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The compressor geometric variable system is vital for aeroengines, as it affects their performance and design. To monitor the
compressor geometric variable system states and detect anomalies in real time, a t-step forecasting method based on the MAE
(masked autoencoders) model was proposed in this article. Unlike previous studies that used simulated or lab-generated data,
we use actual flight data recorded by the aircraft data acquisition system to make our results more realistic. Through our
experimental efforts, the feasibility of forecasting the compressor geometric variable system based on the MAE model is
verified. That is not only the first application of transformer models with a masked pretraining mechanism in time series
forecasts but also taking the lead in exploring the possibility of this key system forecast. We also test the generalizability of our
method across different types of aeroengines. Finally, to make our theories more reasonable and convincing, experiments on
different aeroengine states, including the transition state and the steady state, are carried out.

1. Introduction

In the field of civil aviation, one of the key drivers for the
development of aeroengines is to comprehend and be profi-
cient in the operational protocols of different systems.
Enhancing the maintenance efficiency of aeroengines, ensur-
ing their safety and airworthiness, and optimizing the key
system functions are paramount for the improvement of
aeroengines’ design ability and for guaranteeing flight safety
[1–5]. As the basic control system of the engine, the com-
pressor geometric variable system has the responsibility of
stabilizing the flow state of the gas path.

If the control of the airflow state of the compressor is
unstable, stall phenomena will occur [6]. If this phenome-
non persists, the compressor blades and aeroengine compo-
nents will experience strong vibration, and the blades could
end up breaking. Additionally, the exhaust temperature of
the engine will rise, and the thrust may suddenly decrease.
In severe cases, the aeroengine may be damaged or even
destroyed. As a result, the compressor geometric variable
system is crucial to the process of controlling the flow path.
Therefore, researching the system’s code of operation and
potential developments could help airlines and non-OEMs

(original equipment manufacturers) gain a thorough under-
standing of the essential components of aeroengines.

In this study, we will explore the feasibility of forecasting
the compressor geometric variable system and attempt to
assess the effectiveness of this approach in various types of
aero engines. The variable stator vane (VSV) system and
the variable bleed valve (VBV) system make up the compres-
sor geometric variable system which is a key component of
the entire engine gas path system. Figure 1 shows the general
structure of aeroengines. In the compressor, the entering
fluid will be pressurized by first accelerating it via the kinetic
energy imparted in the rotors, and then diverging channels
will slow the fluid down so that the kinetic energy could be
converted into potential energy [7]. However, rotating stalls
and surges will make the system unstable, which means the
aircraft’s airworthiness would be influenced by the unse-
cured status of the engine.

When the compressor speed is consistent, increasing the
airflow of the compressor will increase the axial velocity of
the airflow (ca), and the attack angle (i) will decrease or even
be negative. If the negative value is too large, the separation
of the blade basin occurs, and a vortex zone forms in the
blade basin. Although the vortex zone will not continue to
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expand, the separation of the blade basin will reduce the
operating efficiency of the blade and the flow capacity of
the airflow at the section. Hence, the results will reduce the
airflow at the compressor inlet and increase the degree of
former-stage attack angles. In addition, decreasing the air-
flow of the compressor will decrease the axial velocity of air-
flow (ca), and the attack angle (i) will increase. If the attack
angle is too large, the airflow will separate from the back of
the blade, which is known as the stall. With the compressor
rotating, the stall area rotates in the same direction at a lower
speed and gradually expands, which is called the rotating
stall. Figure 2 presents these two kinds of burbling.

In order to avert the potentially dire consequences of bur-
bling, the compressor geometric variable system will be highly
instrumental in ensuring that this phenomenon is effectively
taken care of in the compressor path. Furthermore, the VSV
and VBV structures can modify the fluidic state by changing
the angle of the VSV and the opening of the VBV, thus
guaranteeing stable and efficient engine operation [8].

