof of Theorem 11. Apply uκ to the system, then calcu-
late the second derivative of r with respect to time, we
can get

€rx = vM −uκ1 sin χ4 cos χ5 − uκ2 cos χ4 sin χ5ð Þ + ~wx,

€ry = vM uκ1 cos χ4ð Þ + ~wy,

€rz = vM uκ1 sin χ4 sin χ5 − uκ2 cos χ4 cos χ5ð Þ + ~wy,

ðA:1Þ

rx€ry − ry€rx = uκ1vM ry sin χ4 cos χ5 + rx cos χ4
À Á

+ uκ2vMry cos χ4 sin χ5 − ry ~wx + rx ~wy

= uκ1 rx _χ3 − rz _χ1ð Þ sin χ5 + vM ry sin χ4 cos χ5 + rx cos χ4
À ÁÂ Ã|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Ξ

+ K1 sin2χ5 − K2 sin χ5 cos χ5 − ry ~wx + rx ~wy:

ðA:2Þ
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Figure 33: The average computation duration of each simulation.
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According to (29), we have

Substituting (A.3) into (A.2), yields

rx€ry − ry€rx = K1 − ry ~wx + rx ~wy = −λ rx _ry − ry _rx
À Á

: ðA:4Þ

Similarly, we can get

ry€rz − rz€ry = K2 − ry ~wz + rz ~wy = −λ ry _rz − rz _ry
À Á

: ðA:5Þ

Simultaneous Equations (A.4) and (A.5), we obtain

rx€rz − rz€rx = −λ rx _rz − rz _rxð Þ: ðA:6Þ

Also, according to (28), there are

_JT = 2ρ rx€ry − ry€rx
À Á

rx _ry − ry _rx
À Á

+ ry€rz − rz€ry
À Á

ry _rz − rz _ry
À ÁÂ

+ rx€rz − rz€rxð Þ rx _rz − rz _rxð Þ� = −2λρ rx _ry − ry _rx
À Á2h

+ ry _rz − rz _ry
À Á2 + rx _rz − rz _rxð Þ2

i
= −2λρL,

ðA:7Þ

_L = −2λL ≤ 0: ðA:8Þ
Then, calculate the integral of Equation (A.7) from k to

k + 1, we can get

JT k + 1ð Þ − JT kð Þ =
ðk+1
k

JT τð Þdτ =
ðk+1
k

− 2λρL τð Þdτ ≤ −2λρδL k + 1ð Þ:

ðA:9Þ

Applying

λ >
1

2 ρ − 1ð Þδ , λ ∈ℝ ðA:10Þ

to (A.9), yields

JT k + 1ð Þ − JT kð Þ + L kð Þ ≤ −
ρ

ρ − 1ð Þ L k + 1ð Þ + L kð Þ

= −
ρL k + 1ð Þ − ρL kð Þ + L kð Þ

ρ − 1ð Þ = −
JTL k + 1ð Þ − JTL kð Þ + L kð Þ

ρ − 1ð Þ :

ðA:11Þ

Therefore,

JT k + 1ð Þ − JT kð Þ + L kð Þ ≤ 0: ðA:12Þ

That is to say, for any k > 0, under the auxiliary control-
ler (29), inequality (A.12) holds.

Then, considering the backward difference of the objec-
tive function at the instant k, it is

J1 kð Þ − J1
∗ k − 1ð Þ = JT k + P kjð Þ − JT k + P − 1 k − 1jð Þ

+ 〠
P−1

l=0
L χ k + l kjð Þð Þ − 〠

P−1

l=0
L χ∗ k + l − 1 k − 1jð Þð Þ

ðA:13Þ

Apply ûðP ; kÞ at the instant k. Because ûðk + ljkÞ = u∗

ðk + ljk − 1Þ and l = 0,⋯, P − 2, there are Lðχðk + ljkÞÞ = L
ðχ∗ðk + ljk − 1ÞÞ and JTðk + P − 1jk − 1Þ = JTðk + P − 1jkÞ,
then Equation (A.13) is equal to

J1 kð Þ − J1
∗ k − 1ð Þ = JT k + P kjð Þ − JT k + P − 1 kjð Þ

+ L χ k + P − 1 kjð Þð Þ − L χ∗ k − 1 k − 1jð Þð Þ: ðA:14Þ

Substituting (A.12) into (A.14), yields

J1 kð Þ − J1
∗ k − 1ð Þ ≤ −L χ∗ k − 1 k − 1jð Þð Þ: ðA:15Þ

Select Lyapunov function as VðkÞ = J1
∗ðkÞ, then there

is

V kð Þ −V k − 1ð Þ ≤ J1 kð Þ − J1
∗ k − 1ð Þ ≤ −L χ∗ k − 1 k − 1jð Þð Þ:

ðA:16Þ

Therefore, the guidance system constructed on MPC is
exponentially stable, and Theorem 11 holds.
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Ξ =
K1 cos χ5 + K2 sin χ5ð Þ rx _χ3 − rz _χ1ð Þ sin χ5 + vM ry sin χ4 cos χ5 + rx cos χ4

À ÁÂ Ã
rx _χ1 + ry _χ2 + rz _χ3

=
K1 −rx _χ1 sin2χ5 + rz _χ3 cos2χ5 + ry _χ2 cos2χ5 + rx _χ1

À Á
rx _χ1 + ry _χ2 + rz _χ3

+
K2 rx _χ3 sin2χ5 + rz _χ3 cos χ5 sin χ5 + ry _χ2 cos χ5 sin χ5 − rx _χ3

À Á
rx _χ1 + ry _χ2 + rz _χ3

= K1 cos2χ5 + K2 cos χ5 sin χ5:

ðA:3Þ
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