The introduction of artificial intelligence (AI) offers
researchers the opportunity to model aeroengine systems
and verify conjectures concerning the interaction of factors
more quickly than was previously attainable due to the com-
plexity of aeroengine studies. However, previous research on
the compressor has not yet encompassed forecasting and
modeling of relevant control systems; rather, it has been pri-
marily devoted to fault diagnosis, fault prognosis, and flow
forecasting. Castilho et al. presented an aircraft bleed valve
fault classification method using machine learning methods
[9]. Li et al. used a type of neural network to optimize the
stator vane settings of multistage compressors [10]. Yan
started research on fitting the operation curve of variable
bleed valves [11]. Wang et al. presented an artificial immune
algorithm to study the fault diagnosis of the variable bleed
value system [12]. Cao et al. employed the least square sup-
port vector machine algorithm to investigate surge fault
diagnosis [13]. Xuyun et al. utilized a type of neural network
to forecast exhaust gas temperature [14]. Shuming et al. con-
ducted a study on the fitting approach of the aeroengine
baseline equation [15]. In addition to the references men-

tioned above, similar research is primarily conducted in rela-
tion to the aforementioned aspects. However, these analyses
of aeroengine compressors have certain drawbacks.

(1) Datasets. Most of the data used in current compres-
sor system research is sourced from open datasets,
software simulations, or laboratory simulations,
which puts limitations on their ability to accurately
reflect the actual conditions of aeroengines. On the
contrary, datasets that are collected during actual fly-
ing conditions are more effective in providing a more
accurate representation of aeroengines

(2) Limited parameters. Due to the complexity of an
aeroengine, it is indispensable to take into account
all the relevant elements that can affect the compres-
sor. The studies aforementioned have only focused
on VSV or VBV parameters, neglecting other aspects
and leading to incomplete conclusions

(3) The applicability of the experimental conclusion is
questionable due to the lack of a control experiment.

VBV VSV

Figure 1: The general structure of aeroengines.
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Figure 2: The phenomenon of burbling.

2 International Journal of Aerospace Engineering



Table 1: Parameter selection (A).

Parameter Unit

Ambient pressure (P0) PSIA

High-pressure compressor outlet pressure (PS3) PSIA

Throttle lever angle (TRL) °

Fan inlet temperature (T12) °C

High-pressure compressor inlet temperature (T25) °C

Total air temperature (TAT) °C

Low-pressure rotor speed (N1) %RPM

High-pressure rotor speed (N2) %RPM

Variable stator vane (VSV) °

Variable bleed valve (VBV) °

Table 2: Parameter selection (B).

Parameter Unit

Altitude Feet

Throttle lever angle (TRL) °

High-pressure compressor inlet temperature (T25) °C

High-pressure compressor outlet temperature (T3) °C

Total air temperature (TAT) °C

High-pressure compressor outlet pressure (PS3) PSIA

Low-pressure rotor speed (N1) %RPM

High-pressure rotor speed (N2) %RPM

Variable stator vane (VSV) °

Variable bleed valve (VBV) °
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Figure 3: The result forecasted by masked autoencoder (MAE) model based on type B aeroengines.
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The effectiveness of other aeroengine types must also
be taken into account in order to make the outcome
more reliable and applicable

(4) The study of forecasts is always lacking, which is an
important part. The description of the forecasting
method remains unclear. Analyzing fault diagnosis
and failure prognosis is a pressing issue; however, it
falls under the realm of fault detection. If the com-
pressor geometric variable system can be forecasted,
an early fault detection requirement may be satisfied,
while also aiding in the analysis of the underlying
principles behind the entire compressor system

In this article, a new methodology based on masked
autoencoders (MAE) and multiparameter fusion is proposed
for forecasting the aerodynamic-engine compressor geomet-
ric variable system. To create the datasets for this research,

data from aircraft data-gathering systems were utilized. By
comparing the abovementioned related research and the
various questions raised, our paper’s novelty and contribu-
tion are as follows:

(i) This paper is the pioneering effort to analyze the
feasibility of predicting the geometric variables of
an aeroengine compressor system and to suggest a
highly precise method. Additionally, the method
has been extended to different types and varying
conditions of aeroengines, illustrating its robustness
to an appreciable degree

(ii) The data for this study was sourced from aircraft data
acquisition systems. In comparison to the open-
source datasets that are typically utilized by other
researches, real flight data can more accurately reflect
actual compressor operation status. This promotes
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Figure 4: Comparison results of interpolation methods.
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the accuracy of the AI model’s predictive results and
brings them closer to the desired outcome

(iii) This article leverages the MAE model to address a
time series problem. Not only is this an example
of the straightforward application of MAE in the
field of time series but it also proves the usefulness
of the model for multitarget prediction tasks by per-
forming pretraining tasks aided by the masked
mechanism, which is conducive to the exchange of
advanced technologies across various disciplines
for the purpose of addressing important issues.

Figure 3 displays parts of the outcomes anticipated
by the MAE model.

The forecasted results of the masked autoencoders
(MAE) model, displayed in the above image as changes in
VBV opening (unit: °) and VSV angle (unit: °), are based
on type B aeroengines.

2. Data Preprocessing

2.1. Data Source. Previous relevant studies mainly made use
of simulation data, open-source datasets, datasets generated
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from labs, and aircraft data acquisition systems. In this arti-
cle, we utilized datasets from the aircraft data acquisition
system data which were recorded during the actual flight,
providing us with more precise information than traditional
methods. Specifically, these systems are designed to collect
various critical parameters of planes in real-time, enabling
a more accurate assessment of the compressor’s operational
state. In addition to various and detailed parameters, contin-
uous storage, easy export, and the ability to process data
[16], our datasets also have the crucial advantage of increas-
ing the validity and thoroughness of our research. It is
important to note that the type of aeroengine we focused
on was the dual-rotor turbofan engine; thus, the datasets
specifically pertain to this type of engine and cannot be
applied to others.

In addition, the operation conditions of an aeroengine
are typically divided into a transition state and a steady state,
which always run through each complete flight. Thus, the
aircraft data acquisition system records not only the entire
flight process but also the state changes in the aeroengine
throughout it. To enable the model to recognize the current
aeroengine states based on the input data, random data sam-
ples are extracted and fed into the model. At this time, both
steady state and transition state data are randomly chosen so
as to provide the model with the necessary input. With
enough complexity, the model can learn the patterns of these
two states during training and identify the current state
based on the input data during the prediction process. This
type of random data extraction training model grants the
model universality and eliminates the need for separate

modeling. To prove the feasibility of predicting these two
aeroengine states as well as the possibility of general models,
this paper will discuss them as part of the experiment in Part
4.2.3.

2.2. Parameter Selection. Our goal with this work is to accu-
rately forecast the variation of VSV and VBV. Accordingly,
the angle of VSV as well as the opening of VBV are used
as target values. It is important to note that in this article, sit-
uations wherein time series data is utilized are referred to as
“steps.” In the present research, the step is defined as the fre-
quency of recording data. One step can be representative of

Add & Norm

Softmax
Output

probabilities
Linear

Add & Norm

Add & Norm

Add & norm

Multi-head
attention

Masked
multi-head
attention

Feed
forward

Feed
forward

Add & Norm

Multi-head
attention

Input
embedding

Output
embedding

Inputs Outputs (shifted right)

N ×

N ×

Positional
encoding

Positional
encoding

Figure 7: The transformer-model architecture.

X

X
F (x)

F (x) + X 

relu

relu

identity

Weight layer

Weight layer

Figure 8: Residual learning: a building block.

6 International Journal of Aerospace Engineering



the sensor acquisition rate which is 1Hz in our study. To
forecast 10 in the future, we primarily use correlative param-
eters in 100 steps. And the reason for utilizing these step set-
tings is that applying the MAE model to longer input
timespans allows it to more accurately recognize the state
and changes within the input data, thus making forecasting
more accurate.

In the process of parameter selection, the interaction of
factors, previous relevant research settings, and based on
the technology of aeroengines as well as the capability of
data acquisition [17, 18] should be considered in order to
provide better forecasting and tracking of changing trends
in key structures and guarantee the stable and safe operation
of the superior system, thereby ensuring the airworthiness of
aircraft. The following parameters of type A aeroengines in
Table 1 will be selected.

Different types of aeroengines have different aircraft data
acquisition systems; thus, the parameters that can be col-
lected vary slightly depending on the type of aeroengine. In
order to reduce the interference of extraneous variables, we
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Table 3: Parameters of cosine annealing LR.

Parameter Meaning

ηimin Minimum learning rate

ηimax Maximum learning rate

Tcur Current epoch

Ti Number of periods
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endeavor to maintain the selection of essential parameters
for type B aeroengine in Table 2.

In addition, the input values will be the randomly sam-
pled continuous 100 steps as one batch, and the output will
directly be the VSV or VBV values (°) in the next 10 steps.
The 100-step data might include enough and essential latent
future information to predict what we need.

2.3. Interpolation of Missing Data. In this paper, we com-
pared the different interpolation methods such as linear,
nearest, zero, quadratic, cubic, and barycentric. Figure 4
shows the results of the above interpolation methods using
the P0 factor in one flight. It is apparent from this figure that
each method does not affect the general trend, but the linear
is smoother and has no outlier data. Consequently, the linear
will be a good concern relatively. Figure 5 presents the com-
parison of complete data and raw data using the P0 factor in
one flight.

2.4. Random Sampling. Using a random sample strategy, a
more general and accurate model will be built. This method
can improve how well our model matches the actual latent
control function. Because we hope that our model can pre-

dict factors’ changing and interaction instead of learning
the temporal relationship of flight segments [19, 20], one
batch consists of 100 continuous steps as input values and
10 uninterrupted steps as output values. In the experiment
section, we will randomly sample 64 batches as the input
to a round of training. And Part 4.2.3 will present the strat-
egy’s accurate outcome.

3. Method

To explore whether the features of the algorithm itself could,
in certain cases, increase the accuracy of forecasting target
values. To that end, some classic and advanced learning
algorithms have been utilized in this study for comparison.
But it is not the focus of our work. This study explores the
feasibility of forecasting the compressor geometric variable
system using the MAE model, a cutting-edge deep learning
algorithm that is fresh to the field of computer vision (CV).

3.1. Masked Autoencoders. This state-of-the-art computer
vision (CV) algorithm was proposed by He et al. [21] in
2021. This model is the application of a transformer [22]
in CV, and it uses the mask mechanism in pretraining,
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which is similar to BERT [23]. Figure 6 shows the entire idea
of this architecture. It is simple but powerful. The model
could further learn latent representation among parameters
by reconstructing the original image that was randomly
masked for 75% of the area in the pretraining task; hence,
a difficult task is created that cannot be easily solved by
extrapolation from visible neighboring areas (see Figure 6).
Then, the highly sparse input creates an opportunity for
designing a powerful encoder.

Inspired by this idea, pretraining could enhance the
learning of the global relationship between parameters, and
adding positional embeddings could mean that the latent
temporal information would be learned.

The traditional recurrent neural network (RNN) trans-
mits information in time sequence, but it cannot have good
parallelism. Although the convolutional neural network
(CNN) may produce multichannel output to learn impor-

tant features, it is difficult to merge remote data. The trans-
former uses multihead attention to simulate multichannel,
hopefully learning the key features we want. The RNN uses
the output from the last step to transmit it to the next step
for input. In contrast, the transformer directly grabs the
information throughout the sequence through the attention
layer for aggregation. Therefore, the attention layer already
has the features that I need. As a result, the model only
needs to focus on how to effectively capture the sequence
information that we need. The structure of the transformer
is shown in Figure 7. To meet our research aim, we have
lightly modified these models to better match our research.
We changed the size of the kernel, stride, and padding so
that we could directly input datasets into the models. In
addition, we added one or two linear layers at the rear of
the models. Thanks to the above methods, we cannot only
adapt the model to the dimensions of the dataset perfectly
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Figure 14: (a, b) The partial forecast result of VSV angles (type A aeroengine).
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but also better fit the prediction results through the linear
layer.

3.2. Residual Network. According to experience, the deeper
the network is in the field of deep learning, the better it is
able to extract more complicated features. However, further
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Figure 15: The distribution of errors and the box plot of results (VSV, type A aeroengine).
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Figure 16: The entire forecast result of VBV opening (type A aeroengine).

Table 4: Comparison of models’ test loss.

Model Loss (MSE)

SENet18 5.098

MAE 8.931

ResNet18 9.024
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research reveals that despite the network depth increases, the
model presents a degradation phenomenon, which indicates
that as the grid’s depth rises, the accuracy of the network sat-
urates or even declines. But this problem is not caused by
overfitting, because adding extra layers to the appropriate
model will result in larger training errors [24, 25]. In an ideal
environment, the result of deeper network training will be
no worse than that of the shallow network. If the previous
shallow network has done the training work, the latter deep
network only needs to be used for identity mapping, which
means the input X is equal to the output X. It is equivalent
to learning the weight as 1/n so that the input is equal to
the output. Unfortunately, in practice, it turns out that the
optimum theoretical solution cannot be found by stochastic
gradient descent (SGD). Based on the above problems, the
residual network proposes a deep residual learning frame-

work and constructs an identity mapping to solve the degra-
dation problem when the network depth increases. If the
expectation function is expressed as H (x) and the learned
result is X, the next layer network does not learn a new x
as before but learns the residual f (x) between H (x) and
X. Therefore, the output of the next layer is the sum of the
shortcut connections of the f (x) and the X. And the technique
will not increase the computational complexity. The frame-
work of residual networks is presented in Figure 8.

3.3. Squeeze-and-Excitation Network. SENet starts from the
feature channel, models the relationship between the feature
channels through two operations: sequence and exception,
and automatically obtains the importance of each feature
channel, which means the weight, through learning. Then,
depending on the weight learned, we could improve the
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Figure 17: (a, b) The partial forecast result of VBV opening (type A aeroengine).
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useful features and suppress the features that are not useful
for the current task.

The squeeze operation compresses features along the
spatial dimension and converts each binary feature channel

into a real number. Here, global average pooling is used as
the squeeze operation. In this way, the real number has a
global receptive field to some extent, and the output dimen-
sion matches the number of inputs in the feature channels,
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which represents the global distribution of response on the
feature channels and enables the layer close to the input to
obtain the global receptive field.

Fsq ucð Þ = 1
H ×W

〠
H

i=1
〠
W

j=1
uc i, jð Þ, z ∈ RC: ð1Þ

The exception operation builds the correlation between
channels across two full connection layers and produces
the same number of weights as the input features.

Fex z,Wð Þ = σ W2 Re LU W1zð Þð Þ,
W1 ∈ R

C/r×C ,W2 ∈ R
C×C/r:

ð2Þ

The entire operation can be seen as the learning of the
weight coefficients of each channel through the SE block
and a weighting of each channel item by item through scale.
In this way, we could make the model more capable of iden-
tifying the features of each channel. It is the application of
the attention mechanism to channels. Therefore, the features
in each channel that have an important impact on the model
can be extracted through the SE module. Figure 9 shows the
framework of the SE block.

4. Prediction Experiments

In our experiment section, the feasibility of prediction must
be tested and the applicability of forecasting verified. It
should be noted that the datasets we used in this paper are
neither standardized nor normalized; the angle (°) of VSV
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Figure 20: (a, b) The partial forecast result of VSV opening (type B aeroengine).
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and the opening (°) of VBV can be directly reflected in the
output. And the mean square error (MSE) will be used to
measure the performance of our results. Therefore, the result
of MSE is the square of the angle (°) and the opening (°).
Finally, the x-axis step in the following figure represents
the change over time.

1
m
〠
m

i=1
yi − ŷiÞ2

�
ð3Þ

Meanwhile, all MSEs are yielded by the mean error of
ten different offset experiments which use the minimum test
error model. And the different offsets will make the data
input to be different. But all input data comes from the same
test datasets and has only the offset. And the offset will make

the extracted data different every time. It should be noted
that the unit of VSV and VBV systems predicted in this
paper is the degree (°), so the numerical result forecasted
in subsequent experiments is the square of this unit, while
the y-axis of the trend chart is this unit. And the gray area
between different curves is the loss (the difference between
the true and the forecasted). Our experiment simulates a real
situation, where the model receives the data collected by the
aircraft data acquisition system and makes predictions.
Therefore, the difference between the data-generation envi-
ronment and our experiment is small. This method is similar
to testing the model by inputting the test set and getting the
output of the model.

4.1. Hyperparameter Setting. The optimizer we used is adap-
tive moment estimation with decoupled weight decay

40

35

30

25

15

5

–5

Lo
ss

10

0

0 100 200 300 400 500
Step

600 700 800 900

20

True
Pred

(a)

900 1000 1100 1200 1300 1400 1500 1600 1700
Step

40

35

30

25

15

5

–5

Lo
ss

10

0

20

True
Pred

(b)

Figure 23: (a, b) The partial forecast result of VBV opening (type B aeroengine).
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(AdamW). And the setting of hyperparameters will be pre-
sented later [26]. Hyperparameters β1 = 0:9, β2 = 0:95, and
weight_decay = 0:05 during pretraining. And we employ
β1 = 0:9, β2 = 0:999, and weight_decay = 0:05 during down-

stream tasks. In order to control the learning rate and pre-
vent wandering near the optimal solution, we adopt a
cosine annealing learning rate. And according to Formula
(4), we could show the variation in general trends of learning
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Figure 24: The distribution of errors and the box plot of results (VBV, type B aeroengine).
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Figure 25: The transition state (VSV, type A aeroengine).
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rate when we are training models (see Figure 10). The mean-
ing of these parameters will be presented in Table 3.

ηlr = ηimin + 0:5 × ηimax − ηimin
� �

× 1 + cos Tcur
Ti

π

� �� �
: ð4Þ

In order to divide the proportion of pretraining datasets,
we carried out some experiments. Figures 11 and 12 show
the results. The results show that for the two types of aeroen-
gines to produce the optimum outcomes, 60% pretraining
data is required. And we chose not to increase the propor-
tion of pretraining data in order to avoid affecting the formal
training process. In addition, it is obvious that directly train-

ing the MAE model cannot reach the minimum error; hence,
the pretraining task is necessary.

4.2. Result Analysis

4.2.1. Feasibility Analysis. Figure 3 presents the changes in
VSV angle and VBV opening forecasted by the MAE model
in type B aeroengines. But the type A aeroengine is consid-
ered as our study objective during the initial stage of our
research. To explore the feasibility of forecasting the com-
pressor geometric variable system, we carried out some
key experiments on the type A aeroengine. Figures 13–16
show the details of the VSV angle prediction results. The
difference between the real value line and the predicted
value line is clearly shown in these figures. Whether in
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Figure 26: The steady state (VSV, type A aeroengine).
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whole or in part, the error is low, and the overall trend of
the forecast is consistent with the real value line. And the
average value of test experiments is 8.931 (the square value
of angles °). It is clear that the forecast result is acceptable.
The comparison results of different models are presented
in Table 4. It should be noted that the triangle in all box
plots represents the position of the average value. Circles
represent outliers.

The MAE model obtains a good score but is inferior to
the SENet18 model. According to the structures of the two
models, the reason why the MAE model cannot achieve
the best could be that the MAE model is an extremely com-
plex model, which means that in addition to its own power-
ful pretraining mechanism, it also needs more data to
complete learning tasks. And the SENet18 is a light learning

model, which means that with the same data scale, it might
train the model faster [21, 27]. This is the reason why the
SENet18 performs better. Therefore, in future research, the
datasets need to be expanded.

In addition, Figures 16–18 present the details of the VBV
opening prediction results. The average value of test experi-
ments is 139.339 (the square value of angles °). The figures
below show that the forecast errors of VBV openings are
larger than those of VSV angles. And 139.339 is a big num-
ber, but the results of the forecast in these pictures are still
acceptable. It can be seen that the VBV opening is a wide
range of changes, which is the reason why the value of this
error is gone great at the numerical level, but the forecasting
effect is still relatively accurate. The MAE model can still
track the change in VBV openings immediately and
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Figure 29: The steady state (VBV, type A aeroengine).
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effectively. Therefore, the feasibility of forecasting the com-
pressor geometric variable system is verified.

4.2.2. Applicability Analysis. Part 4.2.1 shows the proof of the
feasibility of forecasting the compressor geometric variable
system. And the applicability of the forecast will be demon-
strated in this part. It should be noted that all experiments in
this part are based on type B aeroengines. Figures 19–21
show the details of the VSV angle prediction results. And
the average value of test experiments is 2.709 (the square
value of angles °). It can be seen from these figures that, com-
pared with the forecast on the previous type of aeroengines,
the prediction on this type is significantly more accurate,
and the error is obviously reduced.

The same conclusion can also be obtained from the fol-
lowing results. Figures 22–24 show the details of the VBV
angle prediction results. And the average value of test exper-
iments is 6.973 (the square value of angles °). It should be
noted that regardless of the forecasting results of VSV angles
or VBV openings, the gap between the real value line and the
forecasted value line is relatively low than that on the type A
aeroengine. Similarly, one can see from these figures that the
MAE model can track the variation of angles and openings
in time.

The results in this part perform better than the results
in Part 4.2.2. In other words, the forecast accuracy of type
B aeroengine compressor geometric variable systems is
more accurate than that of type A. While there is a little dif-
ference in data size between the two types of aeroengines,
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Figure 30: The box plot of the two states (VBV, type A aeroengine).
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the hyperparameter set remains the same. Therefore, the
reason why the results in this part are better is that the
parameters we select might be more suitable for the forecast
of the type B aeroengine compressor geometric variable sys-
tem. And this could result in more appropriate and vital
features to be learned by the MAE model. Hence, the
MAE model could better analyze and track the change in
the parameters that need to be forecasted. As a result,
parameter selection plays an essential role in forecasting
tasks. However, selecting parameters is not the main object
of this article. This paper concentrates on the feasibility and
applicability of forecasting the compressor geometric vari-
able system, so the topic of parameter selection requires
another subject.

4.2.3. Aeroengine State Analysis. In this part, to make our
thoughts more reasonable and convincing, two groups of

state experiments on VSV and VBV are carried out in this
part. As mentioned above, we have performed pertinent
experimental verification for the aeroengine types here.
The datasets we used in this part are test datasets that have
been divided into transition state and steady-state portions.
It should be noted that when an airplane is in flight, the
aeroengine is in its steady condition for a longer period of
time than it is in its transitional state. Therefore, steady-
state datasets are bigger than transition-state datasets. As
can be shown that (from Figures 25–30) regardless of
whether the VSV or VBV is forecast, the transition state pre-
diction error is higher than the steady state prediction error.
But the cost of forecasting the transition state of the com-
pressor geometric variable system is still acceptable. And
the MAE model can track its changes in time.

Figures 31–36 present forecasted results for the type B
aeroengine. And results are similar to those above. The
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model can give relatively accurate prediction outcomes as
well. This leads to an extremely crucial conclusion that even
in the most complicated state, the transition state, the future
trend of the system, and the quick shift in the degree may
both be reliably and accurately forecasted. In addition, it is
reasonable to believe that through our strategy of feeding
the MAE model with randomly extracted datasets, the
MAE model itself has learned the important features of dis-
tinguishing the transition state and steady state according to
the input data. When the identification job is done, an accu-
rate forecast value can be output.

5. Conclusion

This paper is aimed at studying the feasibility of predicting
the compressor geometric variable system of aeroengines.
We use the MAE transformer algorithm, a powerful deep
learning algorithm in the AI field, and adapt it to the
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aeroengine field for improvement and optimization. We pre-
dict the changes of VSV angle (°) and VBV opening (°) in the
compressor geometric variable system based on the real
flight dataset collected by the aircraft data acquisition sys-
tem. We conduct extensive and sufficient experiments on
VSV and VBV prediction to ensure the validity of our con-
clusions. Moreover, we test our method on different types
of aeroengines and different aeroengine states to make our
results more reliable and our theoretical basis more solid.
Therefore, our study goes beyond the limitations of previous
compressor research topics that focused on fault diagnosis,
fault prognosis, and baseline modeling and demonstrates
the applicability of our method on different types of aeroen-
gines. Furthermore, the optimization and application of the
MAE model in time series prediction provide an important
reference for the AI field.

The study shows that (1) the forecast of the compressor
geometric variable system is feasible. Both the changes in
VSV angles and the changes in VBV opening can be fore-
casted. And it is established that both the VSV angles, and
the VBV opening can be predicted with errors within an
acceptable range. (2) The applicability of prediction methods
specifically designed for the compressor geometric variable
system was evaluated, showing relatively accurate results in
different types of aeroengines. (3) Furthermore, it was veri-
fied if the model would be capable of accurately forecasting
different state features when the amount of data was suffi-
cient, thus confirming its potential to identify different aero-
engine running states.

Despite the above achievements, some limitations still
exist. One issue is that the system predictions do not incor-
porate the information of other essential parameters in the
future when predicting the target values. This could lead to
less accurate results if these parameters change suddenly in
actual operation, even though the model may analyze their
future trend. Therefore, future work will focus on collecting
additional information from other crucial parameters
instead of merely predicting the target values. This could
provide more useful data for the model and improve its
accuracy. Moreover, mechanical reasons may sometimes
cause faults. Therefore, the future research direction should
aim to solve these problems reasonably and efficiently.

Data Availability

The datasets we used were collected from airlines. And the
companies must approve the usage rights. Due to the confi-
dentiality of our datasets, authorization must also be
obtained before uploading them. Therefore, after contacting
the company and obtaining permission, we will upload the
data.
